Программирование роботов. Разработка робототехники

Роботы-конструкторы – идеальная возможность, чтобы совместить игру и обучение простейшим навыкам программирования. Именно поэтому они пользуются столь большой популярностью в мире.

Различаются они не только производителями, но и способами и возможностями программирования, типами крепежей, а также материалами.

Большинство упрощенных (для новичков) и роботов имеют в комплекте специальное программное обеспечение, которое позволяет без труда задать команды своему творению. В более совершенных моделях придется для начала изучить, основанные на С, языки.

LEGO Mindstorms

Конструктор выпускается в двух типах:

  • детский;
  • продвинутый.

В детском вложено всего лишь несколько моторов, лампочек, а также инструкция с возможными вариантами сборки. Но с LEGO часто инструкция оказывается уже не нужна после первой сборки, и в дело вступает фантазия.

Стоит заметить, хоть программирование этих роботов возможно, блоков управления в этом наборе не предусмотрено, это означает, что робот будет всегда соединен с компьютером при помощи кабеля USB.

Продвинутый же набор открывает намного больший простор для фантазии. Он существует в нескольких вариантах и поколениях (на данный момент поколений три). Они отличаются количеством деталей, наличием дополнительных микрокомпьютеров, а также различными датчиками и другими приборами. Микрокомпьютеры этой серии оснащены операционной системой Linux. Эти схемы поддерживают не только специальные языки программирования, но и C++, C и даже Python.

Для удобства перепрограммирования робота можно воспользоваться официальной программой от LEGO, которая позволит настраивать элементы при помощи интуитивно понятного интерфейса.

Лего держит пальму первенства в роботах-конструкторах уже более десяти лет. Устраиваются соревнования по созданию , где главным призом чаще всего оказывается бюджетное место в престижном ВУЗе.

LEGO Mindstorms – один из 17 вариантов сборки

HUNA

Это сравнительно новый бренд, родом из южной Кореи, который постепенно набирает популярность в кругах юных кибернетиков. Типов наборов HUNA существует два. Их принципиальное отличие заключается в том, что, в одном случае детали выполнены из пластика, а в другом – из металла. Но в то же время их можно комбинировать, так как принцип соединения частей у них общий.

Узнать больше об увлекательных металлических конструкторах для мальчиков можно .

Пластиковые наборы HUNA предназначены для детей, возрастом от шести лет, так как не требуют знания даже основ программирования.

В качестве “мозга” железных комплектов выступает контроллер Arduino, на котором уже стоит специальная прошивка. Среда программирования тут – обычный C-образный язык для Arduino, но для большего удобства его визуализировали.

За счет Arduino, а также более продвинутых систем, данные наборы специализируются на аудитории, достигшей пятнадцати лет. То есть, тех, кто уже перерос Mindstorms.

Makeblock

Следующим конструктором в нашем списке является китайский Makeblock. Как и в предыдущем случае, здесь используется электроника Arduino. Количество продаваемых наборов на официальном сайте просто огромное. Вы можете найти как дешевые комплекты обычных машинок, так и достаточно серьёзные наборы, которые позволяют создать своими руками 3D-принтер.

Все детали Makeblock выполнены из алюминия, на который электростатическим методом нанесена краска (примерно, как и на автомобили). Таким образом, вероятность того, что со временем детали будут выглядеть неказисто, стремится к нулю.

Из интересных моделей следует заметить те, которые выполняют рисунки, среди них:

  • mScara – робо-рука, на которую можно вместо маркера поставить лазер;
  • mSpider – он рисует в вертикальных плоскостях, подобно пауку перемещаясь на ниточках;
  • mCar – машинка, которая рисует маркером там, где она ездит.

Также для этих роботов имеется специальное ПО, которое позволяет создать рисунок любой сложности. Для этого достаточно загрузить его в графический редактор программы.

#Структор

Этот конструктор производится в России и отличается от других тем, что его детали выполнены из вспененного ПВХ. Их толщина составляет пять миллиметров, что позволяет создавать небольшие, но достаточно прочные конструкции.

А тот факт, что ПВХ – мягкий материал, позволяет решить вечную проблему конструкторов – детали не такие, как их хочется видеть. В данном случае все решается обычным канцелярским ножом или скальпелем.

Достоинства ПВХ:

  • низкая стоимость;
  • простота обработки – достаточно лишь вооружиться ножом, карандашом и линейкой;
  • высокая прочность;
  • влагоустойчивость;
  • пожаробезопасность – температура возгорания листового ПВХ превышает 400 градусов Цельсия.

Малую прочность конструкции производители предлагают решить двумя способами. Первый – просто склеить детали. Лучше всего для таких целей подойдет специальный клей “Космофен”. Второй способ – объединить #Структор с советским (или аналогичным) железным конструктором.

#Структор от “Амперка”

Хоть детали от такого обращения долго не проживут, вы всегда сможете купить лист пластика и вырезать новые. Чертежи деталей находятся в свободном доступе, да и фантазию никто не исключал.

Управление элементами #Структор производится на Arduino. А благодаря универсальности материала, из которого изготовлены элементы конструктора, любой датчик, сервопривод или мотор легко внедряются в конструкцию.

Vex

Фирма известна в основном благодаря своим вибророботам. Но немногие в курсе, что она также производит наборы по созданию полноценных роботов. Наборы предназначены для детей от десяти лет. Но благодаря широкому ассортименту продукции их также можно использовать в школах или университетах.

Если какого-то элемента будет недоставать, всегда можно приобрести его отдельно. На сайте производителя имеется масса различных датчиков, моторов и других элементов конструктора. Кроме того, покупая дополнительные детали, можно повысить сложность изделий.

Только в наборах корейской компании Vex встречаются коробки передач или колеса Илона.

Программирование происходит на одной из нескольких сред. Всего среды три. Первая представляет собой экран, где вместо прописывания команд просто перетаскиваются блоки. Вторая же – классические блок-схемы, как на уроках информатики. Третья среда очень похожа на ПО от LEGO – то же перетаскивание блоков с командами и значениями.

Примечательной особенностью является также наличие ПО VEX Assembler. Это 3D редактор, в котором вы можете придумать и испытать своего робота до того, как начнете его строить вживую.

VEX Robotics by HEXBUG

FischerTechnik

Комплекты конструкторов производит немецкая компания. Линейка ROBOTICS, которая и открывает для детей мир роботов, насчитывает шесть наборов. Все они предлагают создать несколько роботов, которые выполняют те или иные функции. Как и со всеми конструкторами, веселье начинается в тот момент, когда все инструкции уже перепробованы.

Чтобы не было недостатка в деталях и электронных компонентах отдельно можно приобрести наборы расширения, дистанционное управление и многое другое.

Отдельного внимания заслуживают контроллеры, продающиеся отдельно. Хоть их стоимость сопоставима со стоимостью целого набора, границы, которые они открывают, с легкостью перекрывают этот факт.

В продаже имеется два типа контроллеров:

  • Robo TX;
  • Robo TXT.

Высокая цена за них обусловлена тем, что это не просто контроллеры, а настоящие микрокомпьютеры с поддержкой Wi-Fi, Bluetooth и довольно мощной “начинкой” для своих малых размеров. Для повышения производительности эти контроллеры могут быть совмещены в одну сеть.

Программирование происходит на бесплатной программе Robo Pro. Все команды задаются при помощи логических блоков, что позволяет обучить ребенка азам программирования в игровой форме.

ТРИК

Конструктор родом “рожденный” в России. Его производители решили помочь любителям робототехники, которые используют советские металлические конструкторы. Поэтому все детали имеют отверстия с теми же десятью миллиметрами, что и железные конструкторы.
Этот конструктор на рынке новичок, но уже зарекомендовал себя как универсальный и очень удобный.

На данный момент имеется четыре типа наборов:

  • стартовый;
  • образовательный;
  • школьный;
  • соревновательный.

Их различие в количестве деталей и электроники. Во всех наборах вы найдете микроконтроллер, микрофон и видеокамеру или датчики, светодиоды и колеса.

Микроконтроллер ТРИК работает на Linux и имеет на борту процессор с 24 мегагерцами и целые 256 Мбайт оперативной памяти. Также ее можно расширить за счет Flash-карты.

Набор для сборки ТРИКС

Создатели данного конструктора решили не привязывать контроллер к одной среде программирования. Поэтому он поддерживает C, C++, Python и даже Java. Для тех, кто только изучает программирование, имеется специальная среда программирования, предназначенная для контроллера ТРИК.

Так как контроллер поддерживает множество команд, для удобства управления имеется приложение для смартфонов под управлением Android. Команды передаются при помощи Wi-Fi.

MOSS


Американская компания, придумавшая MOSS, пошла нестандартным путем – она отказалась от проводов.
Вместо них используются детали кубической формы, которые имеют цветные грани. Их назначение следующее:

  1. Зеленые – передача электричества от аккумулятора.
  2. Красные – вход данных.
  3. Коричневые грани – выход данных.
  4. Голубые – эти грани передают и электричество и данные. Они нужны для того, чтобы соединять детали при помощи гибкого элемента.

Да, конструкция довольно сложна, но если в ней разобраться, фантазию в создании роботов будет уже не остановить. А понять в чем суть в ней, может и ребенок 8 лет, на которого конструктор и рассчитан. Модули соединяются межу собой при помощи металлических шаров, крепящихся на магниты. Магниты эти расположены на углах модулей.

Robo Wunderkind от MOSS

Программирование микроконтроллеров можно совершать на двух программах. Первая представляет собой визуализатор с дополнительными параметрами. Она подойдет для тех, кто не очень хорошо разбирается в C-коде.

Вторая же программа направлена на тех, кто хорошо в нем разбирается. Она компилирует ваш код и переносит его в контроллер. Обе эти программы работают на Windows и Mac OS, но не поддерживаются Linux.

