Десятичных градусов в проекции wgs 84. Общеземной эллипсоид grs80

Система координат 1995 г. (СК-95) установлена Постановлением Правительства РФ от 28.07.2002 г № 586 «Об установлении единых государственных систем координат». Используется при осуществлении геодезических и картографических работ, начиная с 1 июля 2002 года.

До завершения перехода к использованию СК правительство РФ постановило использовать единую систему геодезических координат 1942 года, введённую Постановлением Совета министров СССР от 07.04.1996 г № 760.

Целесообразность введения СК-95 состоит в повышении точности, оперативности и экономической эффективности решения задач геодезического обеспечения, отвечающего современным требованиям экономики, науки и обороны страны. Полученные в результате совместного уравнивания координат пунктов космической государственной сети (КГС), доплеровской геодезической сети (ДГС) и астрономо-геодезической сети (АГС) на эпоху 1995 г, Система координат 1995 г закреплена пунктами государственной геодезической сети.

СК-95 строго согласована с единой государственной геоцентрической системой координат, которая называется «Параметры Земли 1990г.» (ПЗ-90). СК-95 установлена под условием параллельности её осей пространственным осям СК ПЗ-90.

За отсчётную поверхность в СК-95 принят референц эллипсоид.

Точность СК-95 характеризуется следующими средними квадратическими ошибками взаимного положения пунктов по каждой из плановых координат: 2-4 см. для смежных пунктов АГС, 30-80 см. при расстояниях от 1 до 9 тыс. км между пунктами.

Точность определения нормальных высот в зависимости от метода их определения характеризуется следующими средними квадратическими ошибками:

· 6-10 см. в среднем по стране из уровня нивелирных сетей 1 и 2 классов;

· 20-30 см из астрономо-геодезических определений при создании АГС.

Точность определения превышений высот квазигеоида астрономогравиметрическим методом характеризуется следующими средними квадратическими ошибками:

· от 6 до 9 см. при расстоянии 10-20 км;

· 30-50 см при расстоянии 1000км.

СК-95 отличается от СК-42

1) повышением точности передачи координат на расстояние свыше 1000 км в 10-15 раз и точностью взаимного положения смежных пунктов в государственной геодезической сети в среднем в 2-3 раза;

2) одинаковой точностью расстояния системы координат для всей территории РФ;

3) отсутствием региональных деформаций государственной геодезической сети, достигающих в СК-42 нескольких метров;

4) возможностью создания высокоэффективной системы геодезического обеспечения на основе использования глобальных навигационных спутниковых систем: Глонасс, GPS, Навстар.

Развитие астрономо-геодезической сети для всей территории СССР было завершено к началу 80х годов. К этому времени стала очевидность выполнения общего уравнивания АГС без разделения на ряды триангуляции 1 класса и сплошные сети 2 класса, т. к. отдельное уравнивание приводило к значительной деформациям АГС.

В мае 1991 года общее уравнивание АГС было завершено. По результатам уравнивания были установлены следующие характеристики точности АГС:

1) средняя квадратическая ошибка направлений 0,7 секунды;

2) средняя квадратическая ошибка измеренного азимута 1,3 сек.;

3) относительная средняя квадратическая ошибка измерения базисных сторон 1/200000;

4) средняя квадратическая ошибка смежных пунктов 2-4 см.;

5) средняя квадратическая ошибка передачи координат исходного пункта на пункты на краях сети по каждой координате 1 м.

Уравненная сеть включала в себя:

· 164306 пунктов 1 и 2 класса;

· 3,6 тысяч геодезических азимутов, определенных из астромомических наблюдений;

· 2,8 тысяч базисных сторон через 170-200км.

Совместному уравниванию подвергались астрономо-геодезическая сеть доплеровская и КГС.

Объём астрономо-геодезической информации обработанной при совместном уравнивании для установления СК-95 превышает на порядок объём измерительной информации.

В 1999 году Федеративная служба геодезии и картографии (ФСГиК) ГГС качественно нового уровня на основе спутниковых навигационных систем: Глонасс, GPS, Навстар. Новая ГГС включает в себя геодезические построения различных классов точности:

1) ФАГС (фундаментальные)

2) Высокоточные ВГС

3) Спутниковая геодезическая сеть 1 класса (СГС 1)

4) Астрономогеодезическая сеть и геодезические сети сгущения.

WGS-84 сейчас стала международной системой навигации. Все аэропорты мира, согласно требованиям ICAO, определяют свои аэронавигационные ориентиры в WGS-84. Россия не является исключением. С 1999 г. издаются распоряжения о ее использовании в системе нашей гражданской авиации (Последние распоряжения Минтранса № НА-165-р от 20.05.02 г. «О выполнении работ по геодезической съемке аэронавигационных ориентиров гражданских аэродромов и воздушных трасс России» и № НА-21-р от 04.02.03 г. «О введении в действие рекомендаций по подготовке … к полетам в системе точной зональной навигации …», см. www.szrcai.ru), но до сих пор нет ясности в главном -- станет ли эта информация открытой (иначе она теряет смысл), а это зависит от совсем других ведомств, к открытости не склонных. Для сравнения: координаты концов взлетно-посадочной полосы аэродрома с разрешением 0,01” (0,3 м) сегодня выдают Казахстан, Молдова и страны бывшей Прибалтики; 0,1” (3 м) -- Украина и страны Закавказья; и только Россия, Белоруссия и вся Средняя Азия открывают эти важнейшие для навигации данные с точностью 0,1" (180 м).

У нас есть и своя общеземная система координат, альтернатива WGS-84, которая используется в ГЛОНАСС. Она называется ПЗ-90, разработана нашими военными, и кроме них, по большому счету, никому не интересна, хотя и возведена в ранг государственной.

Наша государственная система координат - «Система координат 1942 г.», или СК-42, (как и пришедшая ей недавно на смену СК-95) отличается тем, что, во-первых, основана на эллипсоиде Красовского, несколько большем по размерам, чем эллипсоид WGS-84, и во-вторых, «наш» эллипсоид сдвинут (примерно на 150 м) и слегка развернут относительно общеземного. Всё потому, что наша геодезическая сеть покрыла шестую часть суши еще до появления всяких спутников. Эти отличия приводят к погрешности GPS на наших картах порядка 0,2 км. После учета параметров перехода (они имеются в любом Garmin"e) эти погрешности устраняются для навигационной точности. Но, увы, не для геодезической: точных единых параметров связи координат не существует, и виной тому локальные рассогласования внутри государственной сети. Геодезистам приходится для каждого отдельного района самим искать параметры трансформирования в местную систему.

Однако предполагается, что во время национальных чрезвычайных ситуаций Министерство обороны США может воспользоваться своим контролем над GPS, т.е. не дать гражданским пользователям доступа к сигналу или уменьшить сигнал так, что навигационная система не сможет обеспечивать гражданскую авиацию.

