Многофункциональный пробник электрика. Индикатор напряжения (пробник электрика) на светодиодах своими руками

Примитивная «контролька» - электропатрон с двумя проводами и лампой - далеко не лучший прибор для «прозвонки» электрических цепей. Выпускаемые промышленностью тестеры и авометры тоже, что называется, не подарок, особенно когда приходится иметь дело с современной техникой, да и стоят они недешево. Вот и приходится электрикам самим создавать пробники-индикаторы - универсальные, компактные и надежные. Об одном из таких приборов рассказывал журнал «Моделист-конструктор» в № 5 за 1990 год.

Смастерив себе этот пробник, разработанный, кстати сказать, талантливым представителем сельской глубинки, поначалу не мог нарадоваться. Прибор действительно является надежным помощником монтера, позволяя не только проверять электрические цепи, но и отдельные, элементы - диоды, транзисторы, конденсаторы, резисторы. Собранный в корпусе игрушечного пистолета и оснащенный щупами, он к тому же делает возможным контролировать переменное и постоянное напряжение от 1 до 400 В, обнаруживать фазный и «нулевой» провод сети, оценивать сопротивление изоляции электрооборудования.

Однако со временем наметилось расхождение между реальными возможностями пробника-индикатора и теми требованиями, которые предъявляет к таким приборам непрерывно усложняющаяся электрорадиотехника. В частности, перестала устраивать сложность обнаружения напряжения в цепях постоянного тока и выяснения, свидетельствует ли погасший сигнальный светодиод об обесточенности проводной линии или о коротком замыкании. Поэтому прибор пришлось модернизировать. Изменения внесены минимальные (детали НL2, НL3, R5 и разрез «а» на монтажной плате), зато универсальный пробник-индикатор теперь вновь при деле.

Как и прежде, в основе прибора - усилитель постоянного тока на транзисторах \/Т1 -\/Т2, нагрузкой которого служит светодиод НL1. Резисторы R1 и RЗ ограничивают I6 полупроводниковых триодов. Конденсатор С1 создает цепь отрицательной обратной связи по переменному току, исключающую ложную индикацию от внешних наводок. Резистор R4 в цепи базы VT2 служит для установки необходимого предела измерения сопротивлений. Резистор R2 ограничивает I изм при работе пробника в цепях переменного и постоянного токов. Диод VD1 выполняет функцию однополупериодного выпрямителя. Светодиоды НL2 и НL3 являются индикаторами полярности, ток через которые ограничивает резистор R5.

В исходном состоянии транзисторы закрыты, и индикатор НL1 не светится. Но если щупы соединить друг с другом или подключить их к обесточенной исправной цепи, имеющей Rц не более 500 кОм, то НL1 зажигается. Яркость его свечения обратно пропорциональна сопротивлению проверяемой цепи.

При подключении пробника к цепи переменного тока положительные полуволны открывают транзисторы, и светодиод НL1 загорается. Светятся и дополнительные индикаторы НL2 и НL3 на входе прибора. Если же напряжение постоянное, то НL1 и НL3 зажгутся, когда на щупе Х2 будет «плюс» (при другой полярности напряжения в проверяемой цепи они потухнут, зато загорится светодиод НL2).

Как и при работе с прибором до модернизации, исправность диодов и транзисторов проверяют методом сравнения р-п переходов. Отсутствие свечения указывает на обрыв, но если НИ горит постоянно, то в испытуемом переходе пробой.

При подключении к пробнику исправного конденсатора светодиод HL1 вспыхивает и затем гаснет. Яркость и длительность вспышки зависят от проверяемой электроемкости. Когда же конденсатор пробит или имеет большую утечку, светоиндикатор горит постоянно.

«Фазу» определяют следующим образом: щуп Х1 берут в руку, а щупом Х2 касаются исследуемого провода. Если светодиод HL1 горит, то «фаза», что называется, налицо.

Методики остальных проверок не изменились, но работать модернизированным пробником-индикатором все равно удобнее и быстрее, чем прежде, ведь в роли информаторов выступают три светодиодных индикатора.

В.ТОКАРЬ, г Сумы, Украина

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

Пробника 1
Разработан автором В. ГРИЧКО из г. Краснодара, можно проверить наличие напряжения в контролируемой цепи, определить его вид (постоянное или переменное), а также проводить "прозвонку" цепей на исправность. Схема устройства показана на рис. 1

Светодиод HL2 индицирует наличие на входе (вилки ХР1 и ХР2) постоянного напряжения определенной полярности. Если на вилку ХР1 поступает плюсовое напряжение, а на ХР2 - минусовое, через токоограничивающий резистор R2, защитный диод VD2, стабилитрон VD3 и светодиод HL2 протекает ток, поэтому светодиод HL2 будет светить. Причем яркость его свечения зависит от входного напряжения- При обратной полярности входного напряжения он светить не будет.
Светодиод HL1 индицирует наличие на входе устройства переменного напряжения. Он подключен через ограничивающие ток конденсатор С1 и резистор R3, диод VD1 защищает этот светодиод от минусовой полуволны переменного напряжения. Одновременно со светодиодом HL1 будет светить и HL2. Резистор R1 служит для разрядки конденсатора С1. Минимальное индицируемое напряжение - 8 В.
В качестве источника постоянного напряжения для режима "прозвонки" соединительных проводов применен ионистор С2 большой емкости. Перед проведением проверки необходимо его зарядить. Для этого устройство подключают к сети 220 В примерно на пятнадцать минут. Ионистор заряжается через элементы R2, VD2, HL2, напряжение на нем ограничено стабилитроном VD3. После этого вход устройства подключают к проверяемой цепи и нажимают на кнопку SB1. Если провод исправей, через него, контакты этой кнопки, светодиод HL3, резисторы R4, R5 и плавкую вставку FU1 потечет ток и светодиод HL3 станет светить, сигнализируя об этом. Запаса энергии в ионисто-ре достаточно для непрерывного свечения этого светодиода около 20 мин.
Ограничительный диод VD4 (напряжение ограничения не превышает 10,5 В) совместно с плавкой вставкой FU1 защищает ионистор от высокого напряжения в случае, если при контроле входного напряжения или зарядке ионистора будет случайно нажата кнопка SB1. Плавкая вставка перегорит и потребуется ее замена.
В устройстве применены резисторы МЛТ, С2-23, конденсаторС1 - К73-17в, диоды I N4007 можно заменить на диоды 1N4004, 1N4005, 1 N4006, стабилитрон 1N4733 - на 1N5338B. Все детали смонтированы на макетной монтажной плате с применением проводного монтажа.