Для удаленного правления роботом MOSS существует сразу несколько программ для мобильных устройств. Это и пульты управления, экспорт данных с датчиков, рисование графиков и многое другое. Все программы доступны для iOS, а некоторые и для Android.

Для детей дошкольного возраста можно выбрать набор для сборки без электротехнической составляющей, например, .

Стоит заметить, что в обзоре не учитывались конструкторы, стоимостью свыше ста тысяч рублей, а также те, которые требуют какой-либо пайки.

Робот MECCANO, управляемый с помощью смартфона или планшета

Видео

Данное видео подробно расскажет Вам о программируемых роботах: какие они бывают и какой лучше выбрать.

Чтобы выбрать конструктор, нужно определиться, для кого он:

  • LEGO Mindstorms лучше всего подойдет ребенку, который увлекается роботами. А так как у большинства детей есть обширная коллекция LEGO, фантазия ребенка будет поистине безграничной.
  • Если вы разыскиваете конструктор для себя, то стоит обратить внимание на ТРИК или #Структор, так как они оба совместимы с советским железным конструктором, а второй к тому же, еще, и выполнен из ПВХ.
  • Но, так или иначе, эти конструкторы очень сильно улучшат способности вашего ребенка к логическому мышлению, а также подготовят его к тому, что будет ждать его в школе или институте.

Не лишним будет, перед покупкой , подробно изучить каждый понравившийся набор для сборки. А также подумать над тем, чтобы отдать ребенка в клуб радиолюбителей, если данная тематика ему нравится.

Работающий на стыке кибернетики, психологии и бихевиоризма (науки о поведении), и инженер, составляющий алгоритмы для промышленных роботизированных комплексов, среди основных инструментов которого - высшая математика и мехатроника, работают в самой перспективной отрасли ближайших лет - робототехнике. Роботы, несмотря на сравнительную новизну термина, издавна знакомы человечеству. Вот лишь несколько фактов из истории развития умных механизмов.

Железные люди Анри Дро

Еще в мифах Древней Греции упоминались механические рабы, созданные Гефестом для выполнения тяжелых и однообразных работ. А первым изобретателем и разработчиком человекоподобного робота стал легендарный Леонардо да Винчи. До наших дней сохранились подробнейшие чертежи итальянского гения, описывающие механического рыцаря, способного имитировать человеческие движения руками, ногами, головой.

Созданию первых автоматических механизмов с программным управлением положили начало в конце XVΙΙΙ века европейские часовые мастера. Наиболее преуспели на этом поприще швейцарские специалисты отец и сын Пьер-Жак и Анри Дро. Ими создана целая серия ("пишущий мальчик", "рисовальщик", "музыкантша") в основе управления которыми лежали часовые механизмы. Именно в честь Анри Дро в дальнейшем все программируемые человекоподобные автоматы стали называть "андроидами".

У истоков программирования

Основы программирования промышленных роботов были заложены на заре XIX века во Франции. Здесь же и были разработаны первые программы для автоматических текстильных станков (прядильных и ткацких). Стремительно растущая армия Наполеона остро нуждалась в обмундировании и, следовательно, тканях. Изобретатель из Лиона Жозеф Жаккар предложил способ быстрой перенастройки ткацкого станка для производства различных видов продукции. Нередко эта процедура требовала огромного количества времени, колоссальных усилий и внимания целого коллектива. Суть нововведения сводилась к использованию картонных карточек с перфорированными отверстиями. Иглы, попадая в просеченные места, необходимым образом смещали нити. Смена карт быстро проводилась оператором станка: новая перфокарта - новая программа - новый тип ткани или узора. Французская разработка стала прообразом современных автоматизированных комплексов, роботов с возможностью программирования.

Идею, предложенную Жаккаром, с восторгом использовали в своих автоматических устройствах многие изобретатели:

  • Начальник статистического управления С. Н. Корсаков (Россия, 1832 г.) - в механизме для сравнивания и анализа идей.
  • Математик Чарльз Бэббидж (Англия, 1834 г.) - в аналитической машине для решения широкого круга математических задач.
  • Инженер (США, 1890 г.) - в устройстве для хранения и обработки статистических данных (табуляторе). Для заметки: в 1911 году компания. Холлерита получила название IBM (International Business Machines).

Перфокарты были основными носителями информации вплоть до 60-х годов прошлого века.

Своим названием интеллектуальные машины обязаны чешскому драматургу В пьесе "R.U.R.", увидевшей свет в 1920 году, писатель назвал роботом искусственного человека, созданного для тяжелых и опасных участков производства (robota (чешск.) - каторга). А что отличает робота от механизмов и автоматических устройств? В отличие от последних, робот не только выполняет определенные действия, слепо следуя заложенному алгоритму, но и способен более тесно взаимодействовать с окружающей средой и человеком (оператором), адаптировать свои функции при изменении внешних сигналов и условий.

Принято считать, что первый действующий робот был сконструирован и реализован в 1928 году американским инженером Р. Уэнсли. Человекоподобный "железный интеллектуал" получил имя Герберт Телевокс. На лавры пионеров претендуют также ученый-биолог Макото Нисимура (Япония, 1929 г.) и английский военнослужащий Уильям Ричардс (1928 г.). Созданные изобретателями антропоморфные механизмы имели схожий функционал: способны были двигать конечностями и головой, выполнять голосовые и звуковые команды, отвечать на простые вопросы. Основным предназначением устройств была демонстрация научно-технических достижений. Очередной виток в развитии технологий позволил в скором времени создать и первых индустриальных роботов.

Поколение за поколением

Разработка робототехники представляет собой непрерывный, поступательный процесс. К настоящему моменту сформировались три ярко выраженных поколения "умных" машин. Каждое характеризуется определенными показателями и сферами применения.

Первое поколение роботов создавалось для узкого вида деятельности. Машины способны выполнять только определенную запрограммированную последовательность операций. Устройства управления роботами, схемотехника и программирование практически исключают автономное функционирование и требуют создания специального технологического пространства с необходимым дополнительным оборудованием и информационно-измерительными системами.

Машины второго поколения называют очувствленными, или адаптивными. Программирование роботов осуществляется с учетом большого набора внешних и внутренних сенсоров. На основе анализа информации, поступающей с датчиков, вырабатываются необходимые управляющие воздействия.

И наконец, третье поколение - интеллектуальные роботы, которые способны:

  • Обобщать и анализировать информацию,
  • Совершенствоваться и самообучаться, накапливать навыки и знания,
  • Распознавать образы и изменения ситуации, и в соответствии с этим выстраивать работу своей исполнительной системы.

В основе искусственного интеллекта лежит алгоритмическое и программное обеспечение.

Общая классификация

На любой представительной современной выставке роботов многообразие "умных" машин способно поразить не только простых обывателей, но и специалистов. А какие бывают роботы? Наиболее общую и содержательную классификацию предложил советский ученый А. Е. Кобринский.

По назначению и выполняемым функциям роботов подразделяют на производственно-промышленные и исследовательские. Первые, в соответствии с характером выполняемых работ, могут быть технологическими, подъемно-транспортными, универсальными или специализированными. Исследовательские предназначены для изучения областей и сфер, опасных или недоступных для человека (космическое пространство, земные недра и вулканы, глубоководные слои мирового океана).

По типу управления можно выделить биотехнические (копирующие, командные, киборги, интерактивные и автоматические), по принципу - жестко программируемые, адаптивные и гибко программируемые. Бурное развитие современной предоставляет разработчикам практически безграничные возможности при проектировании интеллектуальных машин. Но отличное схемное и конструктивное решение будет служить лишь дорогостоящей оболочкой без соответствующего программного и алгоритмического обеспечения.

Чтобы кремний микропроцессора смог взять на себя функции мозга робота, необходимо "залить" в кристалл соответствующую программу. Обычный человеческий язык не способен обеспечить четкую формализацию задач, точность и надежность их логической оценки. Поэтому требуемая информация представляется в определенном виде с помощью языков программирования роботов.

В соответствии с решаемыми задачами управления выделяют четыре уровня такого специально созданного языка:

  • Низший уровень используется для управления исполнительными приводами в виде точных значений линейного или углового перемещения отдельных звеньев интеллектуальной системы,
  • Уровень манипулятора позволяет осуществлять общее управление всей системой, позиционируя рабочий орган робота в координатном пространстве,
  • Уровень операций служит для формирования рабочей программы, путем указания последовательности необходимых действий для достижения конкретного результата.
  • На высшем уровне - заданий - программа без детализации указывает что надо сделать.

Робототехники стремятся свести программирование роботов к общению с ними на языках высшего уровня. В идеале оператор ставит задачу: "Произвести сборку двигателя внутреннего сгорания автомобиля" и ожидает от робота полного выполнения задания.

Языковые нюансы

В современной робототехнике программирование роботов развивается по двум векторам: роботоориентированное и проблемно ориентированное программирование.

Наиболее распространенные роботоориентированные языки - AML и AL. Первый разработан фирмой IBM только для управления интеллектуальными механизмами собственного производства. Второй - продукт специалистов Стэндфордского университета (США) - активно развивается и оказывает существенное влияние на формирование новых языков этого класса. Профессионал легко разглядит в языке характерные черты Паскаля и Алгола. Все языки, ориентированные на роботов, описывают алгоритм, как последовательность действий "умного" механизма. В связи с этим программа зачастую выходит очень громоздкой и неудобной в практической реализации.

При программировании роботов на проблемно ориентированных языках, в программе указывается последовательность не действий, а целей или промежуточных позиций объекта. Наиболее популярным в этом сегменте является язык AUTOPASS (IBM), в котором состояние рабочей среды представлено в виде графов (вершины - объекты, дуги - связи).