      Преимущества и недостатки СНС

Спутниковые навигационные системы обладают рядом преимуществ по сравнению с действующими радиотехническими системами (РТС) навигации. К основным преимуществам спутниковой навигации следует отнести обеспечение точной и надежной 4-х мерной навигации во всех районах и на всех высотах полета ВС и, как следствие:

    снижение риска катастроф, связанного с неточностью информации о местоположении ВС, особенно в тех районах (высотах) полета ВС, где использование действующих средств невозможно или экономически нецелесообразно;

    использование единого средства навигации для обеспечения всех этапов полета ВС, включая точные заходы на посадку на необорудованные аэродромы;

    возможность реализации автоматического зависимого наблюдения, обеспечит повышение пропускной способности при сокращении продольных и боковых интервалов разделения ВС в тех районах, где организация наблюдения при использовании радиолокационных станций невозможна или экономически нецелесообразна;

    повышение гибкости и экономичности полетов ВС при высокой точности самолетовождения и использовании зональной навигации за счет сокращения полетного времени и экономии топлива;

    снижение затрат на обслуживание воздушного движения при списании парка действующих средств навигации и посадки и на эксплуатацию ВС путем замены разнотипного бортового оборудования едиными средствами.

Однако длительная эксплуатация GPS и ГЛОНАСС показала, что спутниковым навигационным системам свойственны следующие недостатки :

    чувствительность к непреднамеренным помехам, вызванными атмосферными эффектами;

    блокировка сигнала при затенении антенны элементами конструкции воздушного судна во время выполнения эволюций;

    чувствительность к преднамеренным помехам, которые могут ограничивать область обслуживания;

    недостаточная точность при использовании для целей точного захода на посадку.

Приведенные выше недостатки могут быть устранены при использовании различного рода функциональных дополнений. Существуют три категории функциональных дополнений: бортовые, наземные и спутниковые.

      Стратегия ИКАО в области развития аэронавигации при использовании СНС

В течение последних лет происходит активное внедрение спутниковых навигационных систем для решения задач зональной навигации на различных этапах полёта. В перспективе СНС постепенно заменит все наземные навигационные системы и станет единственным средством, обеспечивающим навигацию на всём протяжении маршрута.

В настоящее время в ИКАО разработаны требуемые навигационные характеристики (RNP), которые определяют требования, предъявляемые к точности выдерживания навигационных параметров в пределах конкретного воздушного пространства. Этот показатель не связан с конкретным видом навигационного оборудования, что придаёт ему общий характер и делает применимым и для спутниковых навигационных систем. Значение RNP определяется величиной удержания, которая характеризует размер области с центром в точке заданного местоположения ВС, в пределах которой оно будет находиться в течение 95% полётного времени (рис. 2.1) .

Рис. 2.1. Область RNP

Величина удержания выражается в морских милях. Для упрощения использования RNP при планировании воздушного пространства, эллиптическая форма этой области заменяется круговой. Поэтому, например, тип RNP 1 означает, что в произвольный момент времени с вероятностью 0.95 воздушное судно должно находиться в радиусе одной морской мили от точки, указанной органом воздушного движения.

Типы RNP определяют минимальную точность выдерживания навигационных характеристик в данной области воздушного пространства. Они устанавливаются с учетом точности бортового навигационного оборудования, а также погрешностей пилотирования.

В целях обеспечения требуемого уровня точности на различных этапах полета разработаны следующие типы RNP: маршрутные и аэродромные.

К примеру, в условиях полёта по маршруту, где плотность движения не столь велика, значение RNP будет находиться в пределах от 20 до 1,а при маневрировании в районе аэродрома в условиях захода на посадку от 0.5 до 0.3.

Маршрутные типы RNP представлены в табл. 2.2. .

Таблица 2.2

Маршрутные типы RNP

Тип RNP 1 предусматривается для обеспечения наиболее эффективных полетов по маршрутам ОВД в результате использования наиболее точной информации о МВС, а также для применения метода зональной навигации, позволяющего получить наибольшую гибкость при организации маршрутов, изменении маршрутов и осуществлении в реальном времени необходимых корректировок в соответствии с потребностями структуры воздушного пространства. Этот тип RNP предусматривает наиболее эффективное обеспечение полетов, использование правил полетов и организации воздушного пространства при переходе из района аэродрома к полету по маршруту ОВД и в обратном порядке, т.е. при выполнении SID и STAR.

Тип RNP 4 предназначается для маршрутов ОВД основанных на ограниченном расстоянии между навигационными средствами. Этот тип RNP обычно используется в воздушном пространстве, расположенном над континентом. Данный тип RNP предусматривается для сокращения минимума бокового и продольного эшелонирования и повышения эксплуатационной эффективности в океаническом воздушном пространстве и районах, где возможности использования наземных навигационных средств ограничены.

Тип RNP 10 обеспечивает сокращенные минимумы бокового и продольного эшелонирования и повышает эксплуатационную эффективность в океаническом воздушном пространстве и отдельных районах, где возможности аэронавигационных средств ограничены.

Тип RNP 12.6 обеспечивает ограниченную оптимизацию маршрутов в районах с пониженным уровнем обеспечения навигационными средствами.

Тип RNP 20 характеризует минимальные возможности по точности определения МВС, которые считаются приемлемыми для обеспечения полетов по маршрутам ОВД любым ВС в любом контролируемом воздушном пространстве в любое время.

Анализ предложенных ИКАО типов RNP показывает, что для обеспечения возможности продолжения использования имеющегося навигационного оборудования без изменения, существующей структуры маршрутов ОВД в некоторых районах или регионах, может быть установлено значение RNP 5 (9.3 км). Доказательством этого является внедрение метода зональной навигации с типом RNP5 (B-RNAV) в Европейском регионе в 1998 г.

Аэродромные типы RNP представлены в табл. 2.3 .

Таблица 2.3

Типы RNP при маневрировании в районе аэродрома

Типовая операция (и)

Точность в горизонтальной плоскости 95%

Точность

по вертикали 95%

Начальный заход,

Промежуточный заход,

Неточный заход, вылет

220 м (720 фут)

Не назначена

От 0.5 до 0.3

220 м (720 фут)

20 м (66 фут)

Заход на посадку с управлением по вертикали

16.0 м (52 фут)

8.0 м (26 фут)

Точный заход на

От 6.0 м до 4.0 м

(20 -13 фут)

*) По данным .

Примечания:

1) Для осуществления планируемой операции на самой низкой высоте над поро­гом ВПП требуется 95% значения ошибки определения местоположения с помощью GNSS .

2) Требования к точности и задержке срабатывания сигнализации включают номинальные эксплуатационные характеристики безотказного приемника.

Применение СНС на этапе захода на посадку позволит в комплексе с системой функционального дополнения широкой зоны действия (WAAS) повысить свою точность до субметровой и, как следствие, обеспечить выполнение неточного захода на посадку (без наведения по глиссаде).

Использование СНС на этапе захода на посадку в комплексе с системой функционального дополнения с ограниченной зоной действия (LAAS) позволит повысить её точность до сантиметровой и обеспечить выполнение точного захода на посадку (с наведением по глиссаде).

