Передача электричества по одному проводу практическое применение. Передача электроэнергии по одному проводу - выдумка или реальность

В 1892 году в Лондоне, а через год в Филадельфии, известный изобретатель, серб по национальности, Никола Тесла демонстрировал передачу электроэнергии по одному проводу.

Как он это делал — остается загадкой. Часть его записей до сих пор не расшифрована, другая часть сгорела.

Сенсационность опытов Тесла очевидна любому электрику: ведь, чтобы ток шел по проводам, они должны составлять замкнутый контур. А тут вдруг — один незаземленный провод!

Но, я думаю, современным электрикам предстоит удивиться еще больше, когда они узнают, что у нас в стране работает человек, который тоже нашел способ передавать электроэнергию по одному незамкнутому проводу. Инженер Станислав Авраменко делает это уже 15 лет.


Как же осуществляется феноменальное явление, не укладывающееся в рамки общепризнанных представлений? На рисунке показана одна из схем Авраменко.

Она состоит из трансформатора Т, линии электропередачи (провода) Л, двух встречно включенных диодов Д, конденсатора С и разрядника Р.

Трансформатор имеет ряд особенностей, которые пока (дабы сохранить приоритет) раскрывать не будем. Скажем только, что он схож с , в котором первичная обмотка питается напряжением с частотой, равной резонансной частоте вторичной обмотки.

Подключим входные (на рис.— нижние) выводы трансформатора к источнику переменного напряжения. Поскольку два других его вывода между собой не замкнуты (точка 1 просто висит в воздухе), тока наблюдаться в них вроде бы не должно.

Однако в разряднике возникает искра — происходит пробой воздуха электрическими за рядами!

Он может быть непрерывным или прерывным, повторяться с интервалом, зависящим от емкости конденсатора, величины и частоты приложенного к трансформатору напряжения.

Получается, что на противоположных сторонах разрядника периодически накапливается определенное число зарядов. Но поступать туда они могут, по всей видимости, лишь от точки 3 через диоды, выпрямляющие переменный ток, существующий в линии Л.

Таким образом в вилке Авраменко (часть схемы правее точки 3) циркулирует постоянный по направлению и пульсирующий по величине ток.

Подключенный к разряднику вольтметр V, при частоте около 3 кГц и напряжении 60 В на входе трансформатора, показывает перед пробоем 10 - 20 кВ. Установленный вместо него амперметр регистрирует ток в десятки микроампер.


На этом “чудеса” с вилкой Авраменко не заканчиваются. При сопротивлениях R1=2—5 МОм и R2=2—100 МОм (рис. 2) наблюдаются странности при определении выделяющейся на последнем мощности.

Измерив (по общепринятой практике) ток магнитоэлектрическим амперметром А и напряжение электростатическим вольтметром V, перемножив полученные величины, получаем мощность много меньше той, которая определяется точным калориметрическим способом по тепловыделению на сопротивлении R2. Между тем, по всем существующим правилам, они должны совпадать. Объяснения тут пока нет.

Усложнив схему, экспериментаторы передавали по линии Л мощность, равную 1,3 кВт. Это подтвердили три ярко горевшие лампочки, суммарная мощность которых составляла как раз названную величину.

Опыт проводился 5 июля 1990 года в одной из лабораторий Московского энергетического института. Источником питания служил машинный генератор с частотой 8 кГц. Длина провода Л равнялась 2,75 м. Интересно, что он был не медным или алюминиевым, которые обычно применяют для передачи электроэнергии (их сопротивление относительно мало), а вольфрамовым! Да к тому же диаметром — 15 мкм! То есть электрическое сопротивление такого провода намного превышало сопротивление обычных проводов той же длины.

По идее, здесь должны происходить большие потери электроэнергии, а провод — раскалиться и излучать тепло. Но этого не было, пока трудно объяснить почему,— вольфрам оставался холодным.

Высокие должностные лица с учеными степенями, убедившиеся в реальности опыта, были просто ошеломлены (однако своих фамилий просили на всякий случай не называть).