Обучение роботов

Любой современный робот представляет собой обучаемую и адаптивную систему. Вся необходимая информация, включающая знания и умения, передается ей в процессе обучения. Это осуществляется, как непосредственным занесением в память процессора соответствующих данных (детальное программирование - семплинг), так и с использованием сенсоров робота (методом наглядной демонстрации) - все движения и перемещения механизмов робота заносятся в память и затем воспроизводятся в рабочем цикле. Обучаясь, система перестраивает свои параметры и структуру, формирует информационную модель внешнего мира. Это и есть основное отличие роботов от автоматизированных линий, промышленных автоматов с жесткой структурой и других традиционных средств автоматизации. Перечисленные методы обучения обладают существенными недостатками. Например, при семплинге перенастройка требует определенного времени и труда квалифицированного специалиста.

Весьма перспективной выглядит программа для программирования роботов, представленная разработчиками Лаборатории информационных технологий при Массачусетском технологическом институте (CSAIL MIT) на международной конференции промышленной автоматизации и робототехники ICRA-2017 (Сингапур). Созданная ими платформа C-LEARN обладает достоинствами обоих методов. Она предоставляет роботу библиотеку элементарных движений с заданными ограничениями (например, усилие хвата для манипулятора в соответствии с формой и жесткостью детали). В то же время, оператор демонстрирует роботу ключевые движения в трехмерном интерфейсе. Система, исходя из поставленной задачи, формирует последовательность операций для выполнения рабочего цикла. C-LEARN позволяет переписать существующую программу для робота другой конструкции. Оператору при этом не требуются углубленные знания в области программирования.

Робототехника и искусственный интеллект

Специалисты Оксфордского университета предупреждают, что в ближайшие два десятилетия машинные технологии заменят более половины сегодняшних рабочих мест. Действительно, роботы давно уже трудятся не только на опасных и трудных участках. Например, программирование значительно потеснило брокеров-людей на мировых биржах. Несколько слов об искусственном интеллекте.

В представлении обывателя это антропоморфный робот, способный заменить человека во многих сферах жизни. Отчасти так и есть, но в большей степени искусственный интеллект - это самостоятельная отрасль науки и технологии, с помощью компьютерных программ, моделирующая мышление "Homo sapiens", работу его мозга. На сегодняшнем этапе развития ИИ больше помогает людям, развлекает их. Но, по прогнозам экспертов, дальнейший прогресс в области робототехники и искусственного интеллекта может поставить перед человечеством целый ряд морально-этических и юридических вопросов.

В этом году на выставке роботов в Женеве самый совершенный андроид София заявила, что учится быть человеком. В октябре София впервые в истории искусственного интеллекта была признана гражданкой Саудовской Аравии с полноценными правами. Первая ласточка?

Основные тенденции робототехники

В 2017 году специалисты цифровой индустрии отметили несколько выдающихся решений в области технологий виртуальной реальности. Не осталась в стороне и робототехника. Очень перспективным выглядит направление совершенствующее управление сложным робомеханизмом через виртуальный шлем (VR). Эксперты пророчат востребованность такой технологии в бизнесе и промышленности. Вероятные сценарии использования:

  • Управление беспилотной техникой (складскими погрузчиками и манипуляторами, дронами, трейлерами),
  • Проведение медицинских исследований и хирургических операций,
  • Освоение труднодоступных объектов и областей (дно океана, полярные области). Кроме того, программирование роботов позволяет им осуществлять и автономную работу.

Еще один популярный тренд - connected car. Совсем недавно представители гиганта Apple заявили о старте разработок собственного "беспилотника". Все больше фирм выражают свою заинтересованность в создании машин, способных самостоятельно перемещаться по пересеченным трассам, сохраняя грузы и оборудование.

Возрастающая сложность алгоритмов программирования роботов и машинного обучения предъявляет повышенные требования к вычислительным ресурсам и, следовательно, к "железу". По-видимому, оптимальным выходом в этом случае будет подключение устройств к облачной инфраструктуре.

Важное направление - когнитивная робототехника. Стремительный рост количества "умных" машин заставляет разработчиков все чаще задумываться о том, как научить роботов слаженно взаимодействовать.

Конструкторы LEGO знакомы каждому. За несколько десятилетий наборы разноцветных пластмассовых деталек стали поистине культовыми: дети с удовольствием собирают из них замки, машины и космические корабли, а взрослые – целые настоящие города.

Сегодня LEGO не только развивает мелкую моторику и фантазию. Новый набор LEGO Boost предлагает в буквальном смысле оживить собранный конструктор , используя смартфон или планшет.

То есть, собранный киберкот действительно будет мурчать, робот разговаривать и ездить а гитара выдавать бешеные «соляги».

Как это выглядит? Я собрал своего робота и сейчас всё расскажу.

Что такое LEGO Boost

Lego Boost – это развивающий конструктор, состоящий из 847 деталей. из них можно собрать на выбор одну из 5-ти моделей:

1. Робот Верни
2. Кот Фрэнки
3. Гитара 4000
4. Фабрика роботов
5. Вездеход (M.T.R.4)

Основными элементами каждой модели являются 3 детали: это основной механический блок, датчик определения цветов и расстояния и интерактивный двигатель.

Основной механический блок является «сердцем» LEGO Boost, который приводит собранный конструктор в движение. Именно к нему можно подключить свой iPhone или iPad, чтобы запрограммировать собранную модель на выполнение разных команд и даже общение с владельцем.

К механическому блоку подключаются два других: датчик цвета и расстояния реагирует на внешние раздражители, помогая игрушке объезжать препятствия или следовать своему сценарию поведения при виде определённого цвета, а интерактивный двигатель оживляет конструктор, вращая гусеницы или колёса (смотря что соберёте).

Для программирования конструктора понадобится приложение LEGO Boost Creative Toolbox [скачать в App Store ]. Скачать его придётся в обязательном порядке, потому что в коробке с конструктором нет бумажных инструкций – все этапы сборки каждой из 5-ти моделей наглядно показываются в приложении.

Про каждую модель можно написать отдельный обзор, но я расскажу кратко о возможностях каждого робота LEGO Boost:

1. Робот Верни. Отличный собеседник и друг

Робот Верни может ездить и крутиться вокруг своей оси, разговаривать, различать цвета и объезжать препятствия. К роботу можно собрать пушку и стрелять по мишени.

С помощью дополнительных аксессуаров робота можно превратить в танцора, диджея, полицейского или хоккеиста. Чтобы разобраться и попробовать все возможности Верни уйдет не один час.

Верни умеет выражать эмоции с помощью подвижных бровей: удивление, злость и радость. Это просто нужно видеть, чтобы оценить как удивительно точно игрушке удаётся радоваться или грустить при помощи всего лишь нескольких двигающихся деталек.

Вот короткое видео, в котором робот Верни ведет себя неприлично:

Робот не умеет сам двигать руками, однако он может сжать в «пальцах» мелкие предметы и отвезти их из одной точки в другую.

Нет, пиццу не принесет. Может быть, это в следующем поколении LEGO Boost пофиксят:)

2. Киберкот Френки. Идеальный питомец без шерсти и неприятных запахов

Киберкот по имени Френки не умеет передвигаться сам, зато может вставать на задние лапы, двигать ушами и вилять хвостом. Френки можно погладить, и он отзовётся довольным мурлыканием, а можно заставить его сыграть на губной гармошке, причём мелодия зависит от цвета, который нужно показать киберкоту.

У Френки тоже есть мимика, правда брови ему нужно двигать руками. Интерактивные элементы заняты в вышеописанных процессах виляния хвостом и вставанием на задние лапы.

Да, мы всё ещё говорим про конструктор LEGO.

3. Гитара 4000. Играет как настоящая

Гитара 4000 является почти настоящим музыкальным инструментом, с помощью которого можно играть музыку. Аккорды зажимать не нужно, вместо этого предлагается передвигать «слайдер» по грифу гитары. Датчик движения отслеживает положение «слайдера» и даёт команды на воспроизведение разных звуков.

Вторая рука тоже нужна, чтобы имитировать удары по невидимым струнам с помощью специального рычажка. Есть даже специальный контроллер для получения звука «тремоло» во время сольных запилов.

Кстати, эта модель может проигрывать не только гитарные звуки, но и любые другие. Так что почему бы не использовать её в качестве сэмпл-машины, чтобы почувствовать себя настоящим диджеем?

4. Фабрика роботов. Для создания своей армии Терминаторов

Это самая сложная модель из всех пяти, но и самая крутая. После сборки фабрика может сама собирать небольших роботов из кубиков LEGO.

Натурально, весь процесс автоматический. Выглядит завораживающе, но лучше всего это может передать видео.

Краткий гайд по созданию армии роботов:

Я жалею, что сначала собрал робота Верни. Надо было собирать вот эту фабрику, чтобы завалить видеороликами, какой LEGO Boost крутой конструктор, весь инстаграм.

5. Вездеход (M.T.R.4). Проедет по любому ковру

Тяжёлая машина на гусеничном ходу с большими колёсами с лёгкостью проедет по заданному маршруту, объезжая препятствия. На вездеход можно собрать дополнительные аксессуары: пушку, ковш, катапульту и даже строительные конусы, которые игрушка будет аккуратно объезжать.

Датчик расстояния здесь выполняет роль обнаружителя предметов: если вездеход с ковшом подъедет к небольшому «грузу», то датчик даст команду игрушке поднять ковш и положить предмет в кузов.

Лучше всего один раз увидеть, как это происходит:

По схожему принципу работают и другие аксессуары вместе с датчиком движения. Если нет доверия датчикам, можно перейти в режим ручного управления: на экране iPhone или iPad появятся виртуальные джойстики, с помощью которых можно управлять движением вездехода и работой ковша, катапульты или пушки.

Как программировать конструктор?

Приложение LEGO Boost напоминает игру, где каждый уровень помогает освоить новые навыки взаимодействия с конструктором. В самом начале можно увидеть всех роботов и выбрать того, кого хочется собрать.