Существующая система организации воздушного движения основана на концепции заранее определенного разведения маршрутов. Такая система гарантирует безопасность полетов за счет снижения пропускной способности. Применение СНС позволит изменить существующую структуру маршрутов путем сокращения норм (минимумов) эшелонирования. Это приведет к увеличению пропускной способности мировой транспортной системы, повышению ее эффективности и рентабельности вследствие оптимизации маршрутов. Первые шаги в этом направлении уже сделаны. Например, во-первых, ширина маршрутов (треков) в районе Тихого Океана для ВС, оснащенных оборудованием СНС, изменена с 60 м. миль (111 км) до 30 м. миль (55.5 км). Во вторых, с 1997 г. введено сокращенное вертикальное эшелонирование в районе Северной Атлантики с 600 м (2000 фут) до 300 м (1000 фут) между эшелонами полета 290 (8840м) и 410 (12500м). В Европейском регионе поэтапное введение норм сокращенного вертикального эшелонирования, между указанными выше эшелонами, началось с 2001г.

СНС и новые возможности технологий в области систем связи, навигации и наблюдения позволят в будущем осуществить идею свободного полета. Идея свободного полета означает оптимизацию маршрута в динамике полета в любой данный момент времени на основе знания точного местоположения ВС и вектора скорости в данном регионе. В этом случае план полета становится простым предварительным заявлением о намерениях.

Эта идея является конечной целью будущей системы воздушной навигации.

В свободном полете бортовые системы ВС рассчитывают и передают диспетчерским службам организации воздушного движения информацию о местоположении и краткосрочных намерениях. Диспетчерские службы выполняют мониторинг удовлетворительного разделения воздушных судов и вмешиваются кратковременно в процесс полета при наличии угрозы опасного сближения или столкновения.

Таким образом, спутниковые навигационные системы рассматриваются как необходимый инструмент для полетов по маршруту, выполнения неточных заходов на посадку, разведения воздушных судов в воздушном пространстве, оптимизации маршрутов и осуществлении идеи свободного полета.

Контрольные вопросы

    Какие СНС входят в состав GNSS?

    Какая конфигурация расположения спутников в системах GPS и ГЛОНАСС?

    Из каких основных сегментов состоит спутниковая навигационная система?

    Каким величинам соответствуют точностные характеристики GPS и ГЛОНАСС?

    В каком случае Министерство обороны США может воспользоваться своим контролем над GPS?

    Как расшифровывается аббревиатура RNP?

    Каким величинам соответствуют маршрутные и аэродромные типы RNP?

    Какая система функционального дополнения, совместно с СНС, позволит обеспечить выполнение точного захода на посадку?

    Каким образом применение СНС позволит изменить существующую структуру маршрутов?

    Что означает идея свободного полета?

    СИСТЕМЫ КООРДИНАТ

      Системы координат, используемые в геодезии

В геодезии используется три системы координат:

  • геоцентрическая (привязанная к Земле);

    эллипсоидальная.

В отдельных странах применяются при обработке геодезических измерений эллипсоиды, выведенные по результатам геодезических работ охватывающих территорию данной страны или нескольких стран. Такие “рабочие” эллипсоиды называются референц-эллипсоидами . Система координат, определяемая на таком эллипсоиде, называется местной.

Референц-эллипсоид отличается от общего земного эллипсоида размерами, и центр его не совпадает с центром Земли. Вследствие несовпадения центров референц-эллипсоидов и реальной Земли малая ось референц-эллипсоида не совпадает с осью вращения Земли (рис. 3.1).

эллипсоид

Глобальный

эллипсоид

Рис.3.1. Различия между общеземным эллипсоидом

и референц-эллипсоидом

В качестве основной земной системы координат принята геоцентрическая, привязанная к Земле, пространственная прямоугольная система (X, Y, Z), началом которой является центр массы Земли S (геоцентр, т.е. центр массы, включая массу атмосферы) (рис. 3.2). Ось Z совпадет с осью вращения Земли.

Рис. 3.2. Геоцентрическая прямоугольная система координат (X, Y, Z)

Геоцентрическая система координат используется при определении места воздушного судна при решении соответствующей системы уравнений. Поверхность Земли можно достаточно точно аппроксимировать эллипсоидом вращения со сплюснутыми полюсами. При этом величина отклонений поверхности эллипсоида по высоте от геоида не превышает 100 м.

Эллипсоид вращения получается при вращении меридианного эллипса вокруг его малой оси. Поэтому форма эллипсоида описывается двумя геометрическими параметрами: большой полуосью a и малой полуосью b . Обычно b заменяют параметром сжатия (сплюснутости) эллипсоида:

Для пространственного определения положения точки на физической поверхности Земли (или в пространстве) по отношению к эллипсоиду вращения используют геодезические координаты: φ - широта и λ – долгота, h - высота от поверхности эллипсоида. Высота h над эллипсоидом измеряется вдоль нормали (перпендикуляра) к его поверхности (рис. 3.3).

Рис. 3.3. Система геодезических координат и высота

Можно отметить тот факт,что в навигации обычно вместо геодезических координат используется понятие географические координаты. Причиной этого является то, что до появления СНС точность определения МВС была такой, что между названными системами координат не было необходимости делать различия.

      Системы координат WGS -84 и ПЗ-90

Осуществление навигации невозможно без применения систем координат. При использовании СНС для целей аэронавигации используется геоцентрическая система координат.

В 1994 г. ИКАО в качестве стандарта рекомендовало для всех государств членов ИКАО с 1 января 1998 г. использовать глобальную геодезическую систему координат WGS-84 , т.к. в этой системе координат производится определение местоположения воздушного судна при использовании системы GPS. Причиной этого является то, что применение местных геодезических координат на территории различных государств, а таких систем координат более 200, приводило бы к дополнительной погрешности в определении МВС за счет того, что введенные в приемо-индикатор СНС пункты маршрута принадлежат системе координат, которая отличается от WGS-84.

Центр глобальной системы координат WGS-84 совпадает с центром массы Земли. Ось Z соответствует направлению обычного земного полюса, который перемещается из-за колебательного вращения Земли. Ось X лежит в плоскости экватора на пересечении с плоскостью нулевого (Гринвичского) меридиана. Ось Y лежит в плоскости экватора и отстоит от оси X на 90° (рис. 3.4).

Рис. 3.4. Определение системы координат WGS-84

В Российской Федерации, в целях геодезического обеспечения орбитальных полетов и решения навигационных задач при использовании ГЛОНАСС, применяется геоцентрическая система координат «Параметры Земли 1990 г.» (ПЗ-90) . Для осуществления геодезических и картографических работ, начиная с 1 мая 2002 г., используется система геодезических координат 1995 г. (СК-95). Переход от геодезической системы координат 1942 г. (СК-42) к СК-95 займет определенный промежуток времени, прежде чем все навигационные пункты на территории России будут переведены в новую систему координат.