А наиболее представительная делегация знакомилась с опытами Авраменко еще летом 1989 года.

В нее входили заместитель министра Минэнерго, начальники главков и другие ответственные научно-административные работники.

Поскольку вразумительного теоретического объяснения эффектам Авраменко никто дать не мог, делегация ограничилась тем, что пожелала ему дальнейших успехов и чинно удалилась. Кстати, о заинтересованности государственных органов в технических новшествах: Авраменко подал первую заявку на изобретение в январе 1978 года, но до сих пор не получил авторского свидетельства.

А ведь при внимательном взгляде на опыты Авраменко становится ясно, что это не просто экспериментаторские игрушки. Вспомните, какая мощность передавалась по вольфрамовому проводнику, и он не нагревался! То есть линия как бы не имела сопротивления. Так что же она собой представляла — “сверхпроводник” при комнатной температуре? Тут уж дальше и комментировать нечего — насчет практического значения.

Есть, конечно, и теоретические предположения, объясняющие результаты опытов. Не вдаваясь в подробности, скажем, что эффект может быть связан с токами смещения и резонансными явлениями — совпадением частоты напряжения источника питания и собственных частот колебания атомных решеток проводника.

Между прочим, о мгновенных токах в единичной линии писал еще Фарадей, в 30-х годах прошлого века, а в соответствии с электродинамикой, обоснованной Максвеллом, ток поляризации не приводит к выделению на проводнике джоулева тепла — то есть проводник не оказывает ему сопротивления.

Время придет — строгая теория будет создана, а пока инженер Авраменко успешно опробовал передачу электроэнергии по одному проводу на 160 м...

Николай ЗАЕВ

21 января 2010 в 20:04

Передача электроэнергии по одножильному проводу

  • Энергия и элементы питания

Теперь подробнее рассмотрим детали схемы. На самом деле в это схеме есть два нюанса.

Первый – это повышающий трансформатор, обратите внимание на схему подключения. Один конец вторичной обмотки подсоединяется к одному из выводов первичной, и, желательно, заземляется. Это делается для обеспечения безопасности, а так же для повышения эффективности вторичной обмотки. Далее, к первичной обмотке параллельно подсоединен конденсатор, образовывая параллельный колебательный контур. Емкость конденсатора рассчитывается по известным формулам, в зависимости от индуктивности первичной обмотки и используемой частоты. Это делается для повышения силы тока в первичной обмотке, и, соответственно, для усиления эффекта. С подбором емкости конденсатора, возможно, возникнет проблема, так как индуктивность первичной обмотки в процессе ее работы меньше, чем в отключенном состоянии, и эта разница зависит от нагрузки на вторичной обмотке. Я решил этот вопрос просто: рассчитал конденсатор на индуктивность меньшую на 10%-15% от измеренной величины, при заданной частоте. И даже после этого пришлось немного регулировать частоту генератора, для настройки максимального резонанса.

Нюанс второй – настроить резонанс во вторичной цепи. Индуктивность вторичной цепи складывается из индуктивности вторичной обмотки повышающего трансформатора и первичной обмотки понижающего трансформатора. Индуктивность первичной обмотки понижающего трансформатора так же, будет немного меньше измеренной, так как зависит от нагрузки на вторичной обмотке. Далее, необходимо подобрать емкость проводящей изолированной пластины. Делается это просто, измеряем площадь пластины и по формулам рассчитываем емкость, для данной частоты и индуктивности. Пластину нужно разместить на расстоянии от окружающих предметов, в противном случае ее емкость будет больше расчетной. Чем выше частота и больше индуктивность цепи, тем меньше емкость требуется, а значит и площадь пластины. При достаточно высокой частоте может хватить и собственной емкости цепи, в таком случае пластина не нужна. Мой тестовый стенд позволял работать мотору мощность 10Вт на полную мощность, зажигать лампы накаливания, и, конечно же, перегоревшие лампы дневного света. На мой взгляд, ОПЭ имеет два основных плюса. Первый – расходуется меньше материалов на проводники. Второй – за счет повышенной частоты и высокого напряжения по проводнику проходит, относительно не большой ток, провод почти не греется, что благоприятно сказывается на сопротивлении. Изучив данный материал, очень надеюсь, что у вас возник вопрос: «А что, в таком случае, мешает использовать Землю, в качестве проводника?». Отвечу – ничего!


А можно и на много проще:

На ролике представлена очень примитивная схема, с помощью которой демострируется передача электроэнергии по одному проводу.
На самом деле, передавать электроэнергию посредством одного провода на данный момент не имеет практического смысла, на мой взгляд. Эта информация размещена здесь лишь для того, что бы показать возможность передачи энергии и сигналов через Землю.

P.S. Статья написана Ромой, который давно хотел попасть на хабр, но теперь, думаю, у него это получится который попал на хабр благодаря инвайту от . Пока я не знаю хабраимени Романа, но как только узнаю - обязательно размещу его здесь.

P.S. 2 Это второй человек, который участвует в моем эксперименте по «продаже» инвайтов. Суть эксперимента заключается в том, что я продаю инвайт за статью. Я считаю что люди, которые пишут статьи достойны стать хабрапользователями. Не отдавать инвайты просто так я решил после двух приглашенных людей, которые спустя уже год пребывания на хабре не сделали ничего. Я думаю, вы меня поймете. Спасибо.

P.S. 3 Так как автор не до конца смог донести идею - расскажу я. В данном случае работает емкостная энергия. Здесь мы получаем колебательный контур за счет емкости и болшой частоты. Индуктируется ЭДС во вторичной обмотке трансформатора, за счет этого мы и получаем выход энергии с другой стороны провода.

Заглавие лекции – «О токе, или явлениях динамического электричества» L -127.

Моя схема ОПЭ следующая: 1 – ноутбук; 2 – УНЧ, 3 – повышающий трансформатор (ноутбук, УНЧ и повышающий трансформатор играют роль генератора тока нужного мне характера, т.е. высокочастотного и высоковольтного); 4 – нагрузка в виде понижающего трансформатора и диодного моста на низковольтной обмотке, с подключенным к ней двигателем постоянного тока; 5 – изолированная проводящая пластина.


Теперь подробнее рассмотрим детали схемы. На самом деле в это схеме есть два нюанса. Первый – это повышающий трансформатор, обратите внимание на схему подключения. Один конец вторичной обмотки подсоединяется к одному из выводов первичной, и, желательно, заземляется. Это делается для обеспечения безопасности, а так же для повышения эффективности вторичной обмотки. Далее, к первичной обмотке параллельно подсоединен конденсатор, образовывая параллельный колебательный контур. Емкость конденсатора рассчитывается по известным формулам, в зависимости от индуктивности первичной обмотки и используемой частоты. Это делается для повышения силы тока в первичной обмотке, и, соответственно, для усиления эффекта. С подбором емкости конденсатора, возможно, возникнет проблема, так как индуктивность первичной обмотки в процессе ее работы меньше, чем в отключенном состоянии, и эта разница зависит от нагрузки на вторичной обмотке. Я решил этот вопрос просто: рассчитал конденсатор на индуктивность меньшую на 10%-15% от измеренной величины, при заданной частоте. И даже после этого пришлось немного регулировать частоту генератора, для настройки максимального резонанса. Нюанс второй – настроить резонанс во вторичной цепи. Индуктивность вторичной цепи складывается из индуктивности вторичной обмотки повышающего трансформатора и первичной обмотки понижающего трансформатора. Индуктивность первичной обмотки понижающего трансформатора так же, будет немного меньше измеренной, так как зависит от нагрузки на вторичной обмотке. Далее, необходимо подобрать емкость проводящей изолированной пластины. Делается это просто, измеряем площадь пластины и по формулам рассчитываем емкость, для данной частоты и индуктивности. Пластину нужно разместить на расстоянии от окружающих предметов, в противном случае ее емкость будет больше расчетной. Чем выше частота и больше индуктивность цепи, тем меньше емкость требуется, а значит и площадь пластины. При достаточно высокой частоте может хватить и собственной емкости цепи, в таком случае пластина не нужна. Мой тестовый стенд позволял работать мотору мощность 10Вт на полную мощность, зажигать лампы накаливания, и, конечно же, перегоревшие лампы дневного света. На мой взгляд, ОПЭ имеет два основных плюса. Первый – расходуется меньше материалов на проводники. Второй – за счет повышенной частоты и высокого напряжения по проводнику проходит, относительно не большой ток, провод почти не греется, что благоприятно сказывается на сопротивлении. Изучив данный материал, очень надеюсь, что у вас возник вопрос: «А что, в таком случае, мешает использовать Землю, в качестве проводника?». Отвечу – ничего!

А можно и намного проще:

Или так:

На роликах представлена очень примитивная схема, с помощью которой демонстрируется передача электроэнергии по одному проводу.
На самом деле, передавать элетроэнергию посредством одного провода на данный момент не имеет практического смысла, на мой взгляд. Эта информация размещена здесь лишь для того, что бы показать возможность передачи энергии и сигналов через Землю.

В интернете достаточно много обсуждений на тему передачи энергии по одному проводу. Обычно для такой передачи энергии подразумевается наличие заземления, хотя на самом деле это не лучший вариант передачи энергии. Лучше всего передавать энергию по оному проводу с помощью схемы, представленной ниже.

Соединяющий провод можно использовать очень тонкий, в моих опытах провод был диаметром 0.08мм. При хорошо подобранных параметрах катушек транзистор можно использовать без дополнительных резисторов, как нарисовано на схеме. Для кт315 подобное включение работает примерно при 9 вольтах, для кт805 подобное включение может быть работоспособно при 12 вольтах. Важно соблюдать правильное подключение катушек в передающей части схемы, иначе она не заработает. Катушка L2 обычно мотается с большим количеством витков проводом диаметром 0.2 - 0.5 мм. Катушки L2 - L4 должны быть одинаковые! Проверить работоспособность схемы легко, достаточно взять в руки светодиод за одну из его ножек и поднести его к контакту катушки L2. Он должен начать светиться. Диоды выпрямителя на приемной части схемы должны быть высокочастотными. Также лучше поставить на выходе выпрямителя сглаживающий конденсатор.

Видео с работой данной схемы

Можно заметить, что схема включения на видео отличается от схемы в статье. В видео база транзистора подключена к резистивному делителю, состоящему из 27 и 240 ом. Остальное работает так же. Аккумулятор на 12 вольт не обязательно ставить мощный, потребление от схемы небольшое и для опытов хватит кроновой батарейки, если устройство будет сделано небольших габаритов по схеме из данной статьи. Конические катушки мотать не нужно, в видео они были использованы, так как других под рукой просто не было.

Отличие от других схем

Две схемы, представленные выше, без заземления будут работать тем хуже, чем длиннее соединяющий провод. Причем, это весьма заметно в пределах 3-х метров. При подключении к приемной части массивного проводящего предмета, прием энергии улучшается, однако все равно остается хуже, чем в самой первой схеме данной статьи. Для первой схемы эффективность приема энергии не так сильно зависит от длины соединяющего провода и не требует наличия массивного проводящего предмета в качестве заземления.

Некоторые опыты

Опыт с лампочкой
Если вывод катушки L2 подключить к лампочке с нитью накала, а второй провод лампочки сделать достаточно длинным, нить накала будет гореть. Однако она будет гореть не равномерно, а с постепенным затуханием.

Опыт с катушкой вокруг провода
Если сделать катушку, и продеть через нее передающий приемнику энергию провод, то на катушке появится ЭДС, как будто переменное магнитное поле направлено вдоль проводника, а не вокруг него.