Для программирования готового робота не нужно уметь даже читать и писать: все команды выглядят как разноцветные блоки, которые нужно просто перетащить на временную шкалу в желаемом порядке.

Все блоки команд разделены по типам и цвету. В некоторых случаях можно самому задать время выполнения той или иной команды, а некоторые блоки выполняют случайные действия, что делает робота более «живым» и самостоятельным.

Конструктор LEGO Boost способен воспринимать и интерактивные команды: можно помахать перед роботом рукой, произнести кодовое слово или прикоснуться, чтобы начал выполняться заранее заданный алгоритм. При составлении алгоритмов действий доступны целые циклы, что уже приближает управление игрушкой к настоящему программированию.

Сложно собрать своего робота?

Для взрослого человека сборка любой модели LEGO Boost займёт 2-3 часа. Для ребенка же весь процесс растянется на несколько дней, особенно если чаду еще нет 10-ти лет.

В данной статье даётся краткий обзор существующих в настоящее время конструкторов для сборки программируемых роботов, их особенностей и отличий.

LEGO Education WeDo

Начнём, пожалуй, с самого известного датского бренда LEGO. Компания производит два типа конструкторов с возможностью программировать для образовательных целей для разных возрастов. Для детей возраста от 7 летLEGOвыпускает сериюLEGO Education WeDo. Здесь вы можете купить стартовый набор «ПервоРобот» и ресурсный набор, если деталей вам не хватило. Также дополнительно можно приобрести датчики движения и наклона, мультиплексоры, моторы и лампочки. Отдельно можно приобрести комплект учебных проектов на компакт диске.

Программное обеспечение LEGO Education WeDo для программирования роботов этой линейки с комплектом заданий приобретается отдельно. Программирование здесь визуальное. Вы просто соединяете друг с другом нужные блоки-действия и таким образом составляете программу.


Конечно, все изделия, созданные с помощью этого конструктора, сложно назвать роботами, скорее простыми механизмами, но, поверьте, детям в возрасте 7–8 лет сложнее и не нужно. Обратите внимание: чтобы собранный механизм функционировал, он должен быть подключён к компьютеру через USB-кабель.

LEGO Education WeDo 2.0

Это вторая версия конструктора LEGO Education WeDo, которая была впервые представлена на выставке CES-2016. Конструктор адаптирован для детей в возрасте от 7 лет. Данная версия конструктора (в отличие от первой) позволяет собирать автономных роботов. Готовый робот работает на двух батарейках AAA, а взаимодействие с ПК происходит по Bluetooth.


Из него можно собрать следующие модели: «Майло (научный вездеход)», «Тягач», «Гоночная машина», «Землетрясение», «Лягушка», «Цветок», «Шлюз», «Вертолёт» и «Мусоровоз».

В комплект набора входят: СмартХаб, средний мотор, датчик движения, датчик наклона и 280 разнообразных деталей. Если вам не хватает каких-либо электронных компонентов, вы можете докупить их отдельно. Дополнительно можно приобрести аккумулятор, который обеспечит более продолжительное время работы. Ещё учтите, что адаптер для зарядки аккумулятора продаётся отдельно (адаптер используется такой же, как и для конструкторов LEGO MINDSTORMS Education EV3 и NXT, см. ниже).

Также вы можете приобрести комплект учебных материалов, с помощью которого можно реализовать 17 проектов по физике, биологии, географии, исследованию космоса и инженерному проектированию, работа над которыми в сумме займёт более 40 академических часов. Микрокомпьютера здесь как такового нет. Вместо него здесь есть СмартХаб, который играет роль связующего звена между ПК/планшетом и электроникой робота. Т. е. все написанные вами программы будут работать на ПК или планшете. У СмартХаба здесь два порта для подключения датчиков и моторов, один индикатор и всего одна кнопка – кнопка питания. Электроника и ПО первой и второй версий конструктора несовместимы.

Из плюсов можно также отметить, что к одному ПК или планшету можно подключить до трёх СмартХабов одновременно. Это позволит воспользоваться сразу шестью портами, т. е. вы сможете собрать довольно сложное устройство, у которого может быть шесть моторов или шесть датчиков.

В стартовый набор уже включено бесплатное базовое ПО, в состав которого входят стартовые проекты. Русский язык поддерживается. ПО работает на Windows (7, 8.1 и RT), MacOS, iPad, Android-планшетах и взаимодействует с микрокомпьютером через Bluetooth 4.0. Программирование визуальное, аналогичное первой версии конструктора. Скачать ПО можно . Кроме того, есть возможность программировать с помощью Scratch 2. А для особо желающих есть SDK с открытым исходным кодом, позволяющий взаимодействовать со СмартХабом через Bluetooth.

LEGO Mindstorms Education EV3

Этот конструктор роботов подходит для детей от 10 лет, хотя и взрослые используют его достаточно активно. Начинающим можно купить стартовый образовательный набор из которого можно собрать балансирующего робота, щенка, ступенехода, сортировщика деталей по цветам и многое другое, что вам подскажет фантазия.

В стартовый набор входят: 541 деталь LEGO Technic и два лотка для их хранения, микрокомпьютер EV3 с поддержкой Wi-Fi и Bluetooth, аккумулятор, три сервомотора (2 больших и один средний), ультразвуковой датчик, датчик цвета, гироскопический датчик и два датчика касания. В набор не входят программное обеспечение LEGO Mindstorms EV3 и зарядка для аккумулятора.

Отдельно хочу заметить, что EV3 – это уже третья версия конструктора. Предыдущие версии назывались NXT (вторая) и RCX (первая).

Внутри микрокомпьютера EV3 прячется процессор ARM 9 с операционной системой Linux. Здесь есть 4 входных порта и 4 выходных. В вашем распоряжении 16 Мб флеш-памяти и 64 Мб RAM. Для расширения памяти есть слот для карт Mini SDHC объёмом до 32 Гб. На блоке имеется шестикнопочный интерфейс с подсветкой тремя цветами и чёрно-белый дисплей разрешением 178x128. Здесь же находится динамик. Для взаимодействия с роботом микрокомпьютер поддерживает Wi-Fi (встроенного Wi-Fi нет, рекомендуется использовать адаптер NETGEAR Wi-Fi dongle WNA1100 Wireless-N150) и Bluetooth (Bluetooth встроенный). Питание осуществляется от шести пальчиковых батареек AA или от литиевого аккумулятора ёмкостью 2050 мАч. От аккумулятора робот проработает дольше, чем от батареек. Заряжается аккумулятор 3–4 часа.

При желании вы можете купить дополнительный ресурсный набор, в комплект которого входят 853 дополнительные детали LEGO Technic . С таким набором вы сможете собрать робота-слона, танкобота, фабрику игрушек и многое другое.

Существует также дополнительный образовательный набор «Космические проекты» . Чтобы его использовать, вам понадобятся стартовый и ресурсный наборы, о которых написано выше. К этому набору дополнительно можно приобрести комплект заданий, в который входят тематические и обучающие миссии, а также исследовательские проекты.

Кроме перечисленных здесь комплектов, вы можете найти в продаже домашнюю версию набора LEGO Mindstorms EV3 . Из него можно собрать 5 базовых роботов и 12 бонусных моделей. В отличие от стартового образовательного набора LEGO Mindstorms Education EV3, данный набор содержит немного другой комплект деталей и датчиков. Здесь есть пульт управления, а вместо ультразвукового датчика – инфракрасный (который, кроме изменения расстояний, принимает сигнал от пульта) и отсутствует гироскоп.

Будьте внимательны: в наборе отсутствует аккумулятор, и вам придётся использовать 6 пальчиковых батареек (AA) или покупать аккумулятор отдельно, а он недешёвый. Кстати, для пульта тоже понадобятся 2 мизинчиковые батарейки (AAA).


В продаже есть поля для соревнований роботов. Также вы всегда можете отдельно докупить микрокомпьютеры, аккумуляторы, ИК-датчик, ИК-маяк, ультразвуковой и гироскопический датчики, датчики цвета, касания, температуры и звука и сервомоторы. Кстати, датчики от старой версии конструктора NXT тоже подходят.

Каждый микрокомпьютер EV3 имеет четыре входных порта для датчиков и четыре выходных порта для сервомоторов, лампочек и пр. Если вам этого не хватает, вы можете соединить вместе («в гирлянду») до 4 микрокомпьютеров с помощью дополнительных USB-кабелей. В этом случае управление ложится на плечи главного микрокомпьютера, и вы получаете до 16 входных портов и до 16 выходных.

Роботы этой серии программируются с помощью программного обеспечения LEGO Mindstorms EV3 . Для домашнего набора ПО скачивается бесплатно . Для образовательных наборов ПО стало бесплатным с 1 января 2016 года. Программирование здесь визуальное блочное, основанное на графическом языке программирования LabVIEW, который позволяет создавать как простые, так и сверхсложные программы. Можно создавать свои блоки с помощью инструмента MyBlocks. Максимальный размер программы – 16 блоков, не считая блока начала программы и цикла. Работает ПО на Microsoft Windows или Apple Macintosh. Русский язык поддерживается.

Образовательная версия ПО LEGO Mindstorms EV3 , кроме программирования, позволяет собирать статистические данные с датчиков и записывать их в память микрокомпьютера или в реальном времени передавать их через USB-кабель, Wi-Fi или Bluetooth. Собранные данные можно анализировать, строить по ним графики. В помощь ученикам и преподавателям Здесь есть мультимедийные уроки.

Если вас интересует альтернативная среда программирования, то, кроме LEGO Mindstorms EV3, вы можете программировать с помощью сред разработки LabVIEW (требуется дополнительный модуль LabVIEW LEGO MINDSTORMS) и RobotC (язык программирования C, RobotC версии 4x поддерживает серии EV3 и NXT). Обе среды программирования платные. В RobotC вы даже сможете тестировать робота с вашей программой в виртуальном мире (см. рис. ниже). Виртуальные миры можно скачать .