Основные параметры рассмотренных выше систем координат, представлены в табл. 3.1 .

Таблица 3.1

Системы координат, применяемые в навигации

Параметр

Большая полуось, м

Малая полуось, м

Смещение от

центра массы

Земли по оси, м

Ориентирование

относительно

оси, углов. сек.

ω х

ω у

Примечание. Значения ∆х, ∆у, ∆ z и ω х , ω у , ω z для ПЗ-90 даны относительно WGS-84, а для СК-95 и СК-42 относительно ПЗ-90.

Из табл. 3.1 видно, что системы координат WGS-84 и ПЗ-90 практически одинаковы. Из этого вытекает, что при полете по маршруту и в районе аэродрома при существующей точности определения МВС не принципиально, в какой системе координат будут определяться навигационные пункты.

В системе координат ПЗ-90 центр (S’) относительно центра WGS-84 (S) имеет смещение по осям X, Y, Z :

ΔX = 2 м, ΔY = 6 м, ΔZ = - 4,5 м,

а, кроме того, смещены и оси Y’ и Z’ относительно осей WGS-84 (Y, Z) на угловые величины:

ω Y = - 0,35’’, ω Z = - 0,11’’.

Ось X в WGS-84 и ось X’ в ПЗ-90 совпадают.

Угловое смещение оси Y’ ПЗ-90 относительно оси Y WGS-84 в 0,35’’ приводит к линейному смещению на поверхности эллипсоида на экваторе в 10,8 м , а смещение оси Z’ по отношению к оси Z в 0,11’’ - 3,4 м . Указанные смещения могут привести к общему (радиальному) смещению точки, расположенной на поверхности ПЗ-90 относительно WGS-84 на 11,3 м.

Контрольные вопросы

    Дайте определение референц-эллипсоида?

    Для каких целей используется геоцентрическая система координат при использовании СНС?

    Какими геометрическими параметрами описывается эллипсоид вращения?

    Какая система координат принята в ИКАО в качестве стандарта?

    Какая система координат применяется в ГЛОНАСС?

    Какие основные параметры характеризуют WGS-84 и ПЗ-90?

    Принципиально ли в какой системе координат WGS-84 или ПЗ-90, будут измеряться навигационные пункты при полете по маршруту?

    Чему равно радиальное смещение точки на поверхности эллипсоида в системе координат ПЗ-90 относительно WGS-84?

    ПРИНЦИПЫ ОПРЕДЕЛЕНИЯ НАВИГАЦИОННЫХ ПАРАМЕТРОВ ВОЗДУШНОГО СУДНА В СНС

      Общие принципы функционирования СНС

Принципы функционирования GNSS сравнительно просты, однако для их реализации используются передовые достижения науки и техники.

Все спутники GPS или ГЛОНАСС являются равноправными в своей системе. Каждый спутник через передающую антенну излучает кодированный сигнал на двух несущих частотах (L1; L2), который может быть принят соответствующим приемником пользователя, находящегося в зоне действия спутника. Передаваемый сигнал содержит следующую информацию:

    эфемериды спутников;

    коэффициенты моделирования ионосферы;

    информация о состоянии спутника;

    системное время и уход часов спутника;

    информация о дрейфе спутника.

В приемнике бортового оборудования ВС генерируется код, идентичный принимаемому со спутника. При сравнении двух кодов определяется временной сдвиг, который пропорционален дальности до спутника. Принимая одновременно сигналы от нескольких спутников, можно определить местоположение приемника с высокой точностью. Очевидно, что для функционирования системы необходима точная синхронизация кодов, генерируемых на спутниках и в приемниках.

Ключевым фактором, определяющим точность системы, является то, что все составляющие спутникового сигнала точно контролируются атомными часами. Каждый спутник имеет по четыре квантовых генератора, являющихся высокоточными стандартами частоты со стабильностью 10 -13 . Часы приемника менее точны, но их код постоянно сравнивается со спутниковыми часами и вырабатывается поправка, компенсирующая уход.

Наземный сегмент осуществляет контроль за спутниками, выполняет управляющие функции и определяет навигационные параметры спутников. Данные о результатах измерений, выполненных каждой контрольной станцией, обрабатываются на главной станции управления и используются для прогнозирования эфемерид спутников. Там же, на главной станции управления, формируются сигналы для коррекции спутниковых часов.

Местоположение воздушного судна с использованием GPS и ГЛОНАСС определяется в геодезических системах координат, которые могут отличаться от геодезических координат, используемых в бортовых навигационных комплексах.

      Физико-технические принципы функционирования СНС.

Общеземной эллипсоид WGS84 - это геодезический эллипсоид с фиксированной геоцентрической общеземной системой координат. Эллипсоид WGS84 задан набором констант и параметрами модели эллипсоида, которые описывают размеры и форму Земли, гравитационное и магнитное поля. WGS84 является стандартным общеземным эллипсоидом, принятым за глобальную координатную систему Департаментом Обороны США, а также системой координат для глобальной системы позиционирования (GPS). Она совместима с Международной Земной Системой Координат (ITRS). В настоящее время WGS84 (G1674) придерживается критериев, описанных в Техническом Пояснении 21 (TN 21) Международной Службы Вращения Земли (IERS). Ответственной организацией является Национальное Управление Геопространственной Разведки США (NGA). Управление (NGA) планирует произвести регулировку координатной системы WGS84 в 2013, чтобы совместить ее с правилами Конвенции 2010 IERS Техническое Пояснение 36 (TN 36).

  • Origin (Начало координат): За начало системы координат принят центр масс Земли, включая океаны и атмосферу.
  • Z-Axis (Ось Z) : Направлена на опорный полюс, определенный Международной Службой Вращения Земли (IERS Reference Pole). Это направление соответствует направлению на условный полюс Земли (BIH Conventional Terrestrial Pole) (на период 1984.0) с погрешностью 0.005".
  • X-Axis (Ось X) : Ось X лежит в плоскости опорного меридиана (IERS Reference Meridian) и проходит через начало координат по нормали к оси Z. Опорный меридиан (IRM) совпадает с нулевым меридианом (BIH Zero Meridian) (на период 1984.0) с погрешностью 0.005".
  • Y-Axis (Ось Y) : Дополняет геоцентрическую фиксированнуюя систему ортогональных координат (Earth-Centered Earth-Fixed (ECEF) orthogonal coordinate system) до правой.
  • Scale (Масштаб): Ее м асштаб - масштаб структуры Земли согласуется с альтернативной теорией гравитации (relativistic theory of gravitation). Совмещён с ITRS.
  • Orientation (Ориентация): Представлена Международным Бюро Времени (Bureau International de l’Heure) на период 1984.0.
  • Time Evolution (Временное развитие): Изменение во времени не будет создавать никаких невязок глобального вращения относительно земной коры.

Параметры

WGS84 можно идентифицировать с помощью четырех параметров: большая полуось эллипсоида (semi-major axis) WGS84, коэффициент сжатия (flattening factor) Земли, номинальная средняя угловая скорость (nominal mean angular velocity) Земли, и геоцентрическая гравитационная постоянная (geocentric gravitational constant). Значения параметров представлены в таблице ниже.

