Передача энергии на расстояние без проводов. Новая технология беспроводной передачи энергии работает как Wi-Fi

Регулярно просматривая зарубежные достижения в области радиотехники, наткнулся на неплохое устройство беспроводной передачи электроэнергии, выполненное не на каких-то дефицитных микросхемах, а вполне доступное для самостоятельной сборки. Полную документацию на английском можно будет скачать по ссылке , а здесь приведу краткое содержание на русском, в том числе некоторые схемотехнические решения.

Катушки приёмопередатчика тока


Осциллограмма сигнала

В работе представлены несколько похожих принципиальных схем, отличающихся только напряжением и мощностью. В качестве энергетической "антенны" у них служат небольшие катушки из толстого провода, транзисторы - обычные мощные полевые, так что всё это можно собрать самому.

Сразу предупредим - тут речь идёт не о передачи энергии на много метров, подобные устройства подходят скорее для и других похожих девайсах, где расстояние составит несколько сантиметров. Зато мощность, которая "перелетает" по воздуху, доходит до 100 ватт!

Принцип действия

Резонансный преобразователь обычно работает при постоянной рабочей частоте, которая определяется резонансной частотой LC контура. Как только напряжение постоянного тока подается на цепь, она начинает генерировать с помощью транзисторов. Своеобразный мультивибратор, со смещением фазы на 180°. Транзисторы поочередно подключают концы параллельного резонансного контура к массе, что позволяет этому контуру периодически подзарядиться энергией с последующим её излучением в пространство.

Практические схемы

Базовая схема






Фото готового передатчика-приёмника энергии

Подведя итог заметим, что беспроводная передача энергии всё больше внедряется в области потребительской электроники, промышленного, военного и медицинского оборудования. Как беспроводная локальная сеть и Bluetooth, та и беспроводное питание становится актуальным вариантом. Это позволяет избавится от ненадёжных кнопок, кабелей, силовых разъёмов. Другая область применения связана с трансформаторами, которые должны удовлетворять специальным требованиям - иметь усиленную или двойную изоляцию. И главное: электробезопасность! Многие маломощные сетевые бытовые приборы можно запитывать не через шнуры на 220 В, вилки и розетки, а бесконтактным методом - просто придвигая их к нужной поверхности.

Сам принцип действия наглядно показан на простой поделке , в которой светодиод может загораться без проводов на расстоянии 2 см от источника энергии. Схема, которая действует как повышающий преобразователь напряжения, а также беспроводные передатчик и приемник электроэнергии, может быть улучшена и реализована во многих мозгопроектах .

Шаг 1: Нам понадобится

NPN транзистор — я взял 2N3904, но вы можете использовать любой NPN транзистор (337, BC547 и т.д.), PNP транзистор тоже будет работать только соблюдайте полярность соединений.
обмоточный или изолированный провод — около 3-4 метров (провода можно «добыть» из многих приборов, трансформаторов, динамиков, моторчиков, реле и т.д.)
резистор 1 кОм – будет использоваться для защиты транзистора от сгорания в случае перегрузки, также можно использовать резисторы до 5 кОм, можно даже без резистора, но тогда аккумулятор будет разряжаться быстрее.
светодиод – сгодится любой, главное следовать схеме.
батарейка 1.5В – не применяйте батарейки большего вольтажа, чтобы не повредить транзистор.
ножницы или нож.
паяльник (опционально).
зажигалка(опционально) для удаления изоляции с проводов.

Шаг 2: Смотрим видео процесса

Шаг 3: Резюмируя видео

Итак, на цилиндрический предмет наматываем катушку из 30 витков, это будет катушка А. Далее наматываем вторую катушку того же диаметра, но при этом сначала накручиваем 15 витков и делаем отвод, а затем еще 15 витков, это катушка В. Катушки закрепляем от разматывания любым подходящим способом, например просто делаем узлы из выводов катушек. Важный момент: для правильного функционирования этой поделки диаметры обеих катушек и количество витков должны быть одинаковыми.

Выводы обеих катушек зачищаем и приступаем к пайке цепи. Определяемся с эмиттером, базой и коллектором своего транзистора и к базе припаиваем резистор. Другой вывод резистора припаиваем к свободному выводу катушки В, не к выводу-отводу. Второй свободный вывод катушки В, снова не отвод, припаиваем к коллектору.

Для удобства можно к эмиттеру припаять небольшой кусочек провода, так буде проще подсоединять батарейку.