Совсем продвинутые изобретатели могут приобрести датчики сторонних компаний, таких как HiTechnic и Vernier . Например, вы можете дополнительно приобрести инфракрасный датчик для обнаружения людей и животных, компас, барометр, датчик силы, датчик обнаружения объектов на небольшом расстоянии, датчик угла (измеряет углы и скорость поворота) и другие. Компания HiTechnic предлагает датчики, непосредственно адаптированные для EV3 и NXT, и к каждому датчику можно скачать программные блоки для ПО LEGO Mindstorms EV3. Компания Vernier предлагает приобрести адаптер , позволяющий использовать их датчики в конструкторе, и дополнительно даёт скачать программный блок для ПО LEGO Mindstorms EV3.

TETRIX


MATRIX


Robotis OLLO

Корейская компания Robotis, основанная в 1999 году, предлагает конструктор OLLO для самостоятельной сборки роботов. Он продаётся в виде наборов, рассчитанных на разный возраст. Из набора Figure (7+) можно создавать фигурки животных, но здесь нет ни моторов, ни датчиков, ни контроллеров. Из наборов Action (8+ ) и Starter (8+) уже можно создавать подвижные непрограммируемые модели. Здесь есть моторчик, но нет ни датчиков, ни контроллеров. А вот наборы Explorer (10+), Inventor (10+) и Bug (10+) уже позволят конструировать и программировать роботов. Для набора Explorer есть расширяющий набор Inventor Expansion Set , который превращает набор Explorer в Inventor.

Из набора Explorer вы сможете сделать 12 моделей, а из набора Inventor – 24 модели по инструкции, но ничто не помешает вам сконструировать свои собственные модели роботов. Максимальный набор Inventor содержит контроллер, два двигателя, два сервомотора, два ИК-датчика, ИК-приёмопередатчик, тактильные датчики, светодиодный модуль. В контроллере есть четыре порта для подключения приводов, два многофункциональных порта для подключения датчиков, приводов и порт для дистанционного управления и загрузки программ.
Из набора Bug вы сможете собрать 4 робота-жука, которыми можно управлять с помощью контроллера, они смогут ходить по линии (карточки для создания маршрута в комплекте) и обнаруживать объекты. Здесь в комплекте нет адаптера USB Downloader LN-101 для подключения к компьютеру, а он нужен, если вы собираетесь программировать.


Программируются роботы Robotis OLLO , как и все другие роботы компании, с помощью фирменного программного обеспечения RoboPlus . Для программирования используется C-подобный язык. В состав ПО входят RoboPlus Task, RoboPlus Manager (настройка оборудования), RoboPlus Motion (программирование сложных движений робота), RoboPlus Terminal (терминал) и Dynamixel Wizard (настройка и калибровка сервоприводов).


После написания вашей программы её нужно загрузить в контроллер, соединив его с компьютером, и после включения робота ваша программа начнёт выполняться. Скачать программу можно , прочитать инструкцию . Продвинутые программисты могут написать свою собственную прошивку для роботов Robotis OLLO на Embedded C.


Для роботов компании Robotis можно также писать программы прямо на смартфоне или планшете под управлением Android 2.3 и выше с помощью приложения R+ m.Task .

Robotis Bioloid

С этой серией той же корейской компании Robotis с помощью наборов Premium Kit вы сможете собрать человекоподобных роботов. Также в серии есть и другие наборы : STEM Standard (10+), STEM Expansion (10+), Beginner .

Из набора STEM Standard можно сделать 16 различных роботов по схемам, а с набором STEM Expansion можно сделать ещё 9 моделей. В наборе идёт также 48 заданий. Этот набор частично состоит из комплектующих серии Robotis OLLO , а частично – из комплектующих Robotis Bioloid . Т. е. с этим набором вы можете использовать уже имеющиеся у вас наборы обеих серий. Это единственный набор, совместимый с сериями OLLO и Bioloid . В наборе микроконтроллер CM-530, матрица ИК-датчиков (позволяют бежать роботу по линии), 3 ИК-датчика (обнаружение препятствий) и пульт управления RC-100A.

Набор Beginner позволит вам создать роботов 14 различных конструкций. В наборе – микроконтроллер CM-5, 4 сервомотора DYNAMIXEL AX-12A и сенсорный модуль AX-S1.


С набором Premium Kit вы сможете собрать человекоподобного робота в одной из трёх модификаций или 26 простых роботов. Человекоподобный робот из этого набора обладает системой стабилизации тела благодаря двухосному гироскопу, что позволяет ему ловко удерживаться на ногах при ходьбе.

В наборе контроллер CM-530 (32-битный ARM Cortex, 6 кнопок, микрофон, датчик температуры, датчик напряжения, 6 входных/выходных OLLO-совместимых портов, 5 коннекторов для сервомоторов AX/MX Series DYNAMIXEL ), 18 сервомоторов, двухосный гироскоп, 2 ИК-датчика, пульт управления RC-100A .


Программирование роботов серии Robotis Bioloid осуществляется так же в среде ПО RoboPlus .

Hovis Lite

Из этого конструктора, кроме человекоподобного робота, можно собрать ещё порядка 26 различных моделей роботов и механизмов. Hovis Lite – это детище корейской компании DST Robot (до марта 2015 года компания называлась Dongbu Robot). Пластмассовые элементы конструктора могут быть одного из следующих цветов: зелёного, красного, жёлтого или синего. Есть приятный бонус – детали можно распечатать на 3D-принтере. Страничка конструктора находится , а вся документация и 3D-модели .


В наборе микроконтроллер (ATmega128 MCU , в микроконтроллер встроены датчики звука и света), датчик расстояния, IR-пульт дистанционного управления и IR-приёмник для него. Гироскоп/акселерометр и Bluetooth-модель нужно покупать отдельно.

Для программирования есть следующее ПО: DR-SIM (фирменная бесплатная программа для редактирования, тестирования и записи движений), DR-Visual Logic (фирменная бесплатная графическая среда разработки с возможностью просмотра готового кода в виде C-подобного языка), Microsoft Robotics Developer Studio , DR-C , Microsoft Visual Studio и AVR Studio .

VEX EDR

Конструкторы серии VEX EDR , или просто VEX , производит компания VEX Robotics . Предназначены они для возраста от 10 лет. Серия подходит как для школ, институтов, так и для продвинутых роботостроителей. В этой серии вы найдёте как наборы, так и отдельно продающиеся запчасти, объекты и поля для соревнований. Программируемые наборы (с микроконтроллером в комплекте) делятся на стартовые (Programming Control Starter Kit и Dual Control Starter Kit ) и наборы для соревнований (Classroom and Competition Mechatronics Kit , Classroom and Competition Programming Kit и Classroom and Competition Super Kit ). Наборы можно посмотреть на сайте производителя . Из каждого набора вы сможете собрать робота на колёсах с клешнёй (см. рис. ниже). Остальные модели вы можете придумывать самостоятельно, полагаясь на свою фантазию.


В серии VEX EDR очень широкий перечень компонентов. Вы всегда сможете отдельно приобрести датчики для следования по линии, датчики обнаружения препятствий и измерения расстояния до препятствий, датчики света, оптические датчики положения осей (измерение углового перемещения, направления вращения оси, пройденного расстояния и пр.), потенциометры (определение местоположения и направления при вращении), гироскопы, датчики касания, ограничители движений, акселерометры (измерение ускорения), светодиодные фонарики.

Из механики нужно обратить внимание на возможность приобретения шестерёнчатых коробок передач (в том числе и червячную), гусениц, Omni-колёс, колёса Илона.

Программируются роботы этой серии с помощью RobotC , easyC (программирование на языке C с помощью перетаскивания блоков), Flowol (программирование с помощью блок-схем) или Modkit (визуальное программирование с помощью блоков). Все среды разработки платные.


VEX IQ

Эта серия тоже производится компанией VEX Robotics и она тоже позволяет создавать программируемых роботов, но рассчитана на возраст от 8 лет. Всего в серии 3 основных набора (Starter Kit with Controller , Starter Kit with Sensors , Super Kit ), расширяющие наборы, объекты и поля для соревнований, а также комплектующие по отдельности. Все позиции хорошо описаны на сайте производителя . В наборы Starter Kit with Sensors и Super Kit входят датчик цвета, гироскоп и датчик расстояния. Управление с пульта возможно в наборах Starter Kit with Controller и Super Kit . Во все наборы входят датчики касания. Хочется отметить, что в соревновательных наборах вы получите, кроме дополнительных деталей, Omni-колёса и гусеницы. Микроконтроллер VEX IQ оборудован 12 универсальными портами для подключения датчиков и моторов.


Программируются роботы серии VEX IQ с помощью Modkit (визуальное программирование с помощью блоков), а также Flowol и RobotC .


Также существует виртуальная среда проектирования конструкции вашего робота VEX Assembler . С помощью этого ПО вы сможете виртуально изготовить и опробовать вашу конструкцию ещё на этапе проектирования. В программу уже загружено более 110 деталей конструктора VEX IQ , объекты для соревнований и даже целиком робот Clawbot IQ (робот с клешнёй). Программа доступна для свободного скачивания (заполните форму сперава и получите ссылку для скачивания по электронной почте).


VEX PRO

Под этой линейкой продуктов компания VEX Robotics предлагает только комплектующие. Здесь нет наборов. Всё продаётся поштучно или комплектами. Все комплектующие можно посмотреть .