Пробника 2

В виде щупа собран на светодиодах и кроме "прозвонки" цепей позволяет определить тип напряжения (постоянное или переменное) и приближенно оценить его значение в интервале от 12 до 380 В. Автор этого устройства - А. ГОНЧАР из г. Рудный Кустанайской обл. Казахстана. Ему по роду своей деятельности часто приходится контролировать работоспособность и ремонтировать различные устройства, где примененяются различные по значению (36, 100,220 и 380 В) постоянные и переменные напряжения. Для проверки подобных цепей предлагаемый пробник очень удобен, поскольку не требуется проводить переключений при различном контролируемом напряжении. При разработке этого устройства за основу был принят пробник, описание которого опубликовано в "Радио" № 4 за 2003 г. на с. 57 (Сорокоумов В. "Универсальный пробник-индикатор"). С целью расширения функциональных возможностей он был доработан.
Схема модернизированного пробника показана на рис. 2

Она содержит гасящий резистор R1, шкалу из двухцветных светодиодов HL1-HL5, накопительный конденсатор С1 и индикатор фазного провода на неоновой лампе HL7. Устройство может работать в трех режимах: индикатора напряжения, указателя фазного провода и "прозвонки" - индикатора проводимости электрической цепи.
Для индикации напряжения вход устройства - штырь ХР1, вставленный в гнездо XS2, и гнездо XS1 (с помощью гибкого изолированного провода), подключают к контролируемым точкам. В зависимости от разности потенциалов этих точек через резисторы R1-R6 и стабилитрон VD1 протекает различный ток. С увеличением входного напряжения возрастает и ток, что приводит к росту напряжения на резисторах R2- R6. Светодиоды HL1-HL5 поочередно загораются, сигнализируя о значении входного напряжения Номиналы резисторов R2-R6 подобраны так, чтобы при напряжении 12 В и более загорался све-тодиод HL5, 36 В и более - HL4. 127 В и более - HL3, 220 В и более - HL2 и 380В и более-Н1_1.
В зависимости от полярности входного напряжения цвет свечения будет различным. Если на штыре ХР1 плюс относительно гнезда XS1. светодиоды горят красным цветом, если минус - зеленым. При переменном входном напряжении цвет свечения - желтый. Следует отметить, что при переменном или минусовом входном напряжении может гореть и светодиод HL6.
В режиме указателя фазного провода в сети любой из входов (ХР1 или XS2) подключают к контролируемой цепи и прикасаются пальцем к сенсору Е1. Неоновая индикаторная лампа зажжется, если эта цепь соединена с фазным проводом
Для использования устройства для "прозвонки" цепей необходимо предварительно зарядить накопительный конденсатор С1. Для этого вход устройства на 15...20 с подключают к сети 220 В или к источнику постоянного напряжения 12 В и более {плюсом на вилку ХР1) За это время конденсатор С1 успеет зарядиться через диод VD2 до напряжения, немного меньшего 5 В (оно ограничено стабилитроном VD1). При последующем подключении к контролируемой цепи, если она исправна, конденсатор будет разряжаться через нее. резистор R7 и светодиод HL6, который загорится. Если проверку проводить кратковременно, то зарядки конденсатора хватит на несколько проверок, после чего зарядку конденсатора следует повторить.

Применены постоянные резисторы R1 - ПЭВ-10. остальные - МЛТ, С2-23. конденсатор - К50-35 или импортный, диод КД102Б можно заменить на любой диод из серии 1N400x, стабилитрон КС147А - на КС156А, взамен двухцветных светодиодов можно применить по два разного цвета свечения, включив их встречно-параллельно, светодиод HL6 желательно применить с повышенной яркостью свечения. Следует отметить, что светодиоды разного цвета свечения имеют различные значения прямого напряжения, поэтому пороги их включения при разной полярности входного напряжения не будут одинаковыми.
Большинство деталей размещены на плате из текстолита или гетинакса, для их выводов сделаны отверстия и применен проводной монтаж. Светодиоды HL1-HL5 установлены в ряд. Поскольку в качестве корпуса пробника был использован корпус от неисправной газовой пьезозажигалки, плата рассчитана на установку в него (рис. 3).

Отверстие в корпусе, предназначенное для кнопки пьезозажигалки, закрыто оргстеклом. Все светодиоды и неоновую лампу располагают на плате так, чтобы их было видно через это отверстие. Гнездо XS1 размещают на боковой стенке корпуса, XS2 - в торце В качестве сенсора можно применить винт, расположенный также на боковой стенке. В гнездо XS1 вставляют вилку с гибким проводом и зажимом "крокодил" на другом конце, а в гнездо XS2 - металлический штырь, заостренный на конце для более удобного подключения к малогабаритным контактам (рис. 4).

При сборке, проверке и эксплуатации описанного устройства следует помнить о правилах безопасности при работе с высоким напряжением.

Во многих случаях вовсе не обязательно измерять сопротивление той или иной детали. Бывает важно лишь убедиться, скажем, в целости какой-то цепи, в ее изоляции от другой, в исправности диода или обмотки трансформатора и т. д. В подобных ситуациях вместо стрелочного измерительного прибора пользуются пробником - его простейшим заменителем. Пробником может быть, например, лампа накаливания или головной телефон, включенные последовательно с батареей. Касаясь оставшимися выводами лампы (или телефона) и батареи проверяемых цепей по свечению лампы или щелчкам в телефоне нетрудно определять целость цепей или судить об их сопротивлении. Но, конечно, сферы использования подобных пробников ограничены, поэтому в арсенале измерительной лаборатории начинающего радиолюбителя желательно иметь более совершенные конструкции. С некоторыми из них мы и познакомимся.

Прежде чем приступить к налаживанию собранной конструкции, нужно, как обычно выражаются, «прозвонить» ее монтаж, т. е. проверить правильность всех соединений в соответствии с принципиальной схемой. Зачастую радиолюбители пользуются для этих целей сравнительно громоздким прибором — омметром или авометром, работающим в режиме измерения сопротивлений. Но нередко такой прибор не нужен, его может заменить компактный пробник, задача которого — сигнализировать о целости той или иной цепи. Особенно удобны такие пробники при «прозвонке» многопроводных жгутов и кабелей. Одна из схем подобного прибора приведена на рис. П-22. В нем всего три маломощных транзистора, два резистора, светодиод и источник питания.