Цепь приемника собирается легко: к выводам катушки А припаиваем светодиод. И мозгоподелка готова!

Шаг 4: Принципиальная схема

Шаг 5: Наглядный рисунок

Шаг 6: Тестирование


Для приведения самоделки в работоспособное состояние подключаем отвод катушки В к «плюсу» батарейки, а «минус» к эмиттеру транзистора. Затем подносим катушки параллельно друг к другу и диод светится!

Шаг 7: Пояснение

Немного поясню, как все это функционирует.

Передатчик в нашей поделке это цепь осциллятора. Вы может слышали о «цепи ворующей Джоули», которая поразительна схожа с нашей цепью передатчика. В «цепи ворующей Джоули» электроэнергия от батарейки 1.5В преобразуется в более высокое напряжение, но импульсное. Светодиоду требуется 3В, но благодаря «цепи ворующей Джоули» он прекрасно светится и от 1.5В.

«Цепь, ворующая Джоули» известна как конвертер и генератор, цепь, которую мы создали, также является генератором и конвертером. А энергия на светодиод подается посредством индукции, возникающей в катушках, которую можно пояснить на мозгопримере обычного трансформатора.

Предположим, что трансформатор имеет две одинаковые катушки. Тогда во время прохождения электричества по одной катушке она становится магнитом, вторая катушка попадает в магнитное поле первой и, вследствие этого, по ней тоже начинает течь ток. Если напряжение в первой катушке переменное, следовательно, она импульсно теряет свои магнитные свойства, значит и вторая катушка импульсно попадает в магнитное поле первой, то есть и во второй катушке образуется переменное напряжение.

В нашей самоделке катушка передатчика создает магнитное поле, в которое попадает катушка приемника, соединенная со светодиодом, который преобразует полученную энергию в свет!

Представленная мозгоподелка преобразует полученную энергию в свет, но можно использовать ее более разнообразно. Также можно применять принципы этой самоделки для создания фокусов, забавных подарков или научных проектов. Если варьировать диаметры и число витков на катушках, то можно добиться максимальных значений, или можно изменить форму катушек и т.д., возможности не ограничены!

Шаг 9: Устранение неисправностей

При создании этой самоделки возможны следующие проблемы:
Транзистор слишком греется – проверьте номинал резистора, возможно его нужно повысить. Я сначала не использовал резистор, и транзистор при этом сгорел. Или как вариант используйте радиатор для транзистора, а может и другой транзистор, с более высоким значением усиления.
Светодиод не светится – причин может быть много. Проверьте качество соединения, правильно ли распаяли базу и коллектор, убедитесь, что катушки равного диаметра, нет ли короткого замыкания в цепи.

Сегодняшний эксперимент с индукцией закончен, благодарю за внимание и успехов в творчестве!

Если верить истории, революционный технологический проект был заморожен из-за отсутствия у Теслы должных финансовых возможностей (эта проблема преследовала ученого практически все время его работы в Америке). Говоря в целом, основное давление на него оказывалось со стороны другого изобретателя — Томаса Эдисона и его компаний, которые продвигали технологию постоянного тока, в то время как Тесла занимался током переменным (так называемая «Война токов»). История расставила все на свои места: сейчас переменный ток используется в городских электросетях практически повсеместно, хотя отголоски прошлого доходят и до наших дней (например, одна из заявленных причин поломок пресловутых поездов Hyundai - использование на некоторых участках украинской ЖД электролиний постоянного тока).

Башня Ворденклиф, в которой Никола Тесла проводил свои эксперименты с электричеством (фото 1094 года)

Что же касается башни Ворденклиф, то, если верить легенде, Тесла продемонстрировал одному из главных инвесторов Дж.П. Моргану, акционеру первой в мире Ниагарской ГЭС и медных заводов (медь, как известно, используется в проводах), работающую установку по беспроводной передаче тока, стоимость которого для потребителей была бы (заработай такие установки в промышленных масштабах) на порядок дешевле для потребителей, после чего он свернул финансирование проекта. Как бы там ни было, всерьез о беспроводной передаче электроэнергии заговорили только спустя 90 лет, в 2007 году. И хотя до того момента, как линии электропередач полностью исчезнут из городского пейзажа, еще далеко, приятные мелочи вроде беспроводной зарядки мобильного устройства доступны уже сейчас.