Технолаб

Под этой торговой маркой скрываются всё те же наборы от компаний Robotis и VEX Robotics , о которых было написано выше. Наборы (модули) локализованы и собраны для желающих заниматься робототехникой в зависимости от возраста и степени подготовленности. Всего модулей семь. Это модули предварительного, начального, базового, базового соревновательного, профессионального, исследовательского иэ кспертного уровней. Подробности о комплектации по всем модулям представлены на сайте ООО «Экзамен-Технолаб» . Программирование роботов доступно во всех модулях, кроме модуля предварительного уровня.


Arduino

Торговая марка Arduino – это инструменты для создания не только роботов, но и множества различных гаджетов. Для роботостроителей здесь есть микроконтроллеры, всевозможные датчики, двигатели, сервомоторы, платы расширений, LCD-дисплеи, светодиоды. Но под этой торговой маркой не производятся элементы корпусов или каркасов для сборки роботов. Здесь также нет элементов для монтажа. Единственное исключение – Arduino Robot .

Платформа Arduino поддерживается большим количеством сторонних производителей, поэтому найти комплектующие для сборки роботов можно. Также можно найти в продаже и Arduino -совместимые микроконтроллеры и наборы для самостоятельной сборки роботов, основанных на этой платформе. Все предлагаемые изделия непосредственно от производителя можно посмотреть .

Программировать микроконтроллеры Arduino можно с помощью бесплатной среды разработки Arduino IDE с открытым исходным кодом (см. первую картинку снизу). Написана Arduino IDE на Java и работает на компьютерах под управлением Windows, Mac OS X и Linux. В Arduino IDE используется язык программирования Processing (язык, основанный на Java). Кроме того, некоторые микроконтроллеры Arduino можно запрограммировать с помощью RobotC, Flowol, Minibloq (графический язык программирования, бесплатно, см. вторую картинку снизу), Ardublock (графический язык программирования, встраивается в Arduino IDE, есть перевод инструкции на русский язык, бесплатно), Physical Etoys (бесплатный графический язык программирования для Windows и Linux с открытыми исходниками, русификации нет) и Modkit .

Также для программирования некоторых контроллеров Arduino можно воспользоваться плагином Visual Micro (платный), который встраивается в Microsoft Visual Studio 2008–2013 или в Atmel Studio 6.1–6.2.

Структор

Магазин «Амперка» предлагает собственное решение для сборки Arduino-совместимых роботов – это панели, рейки и крепления для плат, датчиков и моторов под названием Структор . Детали изготавливаются фрезеровкой из листов белого вспененного ПВХ толщиной 5 мм. За счёт использования такого материала у вас есть возможность красить детали красками. Прочность элементов достаточная для того, чтобы создавать конструкции небольшого размера. В то же время материал податлив, и вы можете легко просверливать в деталях отверстия, вкручивать шурупы или менять геометрию деталей канцелярским ножом.


Все элементы легко соединяются друг с другом, а если для динамических конструкций вам не хватает прочности соединений, «Амперка» предлагает склеивать элементы друг с другом. Кроме того, для ещё большей прочности вы можете использовать детали «совметал. конструктора», ведь отверстия в панелях Структора расположены с тем же шагом 10 мм. К сожалению, в мягкости материала, из которого созданы детали конструктора, кроется и небольшой минус – они недолговечны. Со временем материал в месте креплений деформируется, и детали держатся неплотно.

Стоит отдельно отметить, что чертежи для изготовления деталей находятся в открытом доступе, и вы можете самостоятельно изготавливать элементы конструктора.

Готовых наборов конструктора нет. Все элементы продаются плашками. На каждой из них может быть несколько крупных деталей или множество мелких. Все варианты плашек можно посмотреть на сайте магазина . Для соединения деталей можно купить нейлоновые винты, гайки и стойки . Подробности о конструкторе можно узнать .

Multiplo

Multiplo – это Arduino-совместимый конструктор, созданный аргентинской компанией RobotGroup . Конструктор полностью открытый, т. е. доступны как исходники ПО, так и чертежи конструктивных элементов (детали можно распечатать на 3D-принтере или нарезать на лазерном станке с ЧПУ). Основные детали пластиковые, уголки и некоторые другие элементы – алюминиевые, винты, гайки, шайбы и оси – металлические. Эта же компания разработала программу для графического программирования Minibloq , о которой уже было написано выше (один из директоров компании, Хулиан да Силва, является автором этой программы). Официальная страница конструктора , а все инструкции, чертежи и ПО можно скачать .

Конструктор представлен наборами Starter Kit , Building Kit и Monster Kit . В наборе Starter Kit контроллер DuinoBot , батарейный отсек (для трёх батареек AA), два инфракрасных сенсора, два двигателя, пульт управления и приёмник сигнала от него, провода и механические детали для постройки простой тележки. В наборе есть отвёртка и ключи, так что дополнительный инструмент вам не понадобится. В наборе Building Kit дополнительно появляются ультразвуковой датчик, 2 сервомотора, 2 датчика света, 2 светодиодные лампочки, а также дополнительные детальки, в том числе и для сборки клешни.

Набор Monster Kit самый большой. В этом наборе целых два микроконтроллера (можно делать сразу двух роботов из одного набора), а также 4 обычных мотора, 6 сермоторов, батарейные отсеки, один ультразвуковой датчик, 4 инфракрасных датчика, два комплекта дистанционного управления (пульт и датчик для приёма сигнала от него), много механических деталей, в том числе и для сборки двух клешней.

Ещё в официальном магазине есть набор Mechanical Kit , содержащий только механические детали, без электронной части. Также можно приобрести по отдельности микроконтроллер DuinoBot с батарейным отсеком, различные датчики и механические детали. И можно бесплатно скачать файлы для печати полей для соревнований. МагазинMultiploнаходится .

Поскольку конструктор Arduino-совместимый, то программировать можно с помощью аналогичных средств разработки: Arduino IDE , Minibloq , Ardublock , Physical Etoys и Modkit .

Makeblock

Плюсы этого китайского конструктора в том, что здесь используется электроника Arduino и все детали сделаны из прочного штампованного алюминия. Особенно интересны здесь балки, вдоль которых тянется паз с резьбовой перфорацией, в который вы можете вкручивать винты на любом расстоянии друг от друга, и рельсы.


Новичкам здесь понравятся модули с унифицированными разъёмами с цветными метками для удобного и понятного подключения электронных компонентов. Т. е. для правильного подключения нужно просто убедиться в совпадении цвета меток.

Количество как самодостаточных, так и ресурсных наборов в магазине на официальном сайте огромное. Отдельно здесь можно купить датчики, платы, конструктивные элементы и пр. Из тематических наборов хочется выделить наборы для сборки 3D-принтера (набор Makeblock Constructor I 3D Printer Kit ), плоттера (XY-Plotter Robot Kit v2.0 ), робота, играющего на ксилофоне (набор Music Robot Kit ), конструктор для сборки робота-художника различных модификаций, рисующего фломастерами или выжигающего лазером (набор mDrawBot with Bluetooth and Laser Kit – Blue ) и робот-тележка mBot с большим набором датчиков, шасси которого совместимы с деталями LEGO и Makeblock (Bluetooth, Bluetooth и Wi-Fi).

С помощью набора mDrawBot можно собрать одного из 4 роботов-художников:

mScara – это роботизированная рука, рисующая ручкой или фломастером, а с дополнительным набором Laser Kit ручку можно заменить на лазер, который будет выжигать рисунок, например, на фанере.

mSpider – паук-художник, который висит на двух верёвочках и рисует на вертикальных поверхностях.

mEggBot – робот, рисующий на яйцах или шариках для пинг-понга.

mCar – трёхколёсный робот-машинка, рисующий на листе бумаги, по которому он ездит.

Но и это ещё не всё. Специально для набора mDrawBot компания Makeblock разработала программу с помощью которой вы сможете импортировать векторный рисунок формата SVG, конвертировать BMP в SVG и масштабировать рисунок. При нанесении рисунка с помощью лазера поддерживаются разные оттенки.

Наборы-конструкторы общего назначения следующие: Starter Robot Kit (Bleutooth и IR-версии) и Ultimate Robot Kit . Есть аналогичные наборы без электроники.

Для дистанционного управления роботом есть бесплатное приложение для Android и iOS – Makeblock . Некоторые наборы комплектуются пультами дистанционного управления, например, IR-версия набора Starter Robot Kit.

Программируются роботы Makeblock с помощью программы собственной разработки mBlock , основанной на редакторе Scratch 2.0 , с помощью Arduino IDE или ArduBlock . Чтобы работать в Arduino IDE или ArduBlock , необходимо дополнительно установить библиотеку Makeblock . Примеры, инструкции, драйверы и ПО можно найти .

HUNA-MRT

Под корейским брендом HUNA-MRT скрываются наборы для конструирования механизмов и роботов. Наборы FUN&BOT (MyRobotTime) и KICKY (MRT2) – это наборы для начинающих (на возраст 6–8 лет) из пластмассовых деталей, и здесь нет программирования. А вот в наборах серий CLASS (MRT3) (на возраст 7–11 лет) и TOP (на возраст 9–11 лет) уже есть программируемая плата и есть возможность программировать роботов с помощью простой графической среды программирования. Отличие двух последних серий в том, что в серии CLASS (MRT3) детали пластмассовые, а в серии TOP – металлические. Во всём остальном это полностью совместимые наборы. Детали из одной серии можно использовать вместе с деталями других серий этого бренда. Есть также более продвинутый набор HUNITRONIC (для возраста 12–18 лет), который укомплектован аналогом микроконтроллера Arduino UNO и платой Extension IO Shield для подключения датчиков. Все наборы комплектуются графической средой программирования. Получить больше информации о конструкторах можно на сайте ООО «Брейн Девелопмент» . Официальная страничка серии MRT3 .