Параметр Обозначение Значение

Большая полуось (Semi-major Axis)

a

Коэффициент сжатия (Flattening Factor) Земли

1/f

Номинальная средняя угловая скорость (Nominal Mean Angular Velocity)

ω

7292115 10 -11 радиан/сек

Геоцентрическая гравитационная постоянная (Geocentric Gravitational Constant)

GM 3986004.418 10 8 м 3 /сек 2

Значение GM включает массу атмосферы Земли. Пользователи глобальной системы позиционирования (GPS) должны помнить первоначальное значение WGS84 GM равное 3986005.0 10 8 м3 /сек 2 , которое определено в контрольном документе GPS (ICD-GPS-200) и в Техническом отчете 8350.2 NIMA (Technical Report).

Реализации WGS84

База данных международной ассоциации производителей нефти и газа (EPSG database) и вебсайт NGS используют в названии "WGS 84" пробел между "WGS" и "84". База данных EPSG не содержит никаких особых реализаций эллипсоида WGS84.

Geog 2D Code Код эллипсоида Краткое название Эпоха эллипсоида Код района Название района Примечание Смещение
4326 6326 WGS84 1984 1262 Всемирный (World)

Первая реализация установленная Министерством обороны США в 1987 используя доплеровские наблюдения.
Также известен как WGS84 (1987), WGS84 (original), WGS84 (TRANSIT).
Для научных целей, первоначальный WGS84 является идентичным NAD83 (1986).
WGS84 связан с ITRF90 с помощью 7 параметров перехода по Хельмерту (Helmert).

нет


WGS84 (G730) 1994.0

Реализация представлена Министерством обороны США от 29 июня 1994 основана на GPS наблюдениях.
Буква G обозначает "GPS", а 730 - это номер недели GPS. Основан на ITRF91.
0.70 м


WGS84 (G873) 1997.0

Реализация представлена Министерством обороны США от 29 января 1997 основана на GPS наблюдениях.
Буква G обозначает "GPS", а 873 - это номер недели GPS. Основан на ITRF94.

0.20 м


WGS84 (G1150) 2001.0

Реализация представлена Министерством обороны США от 20 января 2002 основана на GPS наблюдениях.
Буква G обозначает "GPS", а 1150 - это номер недели GPS. Основан на ITRF2000.
0.06 м


WGS84 (G1674) 2005.0

Реализация представлена Министерством обороны США от 08 февраля 2012 основана на GPS наблюдениях.
Буква G обозначает "GPS", а 1674 - это номер недели GPS. Основан на ITRF2008.
0.01 м

Параметры трансформации

Ниже представлены параметры перехода между WGS84 (G1674) и предыдущими реализациями WGS84, а также некоторыми реализациями ITRF.

Параметры перехода между различными реализациями ITRF можно найти в файле .

Переход от Переход к Эпоха T1
м
T2
м
T3
м
D
ppb
R1
mas
R2
mas
R3
mas
Точность
м
2001.0 -0.0047 +0.0119 +0.0156 +4.72 +0.52 +0.01 +0.19 0.0059
ITRF2008 WGS84 (G1674) 2005.0 0 0 0 0 0 0 0 0.10
ITRF2000 WGS84 (G1150) 2001.0 0 0 0 0 0 0 0 0.10
ITRF94 WGS84 (G873) 1997.0 0 0 0 0 0 0 0 0.10
ITRF91 WGS84 (G730) 1994.0 0 0 0 0 0 0 0 0.10
ITRF90 WGS84 (original) 1984.0 +0.060 -0.517 -0.223 -11.0 +18.3 -0.3 +7.0 0.01

Направление вращения системы координат по часовой стрелке. Единицы измерения: м (метры), mas (угловых миллисекунд) и ppb (частей на миллиард).
1 mas = 0.001 " = 2.77778 e -7 градуса = 4.84814 e -9 радиан. 0.001 " приблизительно равна 0.030 м на поверхности Земли.

WGS84 и ITRF

Вообще ITRS (и её реализации ITRFyy) идентичны WGS84 в пределах одного метра. При этом есть два типа реализации WGS84.

  • Старая реализация, основанная на навигационной спутниковой системе ВМС США, также известная как доплеровская система "Транзит" (DOPPLER Transit), и обеспечивающая координаты станций с точностью приблизительно в один метр.
    Что касается этой реализации, то Международной Службой Вращения Земли (International Earth Rotation Service) опубликованы параметры трансформации между ITRF90 и этой доплеровской системой в файле: WGS84.TXT .
  • Обновленные реализации WGS84, основанные на данных GPS, такие как G730, G873 и G1150. Эти обновленные реализации WGS84 совпадают с ITRF с 10-сантиметровом уровнем точности.
    Для этих реализаций нет официально опубликованных параметров трансформации. Это означает, что координаты ITRF также могут быть выражены в WGS84 с уровнем точности 10 см.

Комитет производителей нефти и газа (OGP Surveying & Positioning Committee) рекомендует в своей пояснительной записке №4 (Guidance note 4) : "В качестве опорной геодезической системы для целей съёмки и позиционирования в реальном режиме времени использовать международную земную систему отсчета (ITRF)", в случае когда опубликованные значения параметров перехода позволяют трансформировать координаты с точностью хуже чем один метр - придерживаться старой формулировки "от местной системы координат к WGS84", и использовать новую формулировку "от местной системы координат к ITRFyy на эпоху yyyy.y" когда опубликованные значения параметров перехода обеспечивают субметровую точность.

WGS84, ITRF и NAD83

Исходная реализация WGS84 в значительной степени согласуется с NAD83 (1986). Последующие реализации WGS84, однако, приблизительно совпадают с реализациями ITRS.

Североамериканская система координат (North American Datum) от 1983 года (NAD83) используется на всей территории Северной Америки, за исключением Мексики. Эта система координат реализована на территории США и Аляски (Североамериканская плита) посредством Национальных референцных станций (National CORS), которые предоставляют основу для получения строгих параметров перехода между реализациями ITRF и NAD83, а также для бесчисленного количества научных работ.

Начиная с ноября 2011 года, сеть референцных станций (CORS) насчитывает свыше 1800 станций, на них работает более 200 различных организаций, и сеть продолжает расширяться. Самая свежая реализация системы NAD83 имеет техническое название NAD83 (2011/PA11/MA11) эпоха 2010.00, и образует структуру для определения Национальной пространственной системы координат (NSRS). В Канаде система NAD83 также контролируется посредством Канадской системы активного управления (Canadian Active Control System). Таким образом, за контроль и обслуживание системы NAD83 отвечают две организации Национальная геодезическая служба США (NGS), http://www.ngs.noaa.gov , и Министерство природных ресурсов Канады (NRCan), http://www.nrcan.gc.ca .