Прогресс подкрался незаметно

Если мы просмотрим архивы ИТ-новостей хотя бы двухгодичной давности, то в таких подборках обнаружим разве что редкие сообщения о том, что те или иные компании занимаются разработкой беспроводных зарядных устройств, и ни слова о готовых продуктах и решениях (кроме базовых принципов и общих схем). На сегодняшний же день беспроводная зарядка уже не является чем-то сверхоригинальным или концептуальным. Подобные устройства вовсю продаются (например, свои зарядки на MWC 2013 демонстрировала LG), испытываются для электромобилей (этим занимается Qualcomm) и даже используются в общественных местах (например, на некоторых европейских ЖД-вокзалах). Более того, уже существуют несколько стандартов такой передачи электроэнергии и несколько альянсов, продвигающих и развивающих их.

За беспроводную зарядку мобильных устройств отвечают подобные катушки, одна из которых находится в телефоне, а другая - в самом зарядном устройстве

Самым известным таким стандартом является стандарт Qi, разрабатываемый Wireless Power Consortium, в который входят такие известные компании, как HTC, Huawei, LG Electronics, Motorola Mobility, Nokia, Samsung, Sony и еще около сотни других организаций. Этот консорциум был организован в 2008 году с целью создания универсального зарядного устройства для девайсов различных производителей и торговых марок. В своей работе стандарт использует принцип магнитной индукции, когда базовая станция состоит из индукционной катушки, которая создает электромагнитное поле при поступлении переменного тока из сети. В заряжаемом же устройстве присутствует похожая катушка, которая реагирует на это поле и умеет преобразовывать полученную через него энергию в постоянный ток, который используется для зарядки аккумулятора (подробно ознакомиться с принципом работы можно на сайте консорциума http://www.wirelesspowerconsortium.com/what-we-do/how-it-works/). Кроме того, Qi поддерживает протокол передачи данных между зарядными и заряжаемыми устройствами на скорости 2 кб/с, который используется для передачи данных о необходимом объеме зарядки и выполнении требуемой операции.

Беспроводную зарядку по стандарту Qi на сегодняшний день поддерживают многие смартфоны, а зарядные устройства универсальны для всех аппаратов, поддерживающих данный стандарт

Есть у Qi и серьезный конкурент - Power Matters Alliance, в который входят AT&T, Duracell, Starbucks, PowerKiss и Powermat Technologies. Эти имена находятся далеко не на первых ролях в мире информационных технологий (особенно сеть кофеен Starbucks, которая находится в альянсе из-за того, что собирается повсеместно внедрять в своих заведениях данную технологию), - они специализируются именно на энергетических вопросах. Данный альянс был сформирован не так давно, в марте 2012 года, в рамках одной из программ IEEE (Института инженеров электротехники и электроники). Продвигаемый ими стандарт PMA работает по принципу взаимной индукции - частного примера электромагнитной индукции (которую не следует путать с магнитной индукцией, используемой Qi), когда при изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через контур второго, созданного магнитным полем, порожденным током в первом проводнике, что вызывает возникновение электродвижущей силы во втором проводнике и (если второй проводник замкнут) индукционного тока. Так же, как и в случае с Qi, этот ток потом преобразуется в постоянный и подается в аккумулятор.

Ну, и не стоит забывать об Alliance for Wireless Power, в которую входят Samsung, Qualcomm, Ever Win Industries, Gill Industries, Peiker Acustic, SK Telecom, SanDisk и т. д. Эта организация пока не представила готовых решений, но среди ее целей, в том числе, - разработка зарядок, которые бы работали через неметаллические поверхности и в которых бы не использовались катушки.

Одна из целей организации Alliance for Wireless Power - возможность зарядки без привязки к конкретному месту и типу поверхности

Из всего вышенаписанного можно сделать простой вывод: через год-два большинство современных устройств смогут подзаряжаться без использования традиционных зарядных устройств. Пока же мощности беспроводной зарядки хватает, в основном, на смартфоны, однако для планшетов и ноутбуков такие устройства тоже скоро появятся (та же Apple не так давно запатентовала беспроводную зарядку для iPad). Это значит, что проблема разрядки устройств будет решена практически полностью - положил или поставил устройство в определенное место, и даже во время работы оно заряжается (или, в зависимости от мощности, разряжается намного медленнее). Со временем, можно не сомневаться, радиус их действия будет расширяться (сейчас необходимо использовать специальный коврик или подставку, на котором лежит устройство, либо оно должно находиться совсем рядом), и они будут повсеместно устанавливаться в автомобили, поезда и даже, возможно, самолеты.