В исходном состоянии все транзисторы закрыты, поскольку на их базах относительно эмиттеров нет напряжения смещения. Если же соединить между собой выводы «к электроду» и «к зажиму», в цепи базы транзистора VT1 потечет ток, сила которого зависит от сопротивления резистора R1. Транзистор откроется, и на его коллекторной нагрузке — резисторе R2 появится падение напряжения. В результате транзисторы VT2 и VT3 также откроются, и через светодиод HL1 потечет ток. Светодиод вспыхнет, что и послужит сигналом исправности проверяемой цепи.

Особенность пробника — в его высокой чувствительности и сравнительно малом токе (не более 0,3 мА), протекающем через измеряемую цепь. Это позволило выполнить пробник несколько необычно: все его детали смонтированы в небольшом пластмассовом корпусе (рис. П-23), который крепят к ремешку (или браслету) от наручных часов. Снизу к ремешку (напротив корпуса) прикрепляют металлическую пластину-электрод, соединенную с резистором R1. Когда ремешок застегнут на руке, электрод прижат к ней. Теперь пальцы руки будут выполнять роль щупа пробника. При использовании браслета никакой дополнительной пластинки-электрода не понадобится — вывод резистора R1 соединяют с браслетом.

Зажим пробника подсоединяют, например, к одному из концов проводника, который нужно отыскать в жгуте или «прозвонить» в монтаже. Касаясь пальцами поочередно концов проводников с другой стороны жгута, находят нужный проводник по появлению свечения светодиода. В данном случае между щупом и зажимом оказывается включенным не только сопротивление проводника, но и сопротивление части руки. И тем не менее проходящего через эту цепь тока достаточно, чтобы пробник «сработал» и светодиод вспыхнул.

Транзистор VT1 может быть любой из серии КТ315 со статическим коэффициентом (или просто коэффициентом — так для краткости будем писать дальше) передачи тока не менее 50, VT2 и VT3 — другие, кроме указанных на схеме, соответствующей структуры и с коэффициентом передачи не менее 60 (VT2) и 20 (VT3).

Светодиод АЛ102А экономичен (потребляет ток около 5 мА), но обладает небольшой яркостью свечения. Если она будет недостаточна для ваших целей, установите светодиод АЛ102Б. Но ток потребления возрастет в этом случае в несколько раз (конечно, только в момент индикации).

Источник питания — два аккумулятора Д-0,06 или Д-0,1, соединенные последовательно. Выключателя питания в пробнике нет, поскольку в исходном состоянии (при разомкнутой базовой цепи первого транзистора) транзисторы закрыты, и ток потребления ничтожен — он соизмерим с током саморазряда источника питания.

Пробник можно вообще собрать на транзисторах одинаковой структуры, например по приведенной на рис. П-24 схеме. Правда, он содержит несколько больше деталей по сравнению с предыдущей конструкцией, но зато его входная цепь оказывается защищенной от внешних электромагнитных полей, приводящих иногда к ложному вспыхиванию светодиода. В этом пробнике работают кремниевые транзисторы серии КТ315, характеризующиеся малым обратным током коллекторного перехода в широком диапазоне температур. При использовании транзисторов с коэффициентом передачи тока 25..30 входное сопротивление пробника составляет 10... ...25 МОм. Повышение входного сопротивления нецелесообрано из-за возрастания вероятности ложного индицирования внешними наводками и посторонними проводимостями.

Достаточно большое входное сопротивление достигнуто применением составного эмиттерного повторителя (транзисторы VT1 и VT2).

Конденсатор С1 создает глубокую отрицательную обратную связь по переменному току, исключающую ложную индикацию от воздействия внешних наводок.

Как и в предыдущем случае, в исходном режиме устройство практически не потребляет энергии, так как сопротивление подключенной параллельно источнику питания цепи HL1VT3 в закрытом состоянии транзистора составляет 0,5...1 МОм. Потребляемый ток в режиме индикации не превышает 6 мА.

Корректировать входное сопротивление прибора можно подбором резистора R2, предварительно подключив ко входу цепочку резисторов общим сопротивлением 10... ...25 МОм и добиваясь минимальной яркости светодиода.

А как быть, если нет светодиода? Тогда вместо него можно использовать в обоих вариантах малогабаритную лампу накаливания на напряжение 2,5 В и потребляемый ток 0,068 А (например, лампу МН 2,5-0,068). Правда, в этом случае придется уменьшить сопротивление резистора R1 примерно до 10 кОм и подобрать его точнее по яркости свечения лампы при замкнутых входных проводниках.

Не меньший интерес у радиолюбителей могут вызвать пробники со звуковой индикацией. Схема одного из них, прикрепляемого к руке с помощью браслета, приведена на рис. П-25. Он состоит из чувствительного электронного ключа на транзисторах VT1, VT4 и генератора ЗЧ, собранного на транзисторах VT2, VT3 и миниатюрном телефоне BF1. Частота колебаний генератора равна частоте механического резонанса телефона. Конденсатор С1 снижает влияние наводок переменного тока на работу индикатора. Резистор R2 ограничивает ток коллектора транзистора VT1, а значит, и ток эмиттерного перехода транзистора VT4. Резистором R4 устанавливают наибольшую громкость звучания телефона, резистор R5 влияет на надежность работы генератора при изменении питающего напряжения.

Звуковым излучателем BF1 может быть любой миниатюрный телефон (например, ТМ-2) сопротивлением от 16 до 150 Ом. Источник питания — аккумулятор Д-0,06 или элемент РЦ53. Транзисторы — любые кремниевые соответствующей структуры, с коэффициентом передачи тока не менее 100, с обратным током коллектора не более 1 мкА.

Детали пробника можно смонтировать на изоляционной планке или плате из одностороннего фольгированного стеклотекстолита. Планку (или плату) помещают, например, в металлический корпус в виде наручных часов, с которым соединен металлический браслет. Напротив излучателя в крышке корпуса вырезают отверстие, а на боковой стенке укрепляют миниатюрное гнездо разъема ХТ1, в которое вставляют удлинительный проводник со щупом ХР1 (им может быть зажим «крокодил») на конце.

Несколько иная схема пробника приведена на рис. П-26. В нем используются как кремниевые, так и германиевые транзисторы. Причем совсем не обязательно делать конструкцию малогабаритной, сам индикатор можно собрать в небольшой шкатулке, а браслет и щуп соединять с ним гибкими проводниками.

Конденсатор С2 шунтирует по переменному току электронный ключ, а конденсатор. СЗ — источник питания.

Транзистор VT1 желательно подобрать с коэффициентом передачи тока не менее 120 и обратным током коллектора менее 5 мкА, а VT2 — с коэффициентом передачи не менее 50, VT3 и VT4 — не менее 20 (и обратным током коллектора не более 10 мкА). Звуковой излучатель BF1 — капсюль ДЭМ-4 (или аналогичный) сопротивлением 60...130 Ом.