Мексиканская система координат от 1993 (Mexican Datum of 1993)

Национальный институт статистики и географии Мексики (INEGI), http://www.inegi.org.mx , Федеральное агенство, ответственное за геодезию и картографию в стране, приняли за свою геодезическую основу геоцентрическую систему координат ITRF92, на эпоху 1988.0. Реализация данной системы достигается посредством сети из 14 станций стационарных GPS приёмников Национальной геодезической сети (RGNA). Недавно за новую основу мексиканской системы координат была принята система ITRF2008, на эпоху 2010.0.

WGS84, ITRF и SIRGAS

Геоцентрическая референцная система Америки от 1995 года (SIRGAS 1995) была утверждена для использования на всём континенте Южной Америки в области геодезии и картографии. Большинство стран Южной Америки и стран Карибского бассейна принимали участие в этом предприятии, при этом использовалось 58 референцных станций, которые позже были распространены на территорию Центральной и Северной Америки. За начальную систему координат была принята ITRF94, на эпоху 1995.42. Геоцентрическая референцная система Америки от 2000 года (SIRGAS 2000) была реализована посредством наблюдений на сети из 184 станций в 2000 году и была установлена система ITRF2000, на эпоху 2000.40. Система координат SIRGAS 2000 включает привязку к уровенным постам и заменяет предыдущую систему SIRGAS 1995, использующуюся только в Южной Америке на систему координат SIRGAS, покрывающую также и Центральную Америку. Название было изменено в 2001 году для использования на всей территории Латинской Америки. В Интернете существует несколько страниц с информацией о системе координат SIRGAS, например: http://www.ibge.gov.br/home/geociencias/geodesia/sirgas .

WGS84, ITRF и ETRS89

Европейская земная система координат ETRS89 базируется на Международной системе отсчёта ITRF89, на эпоху 1989.0 и отслеживается посредством сети из приблизительно 250 постоянно действующих станций Глобальной навигационной спутниковой системы (GNSS), известной как Европейская постоянно действующая референцная сеть (EPN). За обслуживание Европейской земной системы координат (ETRS89) отвечает подкомитет Международной геодезической ассоциации европейской референцной системы (IAG Sub-commission EUREF). Подробнее об этой системе можно узнать в Интернете на сайте: http://www.euref.eu . Центральное Бюро референцной сети (EPN) расположена в Королевской обсерватории в Бельгии (Royal Observatory of Belgium), http://www.epncb.oma.be .

WGS84, ITRF и GDA94

Геоцентрическая система координат Австралии от 1994 года (GDA94) изначально была отнесена к международной геодезической системе координат ITRF92, на эпоху 1994.0. Система GDA94 контролируется посредством австралийской региональной ГНСС сети (ARGN), включающей 15 постоянно действующих GPS станций на территории Австралии, а также с помощью 8 станций в Австралии, известных как австралийская основная сеть (AFN). Ответственной организацией за мониторинг системы GDA94 является австралийское агенство геофизических исследований (Geoscience Australia), http://www.auslig.gov.au .

Ссылки

  • WGS84 (G730), (G873) и (G1150) - http://www.ngs.noaa.gov/CORS/Articles
  • ITRF94, ITRF96, ITRF97, ITRF2000, ITRF2005 и ITRF2008 -

Комментариев — 2

Как неоднократно упоминалось в других статьях, одна и та же точка земной поверхности имеет разные координаты в разных системах координат. Так как для территории России наиболее актуальными на текущий момент являются системы координат WGS 1984 и СК42 остановимся на сравнение координат в этих двух системах. В предыдущих статьях было показано, что эта разница может составлять порядка 140м в Калиниградской области или 100м на Урале. Логично ожидать, что разница зависит от региона где производится сравнение.

Цель данной статьи - провести масштабную оценку разницы между измерениями в двух системах координат и определить характер распределения этого параметра. В качестве параметра сравнения выбрано расстояние между точкой в системе координат WGS84 и этой же точкой в системе координат СК42. Для того, что бы избежать проекционных искажений расстояние расчитывается как длина дуги большого круга.

Данная статья НЕ ставит целью выяснение какая система координат точнее или какой набор параметров перехода следует использовать для пересчета. Ответы на эти вопросы следует искать в других статьях.

Результаты

Все преобразования 3-х параметрические. Все результаты вычислений можно скачать в виде shapefile .

Тест 1

Параметры трансформации: dx = 28, dy = -130, dz = -95 World Geodetic System 1984. NIMA, 2000 >>>

Минимальное расстояние: 1.05506, Максимальное расстояние: 165.88456

Результат сохранен в поле pulnima3 в результирующем shapefile.

Сравнение двух расчетов

Интересным является также пространственное распределение разницы между этими двумя расчетами. Часто возникает вопрос, на сколько мои расчеты будут различаться, если я сделаю их с двумя разными наборами параметров (например набором NIMA и набором по ГОСТу).

Результаты вычисления разницы содержатся в поле Diff результирующего shape-файла, присоединенного по универсальному идентификатору с рассчета расстояния между точками в Pulkovo-NIMA и Pulkovo-GOST. Приведем иллюстрацию расстояния между ними:


Таким образом, если мы пересчитаем наш набор данных с одним и другим набором параметров, то его отличие от другого может составить до 18.5 метров, разница, как следовало ожидать, зависит от региона, но практически для всей территории России она превышает 15 метров.

Дополнительные источники ошибок

Результаты данного эксперимента могут быть улучшены за счёт учета следующих факторов:

  1. Расчет расстояния между точками как длины дуги эллипсоида, а не сферы.
  2. Использования других наборов параметров трансформации (например 7-параметрических).

Несмотря на перечисленные выше факторы вряд ли стоит ожидать значительного изменения результатов расчетов при их учете. Мы планируем включить эти параметры в наши расчеты и опубликовать их в будущих версиях этой статьи.

Выводы

Как и следовало ожидать, разница между координатами в двух системах неодинакова и меняется в пределах от 0 до 170 метров (в зависимости от того как расчитывается эта разница). Области максимального соответствия двух систем координат находятся в Центральном Китае и Чили, в этих областях разница между точками в разных системах координат минимальна.

Обсудить в форуме

Всем привет!
Сегодня я расскажу тебе, %USERNAME%, о башмаках и сургуче, капусте, королях координатах, проекциях, геодезических системах и совсем чуть-чуть о веб-картографии. Устраивайся поудобнее.

Как говорил ещё Артур Кларк, любая достаточно развитая технология неотличима от магии. Так и в веб-картографии - я думаю, все давно привыкли пользоваться географическими картами, но далеко не каждый представляет себе, как это всё работает.

Вот, казалось бы, простая вещь - географические координаты. Широта и долгота, что может быть проще. А вот представьте, что вы очутились на необитаемом острове. Смартфон утонул, а других средств связи у вас нет. Остаётся только написать письмо с просьбой о помощи и по старинке выбросить его в море в запечатанной бутылке.

Вот только незадача - вы совершенно не знаете, где находится ваш необитаемый остров, а без указания координат никто вас не найдёт, даже если выловит ваше письмо. Что делать? Как определить координаты без GPS?