Ну, и еще один вывод - скорее всего, не удастся избежать очередной войны форматов между разными стандартами и альянсами, продвигающими их.

Избавимся ли мы от проводов?

Беспроводная зарядка устройств - штука, конечно, хорошая. Но мощности, которые возникают при ней, достаточны только для заявленных целей. С помощью этих технологий пока невозможно даже осветить дом, не говоря уже о работе крупной бытовой техники. Тем не менее, эксперименты по высокомощной беспроводной передаче электроэнергии ведутся и базируются они, в том числе, и на материалах Теслы. Сам ученый предлагал установить по всему миру (тут, скорее всего, подразумевались развитые на тот момент страны, которых было намного меньше, чем сейчас) более 30 приемо-передающих станций, которые совмещали бы передачу энергии с радиовещанием и направленной беспроводной связью, что позволило бы избавиться от многочисленных высоковольтных линий электропередачи и содействовало объединению электрических генерирующих в глобальном масштабе.

Сегодня есть несколько методов решения задачи беспроводной передачи энергии, правда, все они пока позволяют добиться несущественных в глобальном плане результатов; речь идет даже не о километрах. Такие методы, как ультразвуковая, лазерная и электромагнитная передача, имеют существенные ограничения (короткие дистанции, необходимость прямой видимости передающих устройств, их размер, а в случае с электромагнитными волнами -очень низкий КПД и вред здоровью от мощного поля). Поэтому самые перспективные разработки связаны с использованием магнитного поля, а точнее - резонансного магнитного взаимодействия. Одна из них - WiTricity, разработкой занимается концерн WiTricity corporation, основанной профессором MIT Марином Солячичем и рядом его коллег.

Так, в 2007 году им удалось передать ток мощностью 60 Вт на расстояние 2 м. Его хватило на свечение лампочки, а КПД составлял 40 %. Но неоспоримым плюсом использовавшейся технологии являлось то, что она практически не взаимодействует ни с живыми существами (сила поля, по заявлению авторов, в 10 тыс. раз слабее, чем то, что царит в сердцевине магнитно-резонансного томографа), ни с медицинским оборудованием (кардиостимуляторы и т. п.), ни с другим излучением, а значит, не помешает, например, работе того же Wi-Fi.

Что самое интересное, на КПД системы WiTricity влияют не только размер, геометрия и настройка катушек, а также дистанция между ними, но и число потребителей, причем в положительном плане. Два приемных прибора, размещенные на расстоянии от 1,6 до 2,7 м по обе стороны от передающей «антенны», показали на 10 % лучший КПД, чем по отдельности - это решает проблему подключения множества устройств к одному источнику питания.

Мы презентуем устройство передачи электроэнергии без проводов с коэффициентом полезного действия (КПД) около 100%. В дальнейшем будет обоснована величина КПД ≈ 100% и, разумеется, мы демонстрируем эту величину нашим экспериментальным устройством.

Важность проблемы беспроводной передачи электроэнергии не подлежит сомнению – преодоление естественных преград (реки, горы и долины); резервное электроснабжение, электротранспорт, решение ряда задач беспроводного электропитания бытовых и промышленных устройств и т.д. – всё это элементы названной проблемы.

Немного истории

Впервые проблему беспроводной передачи электроэнергии обозначил на заре прошлого века Н. Тесла. В основе его демонстрационного устройства был положен метод излучения и приема электромагнитных волн открытым резонансным контуром, который содержит антенну – емкость и катушку провода – индуктивность. Характерные показатели устройства Теслы сводятся к следующим: КПД = 4%, дальность передачи – 42 км, максимальный габарит башни-антенны – 60 м, длина волны – 2000 м. Существенно, что в устройстве Теслы планета Земля рассматривается как один из проводов в передаче электроэнергии, поскольку излучение и прием столь длинных волн без заземления не эффективны.

После экспериментов Теслы, на протяжении прошлого ХХ века все попытки осуществить беспроводную передачу электроэнергии с приемлемым КПД оказались безрезультатными.

В текущем десятилетии прямо или косвенно сообщается о работах в Масачуссетском Технологическом Университете под руководством М. Соля-чича. В основе их работ лежит известный индукционный, при помощи магнитного поля, метод передачи электроэнергии, который реализован резонансными плоскими катушками индуктивности. Этот метод в идеале обеспечивает КПД = 50%, при дальности передачи соизмеримой с габаритами катушек-антенн. Характерные показатели их демонстрационного устройства сводятся к следующим: КПД ≈ 40%, дальность передачи – 2 м, габарит катушек-антенн – 0,6 м, длина волны – 30 м.