Пробники со звуковой индикацией потребляют несколько больший ток по сравнению с предыдущим, поэтому при больших перерывах в работе желательно отключать источник питания.



Б.С. Иванов. Энциклопедия начинающего радиолюбителя

На протяжении многих лет журнал "Радио" публиковал для начинающих радиолюбителей описания простейших конструкций, которые либо сами, либо совместно с известными авометрами позволяли проверить радиодетали, измерить при необходимости параметры транзисторов, "прозвонить" монтаж на правильность соединений цепей или просто расширить возможности использования авометра. О некоторых из подобных устройств рассказывается в предлагаемой статье.

Пробник для "прозвонки" монтажа

Прежде чем приступить к налаживанию собранной конструкции, нужно "прозвонить" ее монтаж, т. е. проверить правильность всех соединений в соответствии с принципиальной схемой. Для этих целей радиолюбители часто пользуются омметром или авометром. работающим в режиме измерения сопротивлений.

Нередко такой прибор может заменить компактный пробник, задача которого - сигнализировать о целости той или иной цепи. Особенно удобны пробники при "прозвонке" многопроводных жгутов и кабелей. Одна из возможных схем пробника приведена на рис. 1. В нем три маломощных транзистора, два резистора, светодиод и источник питания.

В исходном состоянии все транзисторы закрыты, поскольку на их базах относительно эмиттеров нет напряжения смещения. Если же соединить между собой выводы "К электроду" и "К зажиму", в цепи базы транзистора VT1 потечет ток Его значение зависит от сопротивления резистора R1. Транзистор откроется и на его коллекторной нагрузке - резисторе R2 -появится падение напряжения. В результате откроются транзисторы VT2 и VT3 и через светодиод HL1 потечет ток. Светодиод вспыхнет, что и послужит сигналом исправности проверяемой цепи.

Пробник выполнен несколько необычно: все его детали смонтированы в небольшом пластмассовом корпусе (рис. 2), который крепят к ремешку (или браслету) от наручных часов. Снизу к ремешку (напротив корпуса) прикрепляют металлическую пластину-электрод, соединенную с резистором R1 Когда ремешок застегнут на руке, электрод прижат к ней. В этом случае пальцы руки выполняют роль щупа пробника. При использовании браслета никакой дополнительной пластины-электрода не понадобится - вывод резистора R1 соединяют с браслетом.

Зажим пробника подсоединяют, например, к одному из концов проводника, который нужно отыскать в жгуте или "прозвонить" в монтаже. Касаясь пальцами поочередно концов проводников с другой стороны жгута, нужный проводник находят по появлению свечения светодиода. В данном случае между щупом и зажимом оказывается включенным не только сопротивление проводника, но и сопротивление кисти руки. Проходящего через эту цепь тока достаточно, чтобы пробник "сработал" и светодиод вспыхнул.

Транзистор VT1 используется любой из серии КТ315 со статическим коэффициентом (для краткости - просто коэффициентом) передачи тока не менее 50; VT2 и VT3 - также любые маломощные низкочастотные, соответствующей структуры и с коэффициентом передачи тока не менее 60 (VT2) и 20 (VT3).

Светодиод АЛ102А экономичен (потребляет ток около 5 мА). обладает небольшой яркостью свечения. Если она будет недостаточна для наших целей, установите светодиод АЛ 1025. Источник питания - два аккумулятора Д-0.06 или Д-0.07, соединенных последовательно. Выключателя питания в пробнике нет. поскольку в исходном состоянии (при разомкнутой базовой цепи первого транзистора) транзисторы закрыты и ток потребления ничтожен - он соизмерим с током саморазряда источника питания.

Пробник можно собрать на транзисторах одинаковой структуры, например, по приведенной на рис. 3 схеме. Правда, он содержит несколько больше деталей, чем предыдущая конструкция, но зато его входная цепь оказывается защищенной от внешних электромагнитных полей, приводящих иногда к ложному вспыхиванию светодиода.

В этом пробнике работают кремниевые транзисторы серии КТ315 с коэффициентом передачи тока не менее 25 Конденсатор С1 исключает ложную индикацию от воздействия внешних наводок.

Как и в предыдущем случае, в исходном режиме устройство практически не потребляет энергии, так как сопротивление подключенной параллельно источнику питания цепи HL1R4VT3 в закрытом состоянии транзистора составляет 0,5... 1 МОм. Потребляемый ток в режиме индикации не превышает 6 мА Яркость светодиода можно изменить подбором резистора R3.

Не меньший интерес могут вызвать пробники со звуковой индикацией. Схема одного из них, прикрепляемого к руке с помощью браслета, приведена на рис. 4.

Он состоит из чувствительного электронного ключа на транзисторах VT1. VT4 и генератора звуковой частоты (34), собранного на транзисторах VT2, VT3 v в миниатюрном телефоне BF1. Частота колебаний генератора равна частоте механического резонанса телефона Конденсатор С1 снижает влияние наводок переменного тока на работу индикатора Резистор R2 ограничивает ток коллектора транзистора VT1. а значит, и ток эмиттерного перехода транзистора VT4. Резистором R4 устанавливают наибольшую гром кость звучания телефона, резистор R5 влияет на устойчивость работы генератора при изменении питающего напряжения.

Звуковым излучателем BF1 может быть любой миниатюрный телефон (например ТМ-2) сопротивлением от 16 до 150 Ом, Источник питания - аккумулятор Д-0,06 или элемент РЦ53. Транзисторы - любые другие кремниевые, структуры р-n-p (VT1) и n-p-n (VT2-VT4). с возможно большим коэффициентом передачи тока и обратным током коллектора не более 1 мкА.

Детали пробника монтируют на изоляционной планке или плате из одностороннего фольгированного стеклотекстолита. Планку (или плату) помещают, например, в металлический корпус в виде наручных часов, с которым соединен металлический браслет. Напротив излучателя в крышке корпуса вырезают отверстие, на боковой стенке укрепляют миниатюрное гнездо разъема Х2. в которое вставляют удлинительный проводник с щупом Х1 (им может быть зажим "крокодил") на конце.

Несколько иная схема пробника приведена на рис. 5. В нем используются как кремниевые, так и германиевые транзисторы.

Конденсатор С2 шунтирует по переменному току электронный ключ, а конденсатор C3 - источник питания.