RoboRobo

Корейская компания RoboRobo предлагает 5 образовательных наборов для сборки программируемых роботов. Они так прямо и нумеруются: Robo Kit №1, Robo Kit №2, Robo Kit №3, Robo Kit №4, Robo Kit №5 . Различаются они количеством деталей, количеством возможных модификаций роботов, которые вы сможете из них собрать по инструкциям, и сложностью. Чем больше цифра, тем больше деталей и тем сложнее. Обязательно обратите внимание, что набор 2 содержит в себе набор 1, набор номер 3 – содержит набор 2 и так далее. Поэтому, если у вас уже есть набор Robo Kit №1 , то вы можете расширить его с помощью набора Robo kit №1-2 до набора Robo Kit №2 и тем самым сэкономить. Всего расширяющих наборов 4: Robo kit №1-2, Robo kit №2-3, Robo kit №3-4 и Robo kit №4-5 . Официальная страничка конструктора .

В максимальном наборе вы найдёте ИК-сенсор, ИК-пульт управления, датчик звука, датчики касания.

Программируются роботы этой компании с помощью графического интерфейса в программе Rogic Program .

Ещё компания RoboRobo предлагает наборы для очень маленьких детей (5–7 лет): Robo Kids № 1 и Robo Kids № 2 . Второй набор – дополнительный к первому. Из первого набора можно собрать 16 роботов, а из второго – ещё 16. В этих наборах производитель предлагает интересный подход к управлению роботами. В распоряжении маленьких программистов есть набор карточек, которые проводятся через сканер, который в свою очередь даёт команды роботу.

Fischertechnik

Конструкторы fischertechnik выпускает немецкая фирма. Детали конструктора пластмассовые. Разные наборы конструктора рассчитаны на разный возраст. Наборы серии JUNIOR(5+) не имеют ни моторов, ни батареек, это просто конструкторы для малышей. С наборами серии BASIC (7+) и ADVANCED (7+) , PROFI (8+) вы можете собирать различные машины и механизмы, они уже могут комплектоваться моторами, солнечными батареями, блоками питания и др. А вот сборка роботов и их программирование начинается в наборах серии ROBOTICS(8+) .

В серии ROBOTICS шесть наборов: ROBOTICS LT Beginner Set (ROBOTICS LT Стартовый набор) (стартовый набор для создания 8 автоматических устройств), ROBOTICS TXT Discovery Set (ROBOTICS TXT Набор первооткрывателя) (для создания 11 механизмов и автономных роботов), ROBO TX Automation Robots (ROBO TX Автоматические роботы) (для создания реалистичных промышленных роботов), ROBO TX ElectroPneumatic (ROBO TX ЭлектроПневматика) (для сборки 4 пневматических конструкций), ROBO TX Explorer (ROBO TX Исследователь) (для создания робота на гусеничном ходу в шести модификациях) и ROBO TX Training Lab (ROBO TX Учебная лаборатория) (для конструирования автоматических устройств и мобильных роботов). Отдельно к наборам можно приобрести аккумуляторный набор, набор для дистанционного управления, набор свет и звук (для создания светозвуковых эффектов), наборы с дополнительными моторами, ресурсный набор и ящики для хранения. При совмещении наборов друг с другом вы сможете значительно расширить возможности в создании роботов.

Часть наборов серии ROBOTICS комплектуются контроллером ROBO TX (кроме стартового набора, который комплектуется контроллером ROBO LT ), часть – контроллером ROBOTICS TXT . Из датчиков в наборах попадаются следующие: фотодатчик, датчик температуры, датчик цвета, ультразвуковой датчик расстояния, ИК-датчик следования по линии.

Характеристики контроллера ROBO TX следующие: 32-битный процессор ARM9 , монохромный дисплей разрешением 128х64, объём памяти 8 MB RAM, 2 MB Flash. Размер контроллера – 90х90х15 мм, вес – 90 г. Здесь 4 выхода для подключения моторов, 8 универсальных входов, 2 разъёма расширений I2C, RS485 для объединения с другими контроллерами, 4 входа и USB для подключения к компьютеру. Также здесь присутствует встроенный Bluetooth. Можно приобрести дополнительный микроконтроллер ROBO TX .

Отдельно можно приобрести более продвинутый контроллер ROBOTICS TXT . Вот его характеристики: ОС Linux, два процессора ARM Cortex A8 (32bit/600MHz) +Cortex M3 , память 128 Мб DDR3 RAM, 64 Мб Flash, слот для карт Micro SD, цветной сенсорный дисплей 2,4" разрешением 320 x 240, 8 универсальных входов, 4 высокоскоростных цифровых входа, 4 выхода на моторы, комбинированный модуль Bluetooth/Wi-Fi, ИК-приёмник (для приёма сигнала от пульта), USB 2.0 для подключения к ПК, USB Host (USB A для подключения USB-камеры fischertechnik или USB-свистков), 10-контактный разъём для входа или выхода по I2C интерфейсу, встроенный динамик, встроенные часы с собственной батарейкой. Размер контроллера – 90x90x25 мм. Контроллеры могут быть спарены. Все подробности о микроконтроллере .

Во все наборы входит ПО для программирования ROBO Pro (в стартовом наборе вы найдёте облегченную версию этого ПО). Свежую версию ПО и русификацию всегда можно скачать на сайте производителя .

Контроллер ROBOTICS TXT программируется с помощью ROBO Pro , C-Compiler , PC-Library , . Сейчас эта робототехническая платформа представлена только одним набором ROBOTICS PRO 1.0 , из которого вы сможете собрать 6 моделей. Набор рассчитан на учеников школы (7+) и студентов.

В наборе микрокомпьютер, программное обеспечение (для частного и образовательного использования), провода, 3 мотора, 3 светодиода, 2 инфракрасных датчика, 1 датчик касания и разнообразные детали.

А вот спецификация микрокомпьютера ERP:

  • 32-битный микроконтроллер ARM CORTEX-M2;
  • 256 КБ FLASH, 64 КБ RAM;
  • USB-порт 12 Mbit/s;
  • 3 порта для моторов и 4 – для датчиков (светодиоды можно подключать к любым портам);
  • встроенный зуммер;
  • питание от 6 батареек AA;
  • встроенный Wi-Fi модуль.

Программировать собранные модели можно непосредственно на самом блоке или с помощью программного обеспечения ENGINO ERP . Дистанционно управлять роботами возможно с помощью приложения Engino ERP Remote Control , которое доступно в Google Play и Apple store . Все подробности о конструкторе можно найти .

ТРИК

Кибернетический конструктор ТРИК – это российский конструктор, металлические детали которого совместимы с «совметал конструктором» (та же перфорация M4 c шагом 10 мм).

Конструктор ТРИК предлагает насколько решений: стартовый набор, образовательный, школьный, соревновательный, учебная пара. Разница между наборами – в количестве датчиков и деталей, но в каждом наборе есть контроллер ТРИК , видеокамера и микрофон. Все наборы (кроме стартового) комплектуются пластиковой коробкой с отделениями для хранения деталей. В максимальном наборе имеются следующие датчики: 2 датчика освещённости, 2 датчика расстояния, 2 датчика касания. Кроме того здесь есть Омни-колёса, светодиодные ленты, аккумуляторы, зарядное устройство.

Технические характеристики контроллера ТРИК:

  • операционная система: Linux;
  • центральный процессор: OMAP-L138 C6-Integra™ DSP+ARM® SoC, 375 МГц, Texas Instruments;
  • ядро центрального процессора: ARM926EJ-S™ RISC MPU;
  • оперативная память: 256 Мбайт, 6 Мбайт FLASH;
  • периферийный процессор: MSP430F5510, 24 МГц, Texas Instruments;
  • интерфейсы пользователя: USB 2.0, WiFi b/g/n, BlueTooth, 2xUART, 2xI2C, Micro-SD, Mic in (stereo), Line out (mono);
  • интерфейсы двигателей постоянного тока: 4 порта двигателей 6-12V DC, с индивидуальной аппаратной защитой от перегрузки по току (до 2А на двигатель);
  • интерфейсы периферийных устройств: 19 сигнальных портов общего назначения (6 одноканальных и 13 двухканальных) с питанием 3.3-5V, из них 6 могут работать в режиме аналогового входа;
  • интерфейсы видеосенсоров: 2 входа BT.656 VGA 640*480, поддержка стереорежима;
  • встроенный цветной сенсорный LCD монитор 2,4” TFT разрешением 320x240 пикселей;
  • встроенный динамик номинальной мощностью 1 W, пиковой 3 W;
  • 2-цветный, программно-управляемый светодиодный индикатор;
  • слоты расширения: два 26-контактных «щелевых» разъёма модулей расширения;
  • дополнительное оборудование (входит в состав контроллера): 3-осевой акселерометр, 3-осевой гироскоп, аудиокодек, усилитель, конвертеры и схемы управления питанием, схемы защиты входов от перегрузок по напряжению и току;
  • электропитание 6-12V DC, внешний сетевой адаптер либо LiPo аккумулятор RC 3P (11,1V) / 2P (7,4V).

Программирование возможно на С, С++/Qt,J avaScript, С#/F# (.NET), Python и Java. Есть также собственная среда разработки – TRIK Studio , которая работает на Windows и Linux. Для дистанционного управления разработано приложение TRIK gamepad для Android. Подключение к контроллеру происходит через Wi-Fi. Подробности о конструкторе на официальном сайте .

MOSS

Конструктор MOSS , созданный американской компаниейModular Robotics , – самый необычный конструктор из всех здесь перечисленных. Здесь нет ни проводов, ни привычных способов соединения деталей. Весь конструктор состоит из модулей кубической формы с гранями разных цветов и различных соединительных элементов, таких как скобы и уголки. Все они крепятся друг к другу с помощью шариков-магнитов, которые позволяют создавать жёсткие или шарнирные соединения.