Итак, немного теории для начала. Чтобы сопоставить точкам на поверхности сферы координаты, необходимо задать начало отсчета - фундаментальную плоскость для отсчёта широт и нулевой меридиан для отсчёта долгот. Для Земли обычно используются плоскость экватора и гринвичский меридиан соответственно.

Широтой (обычно обозначается φ) называют угол между направлением на точку из центра сферы и фундаментальной плоскостью. Долготой (обычно обозначается θ или λ) называют угол между плоскостью проходящего через точку меридиана и плоскостью нулевого меридиана.

Как же определить свою широту, т.е. угол между плоскостью земного экватора и точкой, в которой ты находишься?

Посмотрим на тот же чертёж под другим углом, спроецировав его на плоскость нашего меридиана. Добавим также к чертежу плоскость горизонта (касательную плоскость к нашей точке):

Видим, что искомый угол между направлением на точку и плоскостью экватора равен углу между плоскостью горизонта и осью вращения Земли.

Итак, как же нам найти этот угол? Вспомним красивые картинки звёздного неба с большой выдержкой:

Вот эта точка в центре всех описываемых звездами окружностей - полюс мира. Измерив её высоту над горизонтом, мы получим широту точки наблюдения.

Остаётся вопрос, как найти полюс мира на звёздном небе. Если вы в Северном полушарии, то всё довольно просто:

Найдите ковш Большой Медведицы;
- проведите мысленно прямую через две крайние звезды ковша - Дубхе и Мерак;
- эта прямая укажет вам на ручку ковша Малой Медведицы. Крайняя звезда этой ручки - Полярная - почти в точности совпадает с Северным Полюсом мира.

Полярная звезда всегда находится на севере, а её высота над горизонтом равна широте точки наблюдения. Если вас угораздит попасть на Северный полюс, Полярная звезда будет у вас точно над головой.

В Южном полушарии всё не так просто. Рядом с южным полюсом мира нет крупных звёзд, и вам придётся найти созвездие Южный Крест, мысленно продлить вниз его бОльшую перекладину и отсчитать 4.5 её длины - где-то в этой области будет находиться южный полюс мира.

Само созвездие найти легко - вы много раз видели его на флагах разных стран - Австралии, Новой Зеландии и Бразилии, например.

С широтой определились. Перейдём к долготе. Как определить долготу на необитаемом острове?

На самом деле, это очень непростая проблема, потому что, в отличие от широты, точка отсчета долготы (нулевой меридиан) выбирается произвольным образом и ни к каким наблюдаемым ориентирам не привязана. Испанский король Филипп II в 1567 году назначил солидное вознаграждение тому, кто предложит метод определения долготы; в 1598 году при Филиппе III оно доросло до 6 тысяч дукатов единовременно и 2 тысячи дукатов ренты пожизненно - очень приличная сумма по тем временам. Задача определения долготы в течение нескольких десятилетий была идеей фикс математиков, как теорема Ферма в 20-м веке.

В итоге, долготу стали определять с помощью вот этого прибора:

По сути, этот прибор остаётся самым надёжным способом определения долготы (не считая GPS/Глонасс) и в наши дни. Этот прибор… (барабанная дробь)… морской хронометр.

В самом деле, при изменении долготы меняется часовой пояс. По разнице локального времени и гринвичского легко определить собственную долготу, причём очень точно. Каждая минута разницы времён соответствует 15 угловым минутам долготы.

Соответственно, если у вас есть часы, настроенные по гринвичскому времени (на самом деле, неважно по какому - достаточно знать часовой пояс того места, по времени которого идут ваши часы) - не спешите их переводить. Дождитесь местного полдня, и разница времён подскажет вам долготу вашего острова. (Определить момент полдня очень легко - следите за тенями. В первой половине дня тени укорачиваются, во второй - удлиняются. Момент, когда начали удлиняться тени - астрономический полдень в данной местности.)

Оба метода определения координат, кстати, хорошо описаны в романе Жюля Верна «Таинственный остров».

Координаты на геоиде

Итак, мы сумели определить свою широту и долготу с погрешностью в несколько градусов, т.е. пару сотен километров. Для записки в бутылке такой точности, быть может, ещё хватит, а вот для географических карт уже нет.

Частично эта погрешность обусловлена несовершенством используемых инструментов, но есть и другие источники ошибок. Землю можно считать шаром только в первом приближении - вообще же Земля совсем не шар, а геоид - тело, больше всего похожее на сильно неровный эллипсоид вращения. Для того, чтобы точно приписать каждой точке земной поверхности координаты нужны правила - каким образом конкретную точку на геоиде спроецировать на сферу.

Такой набор правил должен быть универсальным для всех географических карт в мире - иначе одни и те же координаты будут в разных системах обозначать разные точки земной поверхности. В настоящий момент практически все географические сервисы используют единую систему присвоения точке координат - WGS 84 (WGS = World Geodetic System, 84 - год принятия стандарта).

WGS 84 определяет т.н. референсный эллипсоид - повехность, к которой приводятся координаты для удобства вычислений. Параметры этого эллипсоида следующие:

Большая полуось (экваториальный радиус): a = 6378137 метров;
- сжатие: f = 1 / 298.257223563.

Из экваториального радиуса и сжатия можно получить полярный радиус, он же малая полуось (b = a * (1 - f) ≈ 6356752 метра).

Любой точке земной поверхности, таким образом, ставится в соответствие три координаты: долгота и широта (на референсном эллипсоиде) и высота над его поверхностью. В 2004 году WGS 84 был дополнен стандартом Earth Gravitational Model (EGM96), который уточняет уровень моря, от которого отсчитываются высоты.

Интересно, что нулевой меридиан в WGS 84 вовсе не гринвичский (проходящий через ось пассажного инструмента Гринвичской обсерватории), а т.н. IERS Reference Meridian, который проходит на 5.31 угловой секунды восточнее гринвичского.

Плоские карты

Допустим, мы научились определять свои координаты. Теперь нужно научиться отображать накопленные географические знания экране монитора. Да вот незадача - сферических мониторов в мире как-то не очень много (не говоря уже о мониторах в форме геоида). Нам нужно каким-то образом отобразить карту на плоскость - спроецировать.

Один из самых простых способов - спроецировать сферу на цилиндр, а потом развернуть этот цилиндр на плоскость. Такие проекции называются цилиндрическими, их характерное свойство - все меридианы отображаются на карте вертикальными прямыми.

Проекций сферы на цилиндр можно придумать много. Наиболее известная из цилиндрических проекций - проекция Меркатора (по имени широко использовавшего её в своих картах фламандского картографа и географа Герарда Кремера, более известного под латинизированной фамилией Меркатор).

Математически она выражается следующим образом (для сферы):

X = R · λ;
y = R · ln(tg(π/4 + φ/2), где R - радиус сферы, λ - долгота в радианах, φ - широта в радианах.

На выходе получаем обычные декартовы координаты в метрах.

Карта в проекции Меркатора выглядит вот так:

Легко заметить, что проекция Меркатора очень существенно искажает формы и площади объектов. Например, Гренландия на карте занимает в два раза большую площадь, чем Австралия - хотя в реальности Австралия в 3.5 раза больше Гренландии.

Чем же так хороша эта проекция, что стала так популярна несмотря на существенные искажения? Дело в том, что у проекции Меркатора есть важное характеристическое свойство: она сохраняет углы при проецировании.

Допустим, мы хотим проплыть от Канарских островов к Багамским. Проведём прямую линию на карте, соединяющую точки отправления и прибытия.

Так как все меридианы в цилиндрических проекциях параллельны, а проекция Меркатора ещё и сохраняет углы, то наша линия пересечёт все меридианы под одинаковым углом. А это означает, что проплыть вдоль этой линии нам будет очень просто: достаточно сохранять на всём протяжении путешествия один и тот же угол между курсом судна и направлением на полярную звезду (или направлением на магнитный север, что менее точно), причём нужный угол можно легко измерить банальным транспортиром.

Подобные линии, пересекающие все меридианы и параллели под одинаковым углом, называются локсодромами. Все локсодромы в проекции Меркатора изображаются прямыми на карте, и именно это замечательное свойство, крайне удобное для морской навигации, и принесло меркаторовской проекции широкую популярность среди моряков.

Следует заметить, что сказанное не совсем верно: если мы проецируем сферу, а движемся по геоиду, то путевой угол определится не совсем верно и приплывём мы не совсем туда. (Расхождение может быть довольно заметным - всё-таки, экваториальный и полярный радиусы Земли различаются более чем на 20 километров.) Эллипсоид тоже можно спроецировать с сохранением углов, хотя формулы для эллиптической проекции Меркатора значительно сложнее, чем для сферической (обратное преобразование вообще не выражается в элементарных функциях). Полное и подробное описание математики проекции Меркатора на эллипсоиде можно найти .

Когда мы в Яндексе начинали делать свои карты, нам показалось логичным использовать эллиптическую меркаторовскую проекцию. К сожалению, многим другим картографическим веб-сервисам так не показалось, и они используют сферическую проекцию. Поэтому долгое время нельзя было показывать поверх карты Яндекса тайлы, скажем, OSM - они расходились по оси y, чем ближе к полюсу - тем заметнее. В версии API 2.0 мы решили не плыть против течения, и предоставили возможность как работать с картой в произвольной проекции, так и показывать на карте одновременно несколько слоёв в разных проекциях - как удобнее.

Геодезические задачи

Путешествовать по локсодроме очень просто, но за эту простоту приходится платить: локсодрома отправит вас в путешествие по неоптимальному маршруту. В частности, путь вдоль параллели (если это не экватор) не является кратчайшим!

Для того, чтобы найти кратчайший путь на сфере, нужно провести окружность с центром в центре сферы, проходящую через эти две точки (или, что то же самое, пересечь сферу с плоскостью, проходящей через две точки и центр сферы).

Невозможно спроецировать сферу на плоскость так, чтобы кратчайшие пути при этом переходили в прямые отрезки; проекция Меркатора, разумеется, не исключение, и ортодромы в ней выглядят сильно искаженными дугами. Некоторые пути (через полюс) в проекции Меркатора корректно изобразить невозможно:

Примерно так проецируется кратчайший путь из Анадыря в Кардифф: сначала улетаем в бесконечность строго на север, а потом возвращаемся из бесконечности строго на юг.

В случае движения по сфере кратчайшие пути строятся довольно просто с помощью аппарата сферической тригонометрии, а вот в случае эллипсоида задача существенно усложняется - кратчайшие пути не выражаются в элементарных функциях.

(Замечу, что эта проблема, конечно же, не решается выбором сферической проекции Меркатора - построение кратчайших путей осуществляется на референсном эллипсоиде WGS 84 и никак не зависит от параметров проекции.)

В ходе разработки API Яндекс.Карт версии 2.0 перед нами встала непростая задача - параметризовать построение кратчайших путей так, чтобы:
- можно было легко пользоваться встроенными функциями для расчета кратчайших путей на эллипсоиде WGS 84;
- можно было легко задать собственную систему координат с собственными методами расчета кратчайших путей.

API Карт ведь можно использовать не только для показа карт земной поверхности, но и, скажем, поверхности Луны или какого-нибудь игрового мира.

Для построения кратчайших путей (геодезических линий) в общем случае используется следующее простенькое и незатейливое уравнение:

Здесь - т.н. символы Кристоффеля, выражающиеся через частные производные фундаментального метрического тензора.

Заставлять пользователя ТАКИМ образом параметризовать свою область картографирования нам показалось несколько негуманным:).

Поэтому мы решили пойти другим путём, более приближенным к Земле и потребностям наших пользователей. В геодезии проблемы построениях кратчайших путей составляют т.н. первую (прямую) и вторую (обратную) геодезические задачи.

Прямая геодезическая задача: дана исходная точка, направление движения (обычно - путевой угол, т.е. угол между направлением на север и направлением движения) и пройденное расстояние. Требуется найти конечную точку и конечное направление движения.

Обратная геодезическая задача: даны две точки. Требуется найти расстояние между ними и направление движения.

Обратите внимание, что направление движения (путевой угол) - непрерывная функция, которая изменяется на протяжении всего пути.

Имея в своём распоряжении функции решения этих задач, мы с их помощью можем решить необходимые нам кейсы в API Карт: вычисление расстояний, отображение кратчайших путей и построение окружностей на земной поверхности.

Мы заявили следующий интерфейс для пользовательских координатных систем:

SolveDirectProblem(startPoint, direction, distance) - Решает так называемую первую (прямую) геодезическую задачу: где мы окажемся, если выйдем из указанной точки в указанном направлении и пройдём, не сворачивая, указанное расстояние.

SolveInverseProblem(startPoint, endPoint, reverseDirection) - Решает так называемую вторую (обратную) геодезическую задачу: построить кратчайший маршрут между двумя точками на картографируемой поверхности и определелить расстояние и направление движения.

GetDistance(point1, point2) - возвращает кратчайшее (вдоль геодезической линии) расстояние между двумя заданными точками (в метрах).

(Функция getDistance выделена отдельно для тех случаев, когда расчет расстояний можно выполнить намного быстрее, чем решение обратной задачи.)

Этот интерфейс показался нам достаточно простым для реализации в случаях, если пользователь картографирует какую-то нестандартную поверхность или пользуется нестандартными координатами. Со своей стороны мы написали две стандартных реализации - для обычной декартовой плоскости и для референсного эллипсоида WGS 84. Для второй реализации мы использовали формулы Винсенти . Кстати, непосредственно реализовывал эту логику , передаём ему привет:).

Все эти геодезические возможности доступны в API Яндекс.Карт, начиная с версии 2.0.13. Welcome!

Теги:

  • координаты
  • wgs84
  • геодезия
  • картография
Добавить метки