Транзистор VT1 желательно подобрать с коэффициентом передачи тока не менее 120, VT2 - не менее 50. VT3 и VT4 - не менее 20 (и обратным током коллектора но более 10 мкА). Звуковой излучатель BF1 - капсюль ДЭМ-4 (или аналогичный) сопротивлением 60...130 Ом

Пробники со звуковой индикацией потребляют несколько больший ток по сравнению с предыдущими, поэтому при больших перерывах в работе желательно отключать источник питания.

Измеритель RC

Как вы, наверное, догадались, рассказ пойдет о приборе, измеряющем сопротивление резисторов и емкость конденсаторов. В его основе (рис. 6) - мостовая измерительная схема, известная по школьному курсу физики и широко используемая в технике для точных измерений различных параметров.

Левая часть схемы - генератор переменного напряжения, правая - измерительный мост. Прибор предназначен для измерения сопротивлений резисторов от 10 Ом до 10 МОм и емкостей конденсаторов от 10 пФ до 10 мкФ.

Генератор переменного напряжения собран на одном транзисторе МП39 (подойдет любой из серий МП39-МП42 или другой низкочастотный транзистор). В цепь коллектора транзистора включена первичная обмотка трансформатора Т1, его вторичная обмотка соединена с базой транзистора. Напряжение смещения подается на базу с делителя R1R2. В цепи эмиттера включен резистор обратной связи R3. стабилизирующий работу генератора при изменении температуры окружающей среды и снижении напряжения питания. Генерация (возбуждение) возникает из-за положительной обратной связи между коллекторной и базовой цепями. Переменное напряжение снимается с коллектора транзистора и подается на мост через конденсатор С1.

Переключателем SA2 к измерительному мосту подключают эталонные резисторы и конденсаторы. Уравновешивают мост переменным резистором R7. К зажимам "С, Rx" вы будете подключать проверяемые детали, а в гнезда "Тф" включать головные телефоны с большим сопротивлением (ТОН-1, ТОН-2 и другие, сопротивлением не менее 2 кОм).

Постоянные резисторы возьмите МЛТ, ВС, причем R4-R6 с допуском не хуже 5 %. Конденсаторы С1-C3 могут быть бумажные (типов МБМ, БМТ, КБГИ и другие), а С4 слюдяной, емкости конденсаторов С2 - С4 также должны быть с допуском 5 % Трансформатор Т1 должен иметь соотношение витков коллекторной и базовой обмоток примерно 3:1. Здесь подойдет любой согласующий трансформатор от промышленных транзисторных приемников. В крайнем случае намотайте трансформатор сами на магнитопроводе из пермаллоевых Ш-образных пластин сечением не менее 30 мм2 (например, железо Ш5, толщина набора 6 мм). Обмотка I должна содержать 2400 витков провода марки ПЭВ или ПЭЛ диаметром 0.06...0.08 мм. обмотка II - 700...800 витков такого же провода.

Прибор соберите в деревянном или металлическом корпусе (рис. 7). На лицевой стенке укрепите выключатель SA1. переключатель SA2, переменный резистор R7, зажимы и гнезда для подключения проверяемых деталей и головных телефонов.

Против каждого фиксированного положения переключателя напишите значение номинала эталонной детали, как это показано на рисунке. Вокруг ручки переменного резистора начертите окружность и нанесите пока две риски, соответствующие крайним положениям ручки.

После проверки монтажа включите прибор и послушайте головные телефоны. Если звука нет, поменяйте местами выводы одной из обмоток трансформатора генератора.

Затем приступайте к градуировке шкалы. Поскольку шкала общая, градуировать ее можно на любом диапазоне измерений. Но для этого диапазона подберите несколько деталей с известными номиналами. Например, вы выбрали диапазон "х10к" и поставили в это положение переключатель SA2. Запаситесь резисторами от 1 до 100 кОм Сначала подключите к зажимам резистор сопротивлением 1 кОм и вращением ручки переменного резистора добейтесь исчезновения звука в телефонах. Мост уравновешен, и на шкале в этом месте можно поставить риску с надписью "0.1" (1 кОм: 10 кОм = 0,1). Подключая к зажимам поочередно резисторы сопротивлением 2, 3, 4...10 кОм, нанесите на шкалу риски от 0.2 до 1. Так же наносятся риски от 2 до 10. только резисторы в этом случае должны быть сопротивлением 20. 30 кОм и т. д.

Проверьте работу прибора на других диапазонах. Если результаты измерений расходятся с истинным значением номинала детали, подберите точнее сопротивление соответствующего эталонного резистора или емкость конденсатора.

При пользовании прибором придерживайтесь следующей последовательности. Измеряемый резистор подключите к зажимам и поставьте переключатель сначала в положение "х1 М". Вращением ручки переменного резистора попытайтесь уравновесить мост. Если это не удастся, поставьте переключатель последовательно в следующие положения. В одном из них мост будет уравновешен. Сопротивление измеряемого резистора подсчитайте перемножением показаний шкал переключателя и переменного резистора. К примеру, переключатель стоит в положении "х10 к", а ручка переменного резистора - против риски "0.8". Тогда измеряемое сопротивление составит 10 кОм х 0.8 = 8 кОм. Аналогично измеряют и емкость конденсатора.

Если при работе с прибором громкости звука будет недостаточно, можно включить в розетку Х3 вместо телефонов постоянный резистор сопротивлением 2...3 кОм и подать сигнал с него на усилитель 3Ч, даже выполненный на одном-двух транзисторах и нагруженный на головные телефоны либо на осциллограф. Усилитель должен питаться от отдельного источника.

Как проверить транзистор...

Для проверки работоспособности транзисторов можно воспользоваться радиотрансляционной сетью, собрав для этого приставку, схема которой приведена на рис. 8. Проверяемый транзистор VT и показанные на схеме детали образуют усилитель, на вход которого поступает сильно ослабленное делителем R1R2 напряжение сигнала ЗЧ радиотрансляционной сети. Если напряжение сети 30 В. на резисторе R2 будет всего 0,08 В, а на базе транзистора - еще меньше. При исправном транзисторе в телефонах BF1 будет слышен громкий звук. По нему, правда, грубо, судят об усилительных свойствах транзистора. При проверке транзисторов структуры n-p-n нужно поменять местами подключение выводов батареи GB1 и конденсатора С1.

В качестве звукового индикатора BF1 лучше использовать телефонный капсюль ДЭМШ, ДЭМ-4М или малогабаритную динамическую головку (например, 0.1ГД-3 или 0.1ГД-6), но включать ее следует через выходной трансформатор от малогабаритного приемника. Его первичную обмотку (с большим числом витков) включают в цепь коллектора, а к вторичной подключают головку.

Все резисторы - МЛТ-0,25, конденсатор С1 - К50-6, источник питания - батарея 3336.