Энергетически замкнутая система

В нашем устройстве, как и в устройстве Теслы, переносчиком энергии являются электромагнитные волны, т.е. действует общеизвестный вектор Пойнтинга.

Теоретически обосновано и экспериментально подтверждено следующее: передающая и приемная антенны устройства беспроводной передачи электроэнергии образуют энергетически замкнутую систему, частично включающую в себя и энергию электромагнитного поля Земли; через возбуждение (активацию) электромагнитного поля Земли в этой системе происходит передача электроэнергии от передающей антенны к приемной с КПД ≈ 100% (фиг. 1).

Фиг. 1

Фиг. 2

Пользуясь этой антенной, несложно сформулировать задачу, решение которой обеспечит передачу электроэнергии без проводов:

1. Передающая и приемная антенны должны возбуждать (активировать) электромагнитное поле Земли в локальной (ограниченной) области пространства;

2. Возбужденное электромагнитное поле Земли должно быть также локальным в пространстве и не потреблять энергии (должно представлять собой стоячую электромагнитную волну между передающей и приемной антеннами).

Решение этой задачи нереально с антеннами, созданными на основе пространственных представлений геометрии Эвклида с ее знаменитым 5ым постулатом – постулатом о параллельных прямых. Этот постулат в школьных учебниках гласит: через точку, не лежащую на данной прямой, можно провести только одну прямую параллельную данной.

фиг. 3

Знаменитость этого постулата состоит в том, что, начиная с І ст. до н.э., на протяжении 2000 лет лучшие умы мира безуспешно пытались доказать его как теорему. И вот в 1826 г. россиянин Лобачевский изложил основы своей геометрии, в которой 5й постулат геометрии Эвклида формулировался, по сути, своим отрицанием: через точку, не лежащую на данной прямой, можно провести минимум две прямые, параллельные данной.


фиг. 4

И хотя этот постулат не очень согласуется с нашими пространственными представлениями, геометрия Лобачевского непротиворечива и исправно служит физикам в последнее время. Например, геометрия Лобачевского причастна к описанию громадного ряда явлений от колебаний в механических передаточных линиях до взаимодействия элементарных частиц и процессов в мембране живой клетки.

Псевдосфера

Правда, до 1863 г., на протяжении почти 40 лет, геометрия Лобачевского воспринималась как нечто, не имеющее отношение к реальности. Но, в 1863 г. итальянский математик Бельтрами установил, что все свойства плоскости геометрии Лобачевского реализуются на поверхности псевдосферы – геометрического тела, свойства которого совпадают либо противоположны свойствам сферы. На фиг. 5 изображена псевдосфера, а на фиг. 6 ее образующая – трактриса с асимптотой X’X. При равенстве радиусов больших окружностей (параллелей) псевдосферы и сферы можно количественно сравнивать объемы и площади поверхностей их.


фиг. 5


фиг. 6

Именно в форме полупсевдосфер изготавливаются антенны нашего устройства; нами демонстрируется устройство со следующими характеристиками: КПД = 100%, дальность передачи – 1,8 м, максимальный габарит катушек антенн – 0,2 м, длина волны – 500 м, заземление не обязательно.

Здесь следует отметить, что совокупность названных характеристик демонстрационного устройства противоречит основам классической электродинамики – радиотехники.

Какие же свойства антенн-полупсевдосфер обеспечивают такие характеристики нашего устройства?

Среди более десятка экстраординарных свойств псевдосферы заслуживает внимания прежде всего следующее:

бесконечно протяженное в пространстве тело псевдосферы имеет конечный объем и конечную площадь поверхности.

Именно это свойство псевдосферы позволяет при помощи антенн-полупсевдосфер создать конечную, ограниченную в пространстве, энергетически замкнутую систему, что является необходимым условием для передачи энергии из КПД = 100%.

Вторая фундаментальная задача, которая решается в нашем устройстве, касается среды, заполняющей упомянутую энергетически замкнутую систему. Суть в том, что только в квантовой электродинамике, плодом которой являются лазеры и мазеры, среда рассматривается активной. Напротив, в классической электродинамике среда относится к пассивным объектам; с ней связывается затухание, потери электромагнитной энергии при распространении.

Невероятно, но факт, в нашем устройстве происходит активация электрического и магнитного полей Земли. Эти поля являются объектами среды в нашем устройстве, поскольку заполняют упомянутую энергетически замкнутую систему. Активизация этой среды является также следствием свойств псевдосферы.

Суть в том, что все точки на поверхности псевдосферы являются, как утверждают математики, гиперболическими, разрывными в пространстве. Применительно к антеннам-полупсевдосферам нашего устройства это равносильно разрывам, квантованию электрического и магнитного полей в каждой точке провода намотки катушек антенн-полупсевдосфер. Это ведет к электромагнитным возмущениям – волнам, длина которых соизмерима с диаметром провода намотки катушек антенн-полупсевдосфер, т.е. практически длина таких волн составляет величину порядка 1 мм и меньше. Такие электромагнитные волны, как свидетельствует теория и практика, способны, через поляризацию молекул воздуха или непосредственно, активизировать электромагнитное поле Земли и тем самым компенсировать потери электромагнитной энергии на пути передачи ее в нашем устройстве. Это также необходимо для объяснения КПД = 100%.

Мало этого, нами заявлен генератор избыточной электромагнитной энергии, коэффициент преобразования энергии (КПЭ) которого составляет величину более 400%; т.е. сравнимо из КПЭ известных тепловых насосов.

И о последней, третьей задаче, которая решается в нашем устройстве.

Общеизвестно, что энергия переносится в пространстве только бегущей электромагнитной волной, волной, в которой электрическое и магнитное поле синфазны. Это условие невозможно реализовать на расстоянии 1,8 м при длине волны 500 м. Но, общеизвестно также, что скорость движения бегущей электромагнитной волны вдоль прямолинейного или криволинейного проводника замедляется, уменьшается в сравнении со скоростью в свободном пространстве; уменьшается также длина волны. Этот эффект широко применяется в электрорадиотехнике в так называемых замедляющих системах. Уменьшение длины волны в этих системах составляет от десятых долей единицы с прямолинейными проводами до 30 единиц с криволинейными (спиральными).

Именно эффект замедления, уменьшения длины волны позволяет формировать бегущую волну на небольших расстояниях в нашем устройстве.

Действительно, длина волны нашего демонстрационного устройства уменьшается до длины упомянутой выше длины , которая и формирует бегущую, переносящую энергию электромагнитную волну в нашем устройстве. Коэффициент уменьшения волны при этом составляет величину единиц. Такое громадное уменьшение длины волны объясняет и тот экспериментальный факт, что наше устройство эффективно работает и без заземления передатчика и приемника электроэнергии.

В работе нашего устройства задействовано еще одно удивительное свойство псевдосферы:

объем псевдосферы составляет половину объема сферы, при этом площади их поверхностей равны.

Из этого свойства следует, что объем сферы, ограниченный собственной площадью поверхности, содержит два объема псевдосферы, ограниченные двумя совмещенными собственными площадями поверхности и третьей площадью упомянутой сферы. Это позволяет представить объем сферы вокруг Земли , заполненный электрическим и магнитным полями Земли, двумя объемами псевдосферы и , каждый из которых ограничен площадями и содержит половины электрического и магнитного полей Земли (фиг. 7). Учитывая этот факт и факт неизбежного нахождения нашего устройства только на одной стороне земли, утверждается что антенны нашего устройства взаимодействуют только из половинами электрического и магнитного полей Земли. При этом, не следует полагать, что вторые половины этих полей бездействуют. В этом убеждает ниже следующее.


фиг. 7

Вспомним, что большинство законов физики сформулированы для инерциальных систем отсчета, в которых время безотносительное (абсолютное), пространство изотропно, скорость прямолинейного движения электромагнитных волн (света) абсолютна и т.д. В рамках инерциальных систем отсчета общеизвестно, что в свободном пространстве при отражении бегущей электромагнитной волны образуется стоячая, в которой различаются отдельно стоячая электрическая волна и отдельно стоячая магнитная волна. При длине бегущей волны, равной , длины стоячих электрической и магнитной волн равны половине длины бегущей, т.е. . Существенно также, что период этих стоячих волн равен периоду бегущей волны, т.е. , поскольку период стоячей волны состоит из суммы двух полупериодов прямой и отраженной полуволн.

Факт вычисления, а не экспериментального определения, величины с точностью, зависящей от точности определения длительности суток на Земле, позволяет совершенно по-новому взглянуть на ряд проблем физики.