Разные цвета граней модулей сделаны не только для красоты, они ещё обозначают характеристики. Зелёные грани проводят электричество. У модуля аккумулятора все грани зелёные и основная цель этого модуля – поставлять энергию всем остальным модулям. Например, чтобы запитать модуль с мотором, вы должны соединить одну из его зелёных граней с зелёной гранью аккумулятора. Красные и коричневые грани проводят данные: красный – выход данных, коричневый – вход данных. Например, если вы хотите, чтобы датчик расстояния управлял скоростью вращения мотора, вам нужно соединить красную грань модуля датчика расстояния с коричневой гранью модуля мотора. Голубые грани – передающие, через них передаётся энергия и/или данные. Например, если вам нужно запитать какой либо модуль, который находится на расстоянии от батареи, вы можете использовать голубые грани гибкого модуля или несколько простых модулей.

Robo Wunderkind

А вот ещё один кубический конструктор, совместимый с конструктором LEGO. Конструктор Robo Wunderkind так же, как и конструктор MOSS, состоит из модулей в форме куба, за исключением микроконтроллера, который состоит как бы из сдвоенных кубиков (на фото микроконтроллер оранжевого цвета). Модули соединяются друг с другом без проводов с помощью специальных соединительных элементов.

Сейчас на сервисе Kickstarter можно предзаказать следующие варианты наборов: стартовый (STARTER KIT ), расширенный (ADVANCED KIT ) и профессиональный (PROFESSIONAL KIT ) . Первые поставки начнутся в июле 2016 года. Наборы рассчитаны на детей от 5 лет и взрослых. В стартовом наборе есть системный модуль (микроконтроллер), модуль с датчиком расстояния (красного цвета), модуль Bluetooth (голубого цвета), аккумуляторный модуль (зелёного цвета), модуль-сервомотор (жёлтого цвета), пустой модуль, 2 модуля-мотора (синего цвета), 2 колеса, 7 соединительных элементов, 2 адаптера LEGO (для присоединения стандартных деталей LEGO, например, человечков, как показано на картинке) и одно пассивное колёсико. В расширенном наборе добавляются ещё 2 пустых модуля, модуль с LED-дисплеем, модуль с датчиком света, модуль с метеодатчиком, ещё 6 соединительных элементов и ещё 2 адаптера LEGO. В профессиональном наборе , по сравнению с расширенным, добавляется ещё 1 аккумуляторный модуль, ещё один модуль-сервомотор, ещё 3 пустых модуля, модуль с инфракрасным датчиком, модуль с лазерной указкой, модуль с экраном на основе электронных чернил, модуль с камерой, модуль с акселерометром, ещё 9 соединительных элементов, ещё 4 адаптера LEGO, и ещё одно пассивное колёсико.

А вот характеристики конструктора: процессор Allwinner A13 SoC, оперативная память RAM 256 Мб DDR3, Storage eMMC Flash Memory 4 GB, WiFi 802.11 b/g/n, Bluetooth 2.1/3.0/4.0. В системный модуль встроены микрофон и динамик.

Программировать готового робота можно с помощью специального приложения, доступного для iOS и Android. В планах разработчиков есть создание приложения для Windows, правда только к сентябрю 2016 года. Программирование здесь графическое. Кроме того, поддерживается Scratch. Также создатели конструктора предоставляют API для разработки, как они пишут, на любом языке программирования.

(по материалам сайта http://www.proghouse.ru/article-box/26-robots)

Ответственный за информацию: методист ГМЦ ДОгМ Солуянов Евгений Александрович.

Робототехника - одно из перспективнейших направлений в сфере интернет-технологий, а то, что за ИТ-сферой будущее, в наше время и объяснять не надо. Кроме того, роботостроение может показаться занимательней прочего: сконструировать робота значит почти что создать новое существо, пусть и электронное, что, конечно же, привлекает. Впрочем, и в этой отрасли все может оказаться непросто, особенно на первых порах. Вместе с экспертами попытаемся разобраться, зачем нужна роботехника и как к ней подступиться.

Робототехника — одно из перспективнейших направлений в сфере интернет-технологий, а то, что за ИТ-сферой будущее, в наше время и объяснять не надо. Роботостроение — увлекательнейшая штука: сконструировать робота значит почти что создать новое существо, пусть и электронное.

С 60-х годов прошлого века автоматизированные и самоуправляющиеся устройства, делающие какую-либо работу за человека, стали использоваться для исследований и в производстве, затем в сфере услуг и с тех с каждым годом прочнее занимают свое место в жизни людей. Конечно, нельзя сказать, что в России все сплошь выполняется самостоятельными механизмами, однако определенный вектор в эту сторону точно намечается. Вот уже и Сбербанк планирует заменить три тысячи юристов умными машинами.

Вместе с экспертами попытаемся разобраться, зачем нужна роботехника и как к ней подступиться.

Чем отличается робототехника для детей от профессиональной?

Если коротко, то робототехника для детей направлена на изучение предмета, тогда как профессиональная - на решение конкретных задач. Если специалисты создают промышленные манипуляторы, выполняющие разные технологические задачи, или специализированные колесные платформы, то любители и дети, конечно же, занимаются вещами попроще.

Татьяна Волкова, сотрудник Центра интеллектуальной робототехники: «Как правило, с чего все начинают: разбираются с моторами и заставляют робота элементарно ехать вперед, потом - делать повороты. Когда робот выполняет команды движения, можно уже подключить датчик и сделать так, чтобы робот ехал на свет или, наоборот, «убегал» от него. А дальше идет любимая задача всех новичков: робот, который ездит по линии. Устраиваются даже различные гонки роботов».

Как понять, есть ли у ребенка склонность к робототехнике?

Для начала нужно купить конструктор и посмотреть, нравится ли ребенку собирать его. А дальше и в кружок можно отдать. Занятия помогут ему развить мелкую моторику, фантазию, пространственное восприятие, логику, концентрацию и терпеливость.

Чем быстрее получится определиться с направлением роботехники — конструирование, электроника, программирование — тем лучше. Все три области обширны и требуют отдельного изучения.

Александр Колотов, ведущий специалист STEM-программ в Университете Иннополис: «Если ребенку нравится собирать конструктор, то ему подойдёт конструирование. Если ему интересно изучать, как устроена вещь, то ему понравится заниматься электроникой. Если у ребенка тяга к математике, то его заинтересует программирование».

Когда начинать обучение робототехнике?

Начинать изучение и записываться в кружки лучше всего с детства, впрочем, не слишком рано — в 8-12 лет , говорят специалисты. Раньше ребенку сложнее уловить понятные абстракция, а позднее, в подростковом возрасте, у него могут появиться другие интересы, и он станет отвлекаться. Также ребенка необходимо мотивировать на изучение математики, чтобы ему было интересно и легко в будущем проектировать механизмы и схемы, составлять алгоритмы.

С 8-9 лет ребята уже могут понимать и запоминать, что такое резистор, светодиод, конденсатор, а позже и понятия из школьной физики осваивать с опережением школьной программы. Не важно, станут они специалистами в этой области или нет, полученные знания и навыки точно даром не пропадут.

В 14-15 лет нужно продолжать заниматься математикой, отодвинуть занятия в кружке по робототехнике на второй план и начать изучение программирования более серьезно - разбираться не только в сложных алгоритмах, но и в структурах хранения данных. Далее идут математический базис и знания в алгоритмизации, погружение в теорию механизмов и машин, проектирование электромеханической оснастки робототехнического устройства, реализацию алгоритмов автоматической навигации, алгоритмы компьютерного зрения и машинное обучение.

Александр Колотов: «Если в этот момент познакомить будущего специалиста с основами линейной алгебры, комплексным счислением, теорией вероятности и статистики, то к поступлению в вуз он уже будет хорошо представлять, зачем ему стоит обращать дополнительное внимание на эти предметы при получении высшего образования».

Какие конструкторы выбрать?

Для каждого возраста существуют свои образовательные программы, конструкторы и платформы, различающиеся степенью сложности. Можно найти как зарубежные, так и отечественные продукты. Есть дорогие наборы для робототехники (в районе 30 тыс. руб. и выше), есть и подешевле, совсем простые (в пределах 1-3 тыс. руб.).

Если ребенку 8-11 лет , можно купить конструкторы Lego или Fischertechnik (хотя, конечно, производители имеют предложения как для более младшего, так и для старшего возрастов). Конструктор Lego для робототехники обладает интересными деталями, яркими фигурками, он легок в сборке и снабжен подробной инструкцией. Серия конструкторов Fischertechnik для робототехники приближает к настоящему процессу разработки, здесь вам и провода, и штекеры, и визуальная среда программирования.

В 13-14 лет можно начать работать с ТРИК или модулями Arduino, которые, по словам Татьяны Волковой, является практически стандартом в области образовательной робототехники, а также Raspberry. ТРИК сложнее Lego, но легче Arduino и Raspberry Ri. Последние две уже требуют базовых навыков программирования.

Что еще потребуется изучить?

Программирование . Избежать его возможно только на первоначальном этапе, потом же без него никуда. Начать можно с Lego Mindstorms, Python, ROS (Robot Operating System).

Базовую механику. Начинать можно с поделок из бумаги, картона, бутылок, что важно и для мелкой моторики, и для общего развития. Самого простого робота можно сделать вообще из отдельных деталей (моторчики, провода, фотодатчик и одна несложная микросхема). Познакомиться с базовой механикой поможет «Мастерилка с папашей Шперхом».

Основы электроники. Для начала научиться собирать простые схемы. Для детей до восьми лет эксперты советуют конструктор «Знаток», дальше можно перейти к набору «Основы электроники. Начало».

Где заниматься робототехникой детям?

Если видите у ребенка интерес, можно отдать его в кружки и на курсы, хотя можно заниматься и самостоятельно. На курсах ребенок будет под руководством специалистов, сможет найти единомышленников, займется робототехникой на регулярной основе.

Также желательно сразу понять, чего хочется от занятий: участвовать в соревнованиях и бороться за призовые места, участвовать в проектной деятельности или просто