В другом пробнике (рис. 9) проверяемый транзистор работает в режиме генерации и в головных телефонах BF1 слышен звук определенного тона. При неисправном транзисторе звука не будет.

Телефоны высокоомные (ТОН-1, ТОН-2), резисторы - МЛТ-0,25, конденсаторы С1, С2 - БМ. МБМ. C3 - К50-6, разъем X2 - двухгнездная колодка. Зажимы Х2-Х4 для подключения транзистора - любой конструкции, батарея питания - 3336. Как и в предыдущем случае, при необходимости проверить транзисторы структуры n-p-n следует поменять местами подключение выводов батареи и оксидного конденсатора.

Для проверки транзисторов обеих структур (p-n-р и n-p-n) пригоден прибор, схема которого приведена на рис. 10. Если оба транзистора исправны, прибор превращается в несимметричный мультивибратор, работа которого контролируется по звуку в головных телефонах. При неисправном транзисторе звука не будет. Таким образом, для проверки транзисторов с помощью этого прибора нужно иметь по одному исправному транзистору каждой структуры, которые используются как образцовые.

В качестве телефонов используют капсюли ДЭМ-4М, ДЭМШ. микротелефон ТМ-2. Источник питания G1 - один из элементов 316,332,343 или 373. Выключателя питания в приборе нет - когда транзисторы не подключены, потребления тока от источника не будет.

Порядок работы с прибором такой. При проверке транзистора, например структуры p-n-p, его подключают к соответствующим зажимам прибора, а к другим зажимам - заведомо исправный транзистор другой структуры, n-p-n. После этого в двухгнездную колодку вставляют вилку телефона и контролируют работу мультивибратора.

Проверять маломощные транзисторы любой структуры можно также с помощью пробника (рис. 11), в котором проверяемый транзистор работает в паре с образцовым (заранее проверенным и специально подобранным для пробника), но другой структуры. Если, скажем, проверяют транзистор структуры p-n-p, его выводы вставляют в гнезда разъема Х1, а в гнезда разъема Х2 вставляют выводы образцового транзистора структуры n-p-n. Тогда получится генератор, вырабатывающий колебания звуковой частоты, - они слышны в головном телефоне ВF1. Звук будет лишь в случае исправности проверяемого транзистора. Момент возникновения генерации зависит от положения движка переменного резистора R3 "Генерация".

Кроме двух исправных образцовых транзисторов разной структуры, для пробника понадобятся миниатюрный телефон ТМ-2А, источник питания G1 - элементы 316, 332, 343, 373, переменный резистор любого типа и постоянные резисторы МЛТ мощностью до 0,5 Вт. Разъемами могут быть панельки под транзисторы, гнезда или зажимы.

Коэффициент передачи проверяемого транзистора нетрудно определять по положению движка переменного резистора - чем в большем диапазоне его перемещения будет сохраняться звук в телефоне, тем большим коэффициентом передачи обладает транзистор.

... и измерить его параметры

Как и другие радиодетали, транзисторы имеют свои параметры, определяющие их использование в тех или иных устройствах. Но прежде чем ставить транзистор в конструкцию, его нужно проверить. Для проверки всех параметров транзистора потребуется сложный измерительный прибор. Сделать такой прибор в любительских условиях практически невозможно. Да он и не нужен: ведь для большинства конструкций достаточно знать лишь статический коэффициент передачи тока базы, а еще реже - обратный ток коллектора. Поэтому лучше обойтись простейшими приборами, измеряющими эти параметры.

Как можно судить о статическом коэффициенте передачи тока базы? Посмотрите на рис. 12. Транзистор подключен к источнику питания G1, и в цепи его базы протекает ток, который зависит от сопротивления резистора R1. Этот ток транзистор усиливает. Значение усиленного тока показывает стрелка миллиамперметра, включенного в цепи коллектора. Достаточно разделить значение тока коллектора на значение тока в цепи базы и вы узнаете статический коэффициент передачи тока.

Существуют два несколько различающихся коэффициента передачи тока - h21, h21э.

Первый называется динамическим коэффициентом передачи тока и показывает отношение приращения тока коллектора к вызвавшему его приращению тока базы. Измерять этот коэффициент в любительских условиях трудно, поэтому на практике чаще определяют второй коэффициент. Это - статический коэффициент передачи тока, показывающий отношение тока коллектора к данному току базы. При небольших токах коллектора оба коэффициента близки.

И еще о коэффициенте передачи тока. Он во многом зависит от тока коллектора. В некоторых измерительных приборах, схемы которых были опубликованы в популярной радиотехнической литературе прошлых лет, коэффициент передачи тока маломощных транзисторов измерялся при токе коллектора 20 и даже 30 мА. Это ошибочно. При таком токе усиление транзистора падает и прибор показывает заниженное значение коэффициента передачи тока. Вот почему иногда приходится слышать, что одни и те же транзисторы при проверке на разных приборах показывают коэффициенты передачи, отличающиеся вдвое и даже втрое. Показания любого измерителя будут близкими лишь в том случае, если максимальный ток коллектора при измерениях не превышает 5 мА. Такой предел принят в описываемых ниже простых конструкциях. В более сложных измерителях для транзистора устанавливают такой ток коллектора, при котором транзистор будет работать в конструкции, - он определит реальное значение коэффициента передачи.

На рис. 13 приведена простейшая схема практического прибора для проверки транзисторов структуры p-n-р. Работает прибор так. К зажимам (или гнездам) "Э", "Б", "к" подключают выводы транзистора (соответственно эмиттер, базу, коллектор). При нажатой кнопке SB1 на выводы транзистора подается питающее напряжение от батареи GB1. В цепи базы транзистора при этом начинает протекать небольшой ток. Его значение определяется в основном сопротивлением резистора R1 (поскольку сопротивление эмиттерного перехода транзистора мало по сравнению с сопротивлением резистора) и в данном случае выбрано равным 0,03 мА (30 микроампер)

Усиленный транзистором ток регистрирует миллиамперметр РА1 в цепи коллектора. Шкалу миллиамперметра можно отградуировать непосредственно в значениях h21Э. Если в приборе использован миллиамперметр, рассчитанный на измерение тока до 3 мА (такой предел есть в авометре Ц20), тогда отклонение стрелки на конечное деление шкалы будет соответствовать коэффициенту передачи тока 100. Для миллиамперметров с другими токами отклонения стролки на конечное деление шкалы это значение будет иным. Так, для миллиамперметра со шкалой на 5 мА предельное значение коэффициента передачи тока при указанном выше токе базы будет около 166.

Детали прибора совсем не обязательно располагать в футляре. Их можно быстро соединить друг с другом и проверить партию имеющихся у вас транзисторов. Резистор R2 предназначен для ограничения тока через миллиамперметр, если случайно попадется транзистор с пробитым переходом эмиттер - коллектор.

А как быть, если надо проверить транзисторы другой структуры - п-p-n? Тогда придется поменять местами выводы батареи питания и миллиамперметра.

Еще одна приставка к авометру - испытатель транзисторов (рис. 14), позволяющий измерить два параметра биполярных транзисторов малой мощности: h21э - статический коэффициент передачи тока базы, 1КБО - обратный ток коллектора. Испытываемый транзистор VT подключают выводами к соответствующим зажимам "Э", "Б" и "К". В зависимости от структуры проверяемого транзистора переключатель SA2 устанавливают в положение "p-n-p" или "n-p-n". При этом изменяется полярность подключения источника питания, а также выводов индикатора РА1.

Как и в предыдущей приставке, в качестве индикатора используется авометр Ц20. При измерении коэффициента h21Э (переключатель SA1 в правом по схеме положении) параллельно индикатору подключается через секцию SA1.3 резистор R2, в результате чего стрелка индикатора отклоняется до конечного деления шкалы уже при токе 3 мА. В этом же положении переключателя через секцию SA1.2 к выводу базы испытываемого транзистора подключается резистор R1, обеспечивающий ток базы 10 мкА. При этом шкала индикатора будет соответствовать коэффициенту h21Э=300 (3 мА:0.01 мА=300).

В левом по схеме положении переключателя SA1 база испытываемого транзистора VT соединяется с источником питания, а шунтирующий резистор R2 отключается от индикатора. Это положение соответствует измерению обратного тока коллектора, а шкала индикатора - току 300 мкА.

Все измерения проводят при нажатии кнопочного выключателя SB1.

Резистор R1 типа МЛТ-0,25, подстроечный резистор R2 любого типа. Переключатели - движковые, кнопочный выключатель - с самовозвратом (применима звонковая кнопка).

Зажимы для подключения транзистора -любые, важно лишь, чтобы они обеспечивали надежный контакт с выводами транзистора. Хорошо зарекомендовали себя самодельные зажимы (их можно применить и в других измерителях и пробниках), показанные на рис. 15. Зажим состоит из двух согнутых полосок пружинящей латуни или бронзы. В наружной 1 и внутренней 2 полосках просверлены отверстия под вывод транзистора. Внутренняя полоска необходима для увеличения надежности устройства и пружинящих свойств зажима. Полоски скрепляют друг с другом и прикрепляют к корпусу приставки винтами 3. Для крепления вывода транзистора нужно прижать верхнюю часть полосок до совмещения отверстий, вставить в отверстия вывод транзистора и отпустить полоски. Вывод транзистора будет надежно прижат к полоскам в трех точках.

Возможный вариант конструкции этой приставки показан на рис. 16. Верхняя панель изготовлена из изоляционного материала (гетинакс, текстолит), нижняя (на ней укреплена батарея питания GB1) и боковые стенки - из алюминия или другого листового металла.

Налаживание приставки сводится к установке резистором R2 заданного предела измерения, равного 3 мА. Для этого нужно установить переключатель SA1 в положение "h21Э" и, не подключая транзистор, включить между зажимами "Э" и "К" постоянный резистор сопротивлением 1,5 кОм (подобрать точно). Включив кнопочным выключателем питание, резистором R2 устанавливают стрелку индикатора РА1 на конечное деление шкалы.

Для проверки транзисторов с жесткими короткими выводами (например, серии КТ315) нужно вырезать из фольгированного материала небольшую планку и прорезать в фольге несколько канавок, чтобы получились три дорожки. Ширина дорожек и расстояние между ними должны соответствовать размерам выводов транзистора. К дорожкам подпаивают отрезки многожильного монтажного провода, которые при проверке транзистора подключают к соответствующим зажимам прибора. Выводы транзистора прикладывают к дорожкам и нажимают кнопку SB1 прибора.

Перед монтажом транзисторов средней и большой мощности тоже бывает нужно знать их статический коэффициент передачи тока, а иногда и обратный ток коллектора. Конечно, можно было бы ввести дополнительный переключатель в предыдущие приставки и проверять на них транзисторы повышенной мощности. Но подобная проверка требуется не часто, а дополнительная коммутация усложнила бы конструкции приставок. Поэтому проще изготовить еще одну приставку к авометру - только для проверки транзисторов повышенной мощности. Схема такой приставки показана на рис. 17.

Как и в предыдущих приставках, испытываемый транзистор VT подключают к зажимам "Э", "Б" и "К", а необходимую полярность источника питания и включения индикатора РА1 для транзисторов разной структуры устанавливают переключателем SA1. Коэффициент h21Э измеряют при фиксированном токе базы, равном 1 мА. Этот ток зависит от сопротивления резистора R1. Шкала индикатора (авометр включен на измерение постоянного тока до 300 мА) оказывается рассчитанной на коэффициент h21Э=300.

После подключения транзистора и установки переключателя в нужное положение нажимают кнопку SB 1 и по шкале авометра определяют параметр h21Э. Следует, однако, учитывать, что продолжительность измерения должна быть возможно меньшей, особенно для транзисторов с большим (свыше 100) значением h21Э. При необходимости измерить обратный ток коллектора отключают от приставки вывод эмиттера и нажимают кнопку.

Переключатель - движковый, кнопка и зажимы - любые.

Описанные здесь приставки могут стать основой самостоятельной конструкции измерительного прибора с использованием в нем микроамперметра с током полного отклонения от 100 до 300 мкА. В каждом случае в зависимости от индикатора придется подобрать соответствующие резисторы. Нетрудно также объединить все приставки в единый самостоятельный измерительный прибор.

Высокоомный вольтметр постоянного тока

Авометр Ц20, как известно, предназначен для измерения постоянного напряжения. Однако пользоваться им как вольтметром не всегда бывает возможно. Это, в частности, касается измерений напряжений в высокоомных цепях радиоустройств. Ведь относительное входное сопротивление его вольтметра постоянного тока невелико - около 20 кОм/В, и при измерении напряжения через прибор протекает значительная часть тока измеряемой цепи. Это приводит к шунтированию измерительной цепи и появлению ошибки (иногда значительной) в измерениях. Поэтому одной из первых задач по совершенствованию комбинированного измерительного прибора Ц20 является повышение его относительного входного сопротивления при измерении напряжений.

Схема сравнительно простой приставки, позволяющей решить эту задачу, приведена на рис. 18. Приставка представляет собой измерительный мост постоянного тока, в одну диагональ которого включен источник питания G1, а к другой диагонали подключен индикатор РА1 (авометр Ц20, включенный на предел измерения постоянного тока 0,3 мА). Плечи моста образуют участки эмиттер-коллектор транзисторов VT1 и VT2, резистор R10 с верхней (по схеме) от движка частью переменного резистора R11 и резистор R12 с нижней частью резистора R11. Мост балансируют переменным резистором R11 ("Уст. 0"); подстроечным резистором R8 изменяют напряжение смещения на базах транзисторов и тем самым уравнивают сопротивления участков эмиттер-коллектор.

Измеряемое напряжение подается на базы транзисторов через один из добавочных резисторов R1-R5. При этом на резисторах R6-R9 образуется падение напряжения, а база транзистора VT2 оказывается под более отрицательным напряжением (относительно эмиттера), чем база транзистора VT1. Наступает разбаланс моста, и стрелка индикатора отклоняется. Угол ее отклонения будет тем больше, чем больше измеряемое напряжение на выбранном поддиапазоне. Причем ток через индикатор будет в десятки раз больше (это зависит от статического коэффициента передачи тока транзисторов), чем через входную цепь приставки.

Относительное входное сопротивление вольтметра с такой приставкой может быть около 300 кОм/В, но оно заведомо снижается до 100 кОм/В введением подстроенного резистора R6. Это сделано для того, чтобы упростить подбор транзисторов и, кроме того, использовать добавочные резисторы R1-R5 стандартных номиналов (и не подбирать их). Постоянные резисторы - с мощностью рассеяния не менее 0,25 Вт, причем добавочные резисторы R1-R5 желательно применить с допускаемым отклонением ±5 %. Подстроечные резисторы R6, R8 и переменный резистор R11 - СПО-0,5, СП-1.

Транзисторы желательно подобрать с одинаковым статическим коэффициентом передачи тока, равным 50...80.

Источник питания G1 - элементы 332, 343 или 373 напряжением 1,5 В. Входные гнезда XI-Х6, а также зажимы Х7, Х8 - любые.

Детали приставки можно разместить в любом подходящем готовом или самодельном корпусе (рис. 19). На верхней панели корпуса располагают гнезда, зажимы, выключатель питания и переменный резистор балансировки моста.

Перед налаживанием приставки движки резисторов R8 и R11 следует установить в среднее по схеме положение, а резистора R6 - в верхнее (это нужно для того, чтобы выводы баз транзисторов соединялись накоротко). К зажимам подключают щупы авометра, включенного на предел измерений постоянного тока до 0,3 мА. Затем включают питание приставки и резистором R11 устанавливают стрелку авометра на нулевую отметку, т. е. балансируют мост. Движок резистора R6 устанавливают в нижнее по схеме положение и подстроечным резистором R8 дополнительно балансируют мост. Если при этом окажется, что движок резистора R8 устанавливается близко к одному из крайних положений,придется подобрать резистор R7 или R8. Если, например, движок подстроенного резистора находится близко к верхнему по схеме положению, резистор R7 должен быть меньшего сопротивления или резистор R9 большего. Такая регулировка свидетельствует лишь о том, что используемые транзисторы отличаются по статическому коэффициенту передачи тока.

Следующий этап налаживания - установка нужного относительного входного сопротивления приставки. Для этого между гнездами Х6 и Х2 следует включить источник напряжением 1,5 В (например, элемент 343) и подстроечным резистором R6 установить стрелку индикатора РА1 на конечное деление шкалы. Подавая на другие входные гнезда соответствующие напряжения, проверяют правильность показаний индикатора на других пределах измерения. При обнаружении расхождений подбирают добавочный резистор соответствующего предела измерений.

Данный пробник может использоваться для того, чтобы быстро определить емкость конденсаторов в ПФ, НФ, проверить их стабильность при изменениях температуры, найти обрыв проводов, трассировку проводов на печатных платах, а также для поиска проводов под напряжением не касаясь их. Схема использует всего три транзистора и пару других радиодеталей. Простота позволяет собрать её всего за час.

Схема пробника для электрика

Список компонентов детектора

  • C1 подстроечный конденсатор 30пф
  • C2 1nF
  • D1 1N4148
  • LED1 3 мм
  • Q1 BC559C
  • Q2 BC559C
  • Q3 BC549C
  • R1 1M
  • R2 2M
  • R3 5M
  • R4 2м
  • R5 1M5
  • R6 33k
  • R7 33k
  • R8 270R
  • SG1 пьезоэлектрический динамик

Когда проверяемый конденсатор коснётся датчика, схема подает звуковой сигнал на частоте, которая варьируется в зависимости от емкости. Если пользователь имеет достаточно влажную кожу, просто удерживая один вывод конденсатора при проверке, при касании другого к зонду, это все, что нужно для срабатывания звука.

Когда пробник правильно настроен он потребляет только 10 мкA - то есть выключателя питания требуется. Конструкция оптимизирована для конденсаторов меньше, чем 0,1 мкФ. Большие конденсаторы дают слишком низкие частоты. Все устройство питается от двух литиевых элементов CR2032, которые вписываются в коробочку от TicTac. Использование выключателя питания является ненужным, так как схема почти не потребляет энергии, когда не используются.

Этот пробник электрика станет вашим незаменимым помощником и имеет множество применений, таких как:

  1. Быстро проверить конденсаторы.
  2. Легко обнаружить маленькие отклонения ёмкости ТКЕ, когда конденсатор нагревается или охлаждается.
  3. Кабелеискатель - в различных точках кабеля под напряжением звук меняется во время прослушивания из-за изменения емкости.
  4. Определить работоспособность варакторных диодов. Они пищат на гораздо более низкой тональности, чем обычные.
  5. А если сделать небольшие плоские пластины электрода, то напряженность линий проводки может быть обнаружена за счёт электрического поля. Следуйте по проводке в стенах и потолков и определите их местоположение не касаясь их. Cигнал модулируется напряжением переменного тока, вызывая вибрирующий звук с 100 Гц.

Сам зонд выполнен из проволоки 1 мм. Второй контакт из земли образуется с помощью винта. Конденсатор C1 регулирует ёмкость для установки свечения LED и звучания пьезодинамика.


Делаем машинку для татуировки своими руками. Само понятие наколки было сформулировано еще в 20- x годов 20 века. На сей день люди накаливают на своем теле все что угодно и платят за ниx большие деньги, но не многие знают, что сама татуировка родилась в зонаx еще 100 лет назад. И сегодня мы будем рассматривать устройство которое позволит делать татуировки профессиональным образом.