Чем отличается аналоговая связь от цифровой. Связь аналоговая

Отличие аналоговой и цифровой связи.
Имея дело с радиосвязью, очень часто приходится сталкиваться с такими терминами, как «аналоговый сигнал» и «цифровой сигнал» . Для специалистов в этих словах нет никакой тайны, но для людей несведущих разница между «цифрой» и «аналогом» может быть совсем неведомой. А между тем разница есть и весьма существенная.
Итак. Радиосвязь это всегда передача информации (речевой, СМС, телесигнализации) между двумя абонентами источником сигнала передатчиком (Радиостанцией, репитером, базовой станцией) и приемником.
Когда мы говорим о сигнале, то обычно подразумеваем электромагнитные колебания, наводящие ЭДС и вызывающие колебания тока в антенне приемника. Далее приемное устройство – переводит полученные колебания обратно в сигнал звуковой частоты и выводит на динамик.
В любом случае сигнал передатчика можно представить как в цифровой, так и в аналоговой форме. Ведь, к примеру, сам по себе звук – это аналоговый сигнал. На радиостанции звук, воспринимаемый микрофоном, преобразуется в уже упоминавшиеся электромагнитные колебания. Чем выше частота звука – тем выше частота колебаний на выходе, а чем громче говорит диктор – тем больше амплитуда.
Получившиеся электромагнитные колебания, или волны, распространяются в пространстве с помощью передаточной антенны. Чтобы эфир не забивался низкочастотными помехами, и чтобы у разных радиостанций была возможность работать параллельно, не мешая друг другу, колебания, получившиеся от воздействия звука, суммируют, то есть «накладывают» на другие колебания, имеющие постоянную частоту. Последнюю частоту принято называть «несущей», и именно на ее восприятие мы настраиваем свой радиоприемник, чтобы «поймать» аналоговый сигнал радиостанции.
В приемнике происходит обратный процесс: несущая частота отделяется, а электромагнитные колебания, полученные антенной, преобразуются в колебания звука, и из динамика слышится информация которую хотел сообщить передавший сообщение.
В процессе передачи звукового сигнала от радиостанции к приемнику могут возникнуть сторонние помехи, частота и амплитуда могут измениться, что, конечно же, отразится на звуках, издаваемых радиоприемником. Наконец, и сами передатчик и приемник во время преобразования сигнала вносят некоторую погрешность. Поэтому звук, воспроизводимый аналоговым радиоприемником, всегда имеет некоторые искажения. Голос может вполне воспроизводиться, несмотря на изменения, но фоном будет шипение или даже какие-то хрипы, вызванные помехами. Чем менее уверенным будет прием, тем громче и отчетливее будут эти посторонние шумовые эффекты.

Вдобавок эфирный аналоговый сигнал имеет очень слабую степень защиты от постороннего доступа. Для общественных радиостанций это, конечно, не имеет никакого значения. Но во время пользования первыми мобильными телефонами был один неприятный момент, связанный с тем, что почти любой посторонний радиоприемник мог быть легко настроен на нужную волну для подслушивания вашего телефонного разговора.

Для защиты от этого используют так называемое «тонирование» сигнала или по другому система CTCSS (Continuous Tone-Coded Squelch System) система шумоподавления, кодированная непрерывным тоном или система идентификации сигнала «свой/чужой», предназначенная разделять пользователей, работающих в одном частотном диапазоне, на группы. Пользователи (корреспонденты) из одной группы могут слышать друг друга благодаря идентификационному коду. Объясняя доступно, принцип действия данной системы таков. Вместе с передаваемой информацией в эфир отправляют также дополнительный сигнал (или по другому тон). Приемник, помимо несущей, распознает при соответствующей настойке этот тон и принимает сигнал. Если же в рации –приемнике тон не настроен, то приема сигнала не происходит. Стандартов шифрования существует достаточное большое количество отличающаяся для различных производителей.
Такие недостатки есть у аналогового эфирного вещания. Из-за них, к примеру, телевидение в относительно скором времени обещает стать полностью цифровым.

Цифровая связь и вещания считаются более защищенными от помех и от внешних воздействий. Все дело в том, что при использовании «цифры» аналоговый сигнал с микрофона на передающей станции зашифровывается в цифровой код. Нет, конечно, в окружающее пространство не распространяется поток цифр и чисел. Просто звуку определенной частоты и громкости присваивается код из радиоимпульсов. Продолжительность и частота импульсов задана заранее – она одна и у передатчика, и у приемника. Наличие импульса соответствует единице, отсутствие – нулю. Поэтому такая связь и получила название «цифровая».
Устройство, преобразующее аналоговый сигнал в цифровой код, называется аналого-цифровым преобразователем (АЦП) . А устройство, установленное в приемнике, и преобразующее код в аналоговый сигнал, соответствующий голосу вашего знакомого в динамике сотового телефона стандарта GSM, называется цифро-аналоговый преобразователь (ЦАП).
Во время передачи цифрового сигнала ошибки и искажения практически исключены. Если импульс станет немного сильнее, продолжительнее, или наоборот, то он все равно будет распознан системой как единица. А нуль останется нулем, даже если на его месте возникнет какой-то случайный слабый сигнал. Для АЦП и ЦАП не существует других значений, как 0,2 или 0,9 – только нуль и единица. Поэтому помехи на цифровую связь и вещание почти не оказывают влияния.
Более того, «цифра» является и более защищенной от постороннего доступа. Ведь, чтобы ЦАП устройства смог расшифровать сигнал, необходимо, чтобы он «знал» код расшифровки. АЦП вместе с сигналом может передавать и цифровой адрес устройства, выбранного в качестве приемника. Таким образом, даже если радиосигнал и будет перехвачен, он не сможет быть распознан из-за отсутствия как минимум части кода. Это особенно актуально для связи.
Итак, отличия цифрового и аналогового сигналов :
1) Аналоговый сигнал может быть искажен помехами, а цифровой сигнал может быть или забит помехами совсем, или приходить без искажений. Цифровой сигнал или точно есть, или полностью отсутствует (или нуль, или единица).
2) Аналоговый сигнал доступен для восприятия всеми устройствами, работающими по тому же принципу, что и передатчик. Цифровой сигнал надежно защищен кодом, его трудно перехватить, если вам он не предназначается.

Помимо чисто аналоговых и чисто цифровых станций, существуют и радиостанции поддерживающие как аналоговый так и цифровой режим. Они предназначены для перехода с аналоговой на цифровую связь.
Итак имея в распоряжении парк аналоговых радиостанций, вы можете постепенно перейти на цифровой стандарт связи.
Например, изначально вы строили систему связи на Радиостанциях Байкал 30.
Напомню, что это аналоговая станция с 16 каналами.

Но идет время, и станция перестает устраивать Вас, как пользователя. Да, она надежная, да мощная, да с хорошим аккумулятором до 2600 мА/ч. Но при расширении парка радиостанций более чем на 100 человек, а особенно при работе в группах её 16 каналов начинает не хватать.
Вам совершенно не обязательно сразу бежать и покупать радиостанции цифрового стандарта. Большинство производителей, намеренно вводят модель с наличием аналогового режима передачи.
То есть вы можете поэтапно переходить на например Байкал -501 или Vertex-EVX531 сохраняя существующую систему связи в рабочем состоянии.

Плюсы такого перехода неоспоримы.
Вы получаете станцию работающую
1) дольше (в цифровом режиме меньше потребление.)
2) Имеющую большее количество функций (групповой вызов, одинокий работник)
3) 32 канала памяти.
То есть вы фактически создаете изначально 2 базы каналов. Под новые закупленные станции (цифровые каналы) и базу каналов содействия с существующими станциями (аналоговые каналы). Постепенно по мере закупки оборудования вы будете сокращать парк радиостанций второго банка и увеличивать – первого.
В конечном итоге вы достигнете поставленной задачи – перевести полностью вашу базу на цифровой стандарт связи.
Хорошим дополнением и расширением к любой базе может послужить цифровой ретранслятор Yaesu Fusion DR-1


Это двухдиапазонный (144/430MHz) ретранслятор, который поддерживает аналоговую FM связь, а также одновременно цифровой протокол System Fusion в пределах частотного диапазона 12.5кГц. Мы уверены, что внедрение новейшей DR-1X станет рассветом нашей новой и впечатляющей многофункциональной системы System Fusion.
Одной из ключевых возможностей System Fusion является функция AMS (автоматический выбор режима) , которая мгновенно распознает принимается ли сигнал в режиме V/D, режиме голосовой связи или режиме данных FR аналоговом FM или цифровом C4FM, и автоматически переключается на соответствующий. Таким образом, благодаря нашим цифровым трансиверам FT1DR и FTM-400DR System Fusion ,чтобы поддерживать связь с аналоговыми FM радиостанциями больше нет необходимости каждый раз вручную переключать режимы,.
На репитере DR-1X, AMS можно настроить так, чтобы входящий цифровой C4FM сигнал преобразовывался в аналоговый FM и ретранслировался, таким образом позволяя поддерживать связь между цифровым и аналоговым трансиверами. AMS также можно настроить на автоматическую ретрансляцию входящего режима на выход, позволяя цифровым и аналоговым пользователям совместно использовать один ретранслятор.
До сих пор, FM ретрансляторы использовались только для традиционной FM связи, а цифровые ретрансляторы только для цифровой. Однако, теперь просто заменив обычный аналоговый FM репитер на DR-1X, вы можете продолжать пользоваться обычной FM связью, а также использовать ретранслятор для более продвинутой цифровой радиосвязи System Fusion . Другие периферийные устройства, такие как дуплексер и усилитель и т.д. можно продолжать использоваться как обычно.

Более подробные характеристики оборудование можно увидеть на сайте в разделе продукция

Стремительное развитие технологий внесли в нашу жизнь повсеместное использование раций. Их можно используют повсеместно. На сегодняшний день существует два основных вида раций: аналоговые и цифровые.
Примечательно, что аналоговые рации с 1933 года использовались для гражданской связи, а для военных целей их начали применять на двадцать лет ранее. С тех пор они конечно подверглись всевозможным улучшениям и усовершенствованиям. Теперь аналоговые рации – предел совершенства. Однако появление цифровых раций совершило грандиозный переворот в радио технологиях.
Если сравнивать аналоговые и цифровые устройства, то они существенно отличаются не только методом подачи сигнала, а и качеством звука, и соотношением цены. Но, невзирая на явные преимущества цифровых приборов, они никогда не смогут полностью заменить аналоговые рации. Их по-прежнему используют в разных сферах жизнедеятельности.

Цифровой и аналоговый сигнал: сравнительная характеристика

В основном аналоговые рации используют частотную модуляцию, то есть FM волны. Это вид модуляции, при которой сигнал звука управляет частотой несущего колебания. Стоимость аналоговой рации невысока благодаря тому, что удалось интегрировать данную систему всего лишь в один чип. Аналоговый сигнал используют во многих современных рациях, однако появление цифровых систем, снизило их популярность.
Цифровой сигнал - представлен двоичными числами 0 и 1. Цифровые методы передачи гарантируют передачу всех необходимых данных за счет коррекции ошибок и благодаря контрольным битам. Алгоритмы программного обеспечения прекрасно отличают фоновый шум от полезного сигнала.
Цифровая беспроводная передача данных гарантирует такую же надежную доставку информации, как и проводная система.

Рация – востребованное средство связи?

Существует мнение, что рации – умирающая технология. На самом деле, оно ошибочно. Рации по-прежнему остаются востребованным и популярным средством связи так, как позволяют:
  • Мгновенно обмениваться сообщениями
  • Разговаривать одновременно с несколькими абонентами
  • Долговечны в эксплуатации, и работают в любых условиях
Эти средства связи используют повсеместно: в промышленности, бизнесе, охранных структурах и в правительстве, в армии.
Цифровые и аналоговые устройства имеют практически одинаковые функции, но отличия у них существенные.

Аналоговые рации: преимущества и недостатки

Преимуществами аналоговых раций смело можно считать:
  • Звук передается незакодированным, что очень нравится большинству пользователей
  • Огромный ассортимент разнообразных моделей и выбор всевозможных аксессуаров
  • Простота эксплуатации и понимание пользователями использование частот
К недостаткам аналоговых раций можно отнести следующее:
  • На одном канале можно вести только один разговор одновременно
  • Необходимость в наличии передатчика и приемника, специально настроенных на одну частоту
  • Невозможность использования программ, разработанных для бизнеса

Цифровые рации: преимущества и недостатки

К преимуществам цифровых раций относится:
  • Отличное подавление шумов
  • Прекрасное качество звука на любом расстоянии
  • Возможность на одном канале вести несколько разговоров одновременно
  • Возможность передачи коротких сообщений
  • Высокая плотность каналов
  • Сигналы принимаются стандартными антеннами
  • Цифровая обработка снижает фоновый шум
  • Наличие программного обеспечения
  • Цифровая платформа позволяет использовать и аналоговую и цифровую рации одновременно
  • Можно отслеживать перемещение собеседников в одной сети
Недостатки:
  • Высокая стоимость
  • Длительное обучение использованию
  • Радиочастотные шумы мешают цифровым сигналом, может возникнуть ошибка

Из всего выше перечисленного можно сделать вывод, что цифровые радиостанции отличаются от аналоговых наличием более высоких эксплуатационных и функциональных характеристик. Главное преимущество цифровых устройств – более высокая устойчивость сигнала при наличии помех. Поэтому они становятся популярными.

Линии связи могут быть аналоговыми или цифровыми.

Данные, изначально имеющие аналоговую, непрерывную форму, такие, как речь, фото и телевизионные изображения, телеметрическая информация, в последнее время все чаще передаются по каналам связи в дискретном виде, т. е. в виде последовательности "нулей" и "единиц". Для преобразования непрерывного сигнала в дискретную форму производится дискретная модуляция. называемая также кодированием.

Применяются два типа кодирования данных. Первый -- на основе непрерывного синусоидального несущего сигнала - называется аналоговой модуляцией, или просто модуляцией. Кодирование осуществляется за счет изменения параметров аналогового сигнала. Второй тип кодирования называется цифровым кодированием и осуществляется на основе последовательности прямоугольных импульсов. Эти способы кодирования различаются шириной спектра передаваемого сигнала и сложностью аппаратуры для их реализации.

Современные телекоммуникационные системы и сети явились синтезом развития двух исходно независимых сетей:

    сетей электросвязи (телефонной, телеграфной, телетайпной и радиосвязи)

    и вычислительных сетей.

Логика развития систем связи требовала применения цифровых систем передачи данных, а также применения вычислительных средств для решения задач маршрутизации, управления трафиком, сигнализации. Достигнутое в результате этих двух встречных движений совмещение техники связи с вычислительной техникой позволило усовершенствовать технологию обслуживания телефонной клиентуры и повысить эффективность отрасли связи, а также полнее использовать ресурсы вычислительных центров, вычислительных систем и сетей путем перераспределения их ресурсов и распараллеливания между ними задач и информационных потоков.

Многие сети общего пользования традиционных операторов (фиксированная телефонная связь) являются в основном аналоговыми. Сети связи, создаваемые новыми операторами - цифровые, что обеспечивает внедрение современных служб и гарантирует перспективность этих сетей.

В то же время существующие аналоговые сети активно используются для передачи информации как в аналоговой форме (телефония, радиотелефония, радиовещание и телевидение), так и для передачи дискретных (цифровых) данных. Носителем информации в телекоммуникационных каналах являются электрические сигналы (непрерывные, называемые аналоговыми, и дискретные или цифровые) и электромагнитные колебания - волны.

Для передачи по цифровым каналам аналогового сообщения в виде непрерывной последовательности (телеметрические, метеорологические данные, данные систем контроля и управления) она предварительно оцифровывается. Частота оцифровки обычно равна порядка 8 кГц, через каждые 125 мкс значение величины аналогового сигнала отображается 8-разрядным двоичным кодом. Таким образом, скорость передачи данных составляет 64 кбит/с. Объединение нескольких таких базовых цифровых каналов в один (мультиплексирование) позволяет создавать более скоростные каналы: простейший мультиплексированный канал обеспечивает скорость передачи 128 кбит/с, более сложные каналы, например, мультиплексирующие 32 базовых канала, обеспечивают пропускную способность 2048 Мбит/с. С помощью цифровых каналов подключаются к магистралям также и офисные цифровые АТС.

Цифровые абонентские каналы в режиме коммутации каналов используются в наиболее распространенной цифровой сети с интеграцией услуг ISDN(Integrated Services Digital Network). По популярности сеть ISDN уступает лишь аналоговой телефонной сети. Адресация в ISDN организована так же, как и в телефонной сети, так как сеть создавалась для объединения существующих телефонных сетей с появляющимися сетями передачи данных. Поэтому сети ISDN позволяют объединять разнообразные виды связи (видео-, аудиопередачу данных, тексты, компьютерные данные и т. п.) со скоростями 64 кбит/с, 128 кбит/с, 2 Мбит/с и 155 Мбит/с на широкополосных каналах связи.

Заметим, что названием ISDN принято именовать и сеть, использующую технологию ISDN, и протокол, применяющий эту технологию.

Активно развиваются и другие типы цифровых систем, из которых следует отметить модификации технологии цифровых абонентских линий DSL (Digital Subscriber Line). HDSL (High Bit Rate DSL) - высокоскоростной вариант абонентской линии ISDN.

Конкуренцию ISDN и HDSL могут составить цифровые магистрали с синхронно-цифровой иерархией SDN (Synchronous Digital Hierarchy). В системе SDN имеется иерархия скоростей передачи данных. В магистралях SDN применяются оптоволоконные линии связи и частично радиолинии.

Беспроводные каналы связи

В дополнение к традиционным физическим носителям методы беспроводной передачи данных могут являться удобной, а иногда и неизбежной альтернативой кабельным соединениям. Беспроводные технологии различаются по типам сигнала, часто те (большая частота означает большую скорость передачи) и расстоянию передачи. Тремя главными типами беспроводной передачи данных являются радиосвязь, связь в микроволновом диапазоне и инфракрасная связь.

Радиосвязь

Технологии радиосвязи (Radio Waves) пересылают данные на радиочастотах и практически не имеют ограничений по дальности. Она используется для соединения локальных сетей на больших географических расстояниях. Радиопередача в целом имеет высокую стоимость, подлежит государственному регулированию и крайне чувствительна к электронному и атмосферному наложению. Она также подвержена перехвату, поэтому требует шифрования или другой модификации при передаче, чтобы обеспечить разумный уровень безопасности.

Связь в микроволновом диапазоне

Передача данных в микроволновом диапазоне (Microwaves) использует высокие частоты и применяется как на коротких расстояниях, так и в глобальных коммуникациях. Их главное ограничение заключается в том, что передатчик и приемник должны быть в зоне прямой видимости друг друга.

Передача данных в микроволновом диапазоне обычно используется для соединения локальных сетей в отдельных зданиях, где использование физического носителя затруднено или непрактично. Связь в микроволновом диапазоне также широко используется в глобальной передаче с помощью спутников и наземных спутниковых антенн, обеспечивающих выполнение требования прямой видимости.

Спутники в системах связи могут находиться на геостационарных (высота 36 тыс. км) или низких орбитах. При геостационарных орбитах заметны задержки на прохождение сигналов (туда и обратно около 520 мс). Возможно покрытие поверхности всего земного шара с помощью четырех спутников. В низкоорбитальных системах обслуживание конкретного пользователя происходит попеременно разными спутниками. Чем ниже орбита, тем меньше плошадь покрытия и, следовательно, нужно или больше наземных станций, или требуется межспутниковая связь, что естественно утяжеляет спутник. Число спутников также значительно больше (обычно несколько десятков). Например, глобальная спутниковая сеть Iridium, имеющая и российский сегмент, включает 66 низкоорбитальных спутников, диапазон частот 1610-1626,5 МГц.

Инфракрасная связь

Инфракрасные технологии (infrared transmissions), функционирующие на очень высоких частотах, приближающихся к частотам видимого света, могут быть использованы для установления двусторонней или широковещательной передачи на близких расстояниях. Они обычно используют светодиоды (light-emitting) для передачи инфракрасных волн приемнику. Поскольку они могут быть физически заблокированы и испытывать интерференцию с ярким светом, инфракрасная передача ограничена малыми расстояниями в зоне прямой видимости. Инфракрасная передача обычно используется в складских или офисных зданиях, иногда для связи двух зданий. Другим популярным использованием инфракрасной связи является беспроводная передача данных в портативных компьютерах.

Беспроводные (радиоканалы наземной и спутниковой связи) каналы передачи данных

Радиоканалы наземной (радиорелейной и сотовой) и спутниковой связи образуются с помощью передатчика и приемника радиоволн и относятся к технологии беспроводной передачи данных.

Радиорелейные каналы передачи данных Радиорелейные каналы связи состоят из последовательности станций, являющихся ретрансляторами. Связь осуществляется в пределах прямой видимости, дальности между соседними станциями - до 50 км. Цифровые радиорелейные линии связи (ЦРРС) применяются в качестве региональных и местных систем связи и передачи данных, а также для связи между базовыми станциями сотовой связи.

Спутниковые каналы передачи данных

В спутниковых системах используются антенны СВЧ-диапазона частот для приема радиосигналов от наземных станций и ретрансляции этих сигналов обратно на наземные станции. В спутниковых сетях используются три основных типа спутников, которые находятся на геостационарных орбитах, средних или низких орбитах. Спутники запускаются, как правило, группами. Разнесенные друг от друга они могут обеспечить охват почти всей поверхности Земли. Работа спутникового канала передачи данных представлена на рисунке

Целесообразнее использовать спутниковую связь для организации канала связи между станциями, расположенными на очень больших расстояниях, и возможности обслуживания абонентов в самых труднодоступных точках. Пропускная способность высокая – несколько десятков Мбит/c.

Сотовые каналы передачи данных

Радиоканалы сотовой связи строятся по тем же принципам, что и сотовые телефонные сети. Сотовая связь - это беспроводная телекоммуникационная система, состоящая из сети наземных базовых приемо-передающих станций и сотового коммутатора (или центра коммутации мобильной связи).

Базовые станции подключаются к центру коммутации, который обеспечивает связь, как между базовыми станциями, так и с другими телефонными сетями и с глобальной сетью Интернет. По выполняемым функциям центр коммутации аналогичен обычной АТС проводной связи.

LMDS (Local Multipoint Distribution System) - это стандарт сотовых сетей беспроводной передачи информации для фиксированных абонентов. Система строится по сотовому принципу, одна базовая станция позволяет охватить район радиусом несколько километров (до 10 км) и подключить несколько тысяч абонентов. Сами БС объединяются друг с другом высокоскоростными наземными каналами связи либо радиоканалами. Скорость передачи данных до 45 Мбит/c.

Радиоканалы передачи данных WiMAX (Worldwide Interoperability for Microwave Access) аналогичны Wi-Fi. WiMAX, в отличие от традиционных технологий радиодоступа, работает и на отраженном сигнале, вне прямой видимости базовой станции. Эксперты считают, что мобильные сети WiMAX открывают гораздо более интересные перспективы для пользователей, чем фиксированный WiMAX, предназначенный для корпоративных заказчиков. Информацию можно передавать на расстояния до 50 км со скоростью до 70 Мбит/с.

Радиоканалы передачи данных MMDS (Multichannel Multipoint Distribution System). Эти системы способна обслуживать территорию в радиусе 50-60 км, при этом прямая видимость передатчика оператора является не обязательной. Средняя гарантированная скорость передачи данных составляет 500 Кбит/с - 1 Мбит/с, но можно обеспечить до 56 Мбит/с на один канал.

Радиоканалы передачи данных для локальных сетей . Стандартом беспроводной связи для локальных сетей является технология Wi-Fi. Wi-Fi обеспечивает подключение в двух режимах: точка-точка (для подключения двух ПК) и инфраструктурное соединение (для подключения несколько ПК к одной точке доступа). Скорость обмена данными до 11 Mбит/с при подключении точка-точка и до 54 Мбит/с при инфраструктурном соединении.

Радиоканалы передачи данных Bluetooht - это технология передачи данных на короткие расстояния (не более 10 м) и может быть использована для создания домашних сетей. Скорость передачи данных не превышает 1 Мбит/с.

Любой сигнал, аналоговый или цифровой — это электромагнитные колебания, которые распространяются с определенной частотой, в зависимости от того, какой сигнал передается, устройство, принимающее данный сигнал, переводит его в текстовую, графическую или звуковую информацию, удобную для восприятия пользователя или самого устройства. Для примера, телевизионный или радиосигнал, вышка или радиостанция может передавать и аналоговый и, на даный момент, цифровой сигнал. Приемное устройство, получая данный сигнал, преобразует его в изображение или звук, дополняя текстовой информацией (современные радиоприемники).

Звук передается в аналоговой форме и уже через приемное устройство преобразуется в электромагнитные колебания, а как уже говорилось, колебания распространяются с определенной частотой. Чем выше будет частота звука, тем выше будут колебания, а значит звук на выходе будет громче. Говоря общими словами, аналоговый сигнал распространяется непрерывно, цифровой сигнал — прерывисто (дискретно).

Так как аналоговый сигнал распространяется постоянно, то колебания суммируются и на выходе возникает несущая частота, которая в данном случае является основной и на нее осуществляется настройка приемника. В самом приемнике происходит отделение данной частоты от других колебаний, которые уже преобразуются в звук. К очевидным недостаткам передачи при помощи аналогового сигнала относятся — большое количество помех, невысокая безопасность передаваемого сигнала, а также большой объем передаваемой информации, часть из которой явлляется лишней.

Если говорить о цифровом сигнале, где данные передаются дискретно, стоит выделить его явные преимущества:

  • высокий уровень защиты передаваемой информации за счет ее шифрования;
  • легкость приема цифрового сигнала;
  • отсутствие постороннего «шума»;
  • цифровое вещание способно обеспечить огромное количество каналов;
  • высокое качество передачи — цифровой сигнал обеспечивает фильтрацию принимаемых данных;

Для преобразования аналогового сигнала в цифровой и наоборот испльзуются специальные устройства — аналого-цифровой преобразователь (АЦП) и цифро-аналоговый преобразователь (ЦАП). АЦП устанавливается в передатчике, ЦАП установлен в приемнике и преобразует дискретный сигнал в аналоговый.

Что касается безопасности, почему цифровой сигнал является более защищенным, чем аналоговый. Цифровой сигнал передается в зашифрованном виде и устройство, которое принимает сигнал, должно иметь код для расшифровки сигнала. Также стоит отметить, что АЦП может передавать и цифровой адрес приемника, если сигнал будет перехвачен, то полностью расшифровать его будет невозможно, тка как отсутствует часть кода — такой подход широко используется в мобильной связи.

Подведем итог, основное различие между аналоговым и цифровым сигналом заключается в структуре передаваемого сигнала. Аналоговые сигналы представляют из себя непрерывный поток колебаний с изменяющимися амплитудой и частотой. Цифровой сигнал представляет из себя дискретные колебания, значения которых зависят от передающей среды.

Каждый день люди сталкиваются с использованием электронных приборов. Без них невозможна современная жизнь. Ведь речь идет о телевизоре, радио, компьютере, телефоне, мультиварке и прочем. Раньше, еще несколько лет назад, никто не задумывался о том, какой сигнал используется в каждом работоспособном приборе. Сейчас же слова «аналоговый», «цифровой», «дискретный» уже давно на слуху. Некоторые виды сигналов из перечисленных являются качественными и надежными.

Цифровая передача стала использоваться намного позже, чем аналоговая. Это связано с тем, что такой сигнал намного проще обслуживать, да и техника на тот момент не была настолько усовершенствована.

С понятием «дискретность» сталкивается каждый человек постоянно. Если переводить это слово с латинского языка, то означать оно будет «прерывистость». Углубляясь далеко в науку, можно сказать, что дискретный сигнал представляет собой метод передачи информации, который подразумевает изменение во времени среды-переносчика. Последняя принимает любое значение из всех возможных. Сейчас дискретность уходит на второй план, после того, как было принято решение производить системы на чипе. Они являются целостными, а все компоненты тесно взаимодействуют друг с другом. В дискретности же все с точностью наоборот - каждая деталь завершена и связана с другими за счет специальных линий связи.

Сигнал

Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.

В сфере информации и связи сигналом назван специальный носитель каких-либо данных, который используется для передачи сообщений. Он может быть создан, но не принят, последнее условие не обязательно. Если же сигнал является сообщением, то его «ловля» считается необходимой.

Описываемый код задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.

В статье охарактеризованы виды сигналов: дискретный, аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.

Виды сигналов

Существует несколько имеющихся сигналов. Рассмотрим, какие бывают виды.

  1. По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
  2. По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
  3. В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.

Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное - немного подумать и вспомнить школьный курс физики.

Для чего обрабатывается сигнал?

Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.

Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.

В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.

Создание и формирование

Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.

При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.

Динамический диапазон

Вычисляется разностью большего и меньшего уровня громкости, которые выражены в децибелах. Он полностью зависит от произведения и особенностей исполнения. Речь идет как о музыкальных треках, так и об обычных диалогах между людьми. Если брать, например, диктора, который читает новости, то его динамический диапазон колеблется в районе 25-30 дБ. А во время чтения какого-либо произведения он может вырастать до 50 дБ.

Аналоговый сигнал

Аналоговый сигнал является непрерывным во времени способом передачи данных. Недостатком его можно назвать присутствие шума, который иногда приводит к полной потере информации. Очень часто возникают такие ситуации, что невозможно определить, где в коде важные данные, а где обычные искажения.

Именно из-за этого цифровая обработка сигналов приобрела большую популярность и постепенно вытесняет аналоговую.

Цифровой сигнал

Цифровой сигнал является особым он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.

Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.

Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.

Применение цифрового сигнала

Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.

В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.

Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.

Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.

Дискретный сигнал

Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения - это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.

Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.

Сравнение цифрового и аналогового сигналов

Покупая технику, вряд ли кто-то думает о том, какие виды сигналов использованы в том или другом приборе, а об их среде и природе уж тем более. Но иногда все же приходится разбираться с понятиями.

Уже давно стало ясно, что аналоговые технологии теряют спрос, ведь их использование нерационально. Взамен приходит цифровая связь. Нужно понимать, о чем идет речь и от чего отказывается человечество.

Если говорить коротко, то аналоговый сигнал - способ передачи информации, который подразумевает описание данных непрерывными функциями времени. По сути, говоря конкретно, амплитуда колебаний может быть равна любому значению, находящемуся в определенных границах.

Цифровая обработка сигналов описывается дискретными функциями времени. Иначе говоря, амплитуда колебаний этого метода равна строго заданным значениям.

Переходя от теории к практике, надо сказать о том, что аналоговому сигналу характерны помехи. С цифровым же таких проблем нет, потому что он успешно их «сглаживает». За счет новых технологий такой метод передачи данных способен своими силами без вмешательства ученого восстановить всю исходную информацию.

Говоря о телевидении, можно уже с уверенностью сказать: аналоговая передача давно изжила себя. Большинство потребителей переходят на цифровой сигнал. Минус последнего заключается в том, что если аналоговую передачу способен принимать любой прибор, то более современный способ - только специальная техника. Хоть и спрос на устаревший метод уже давно упал, все же такие виды сигналов до сих пор не способны полностью уйти из повседневной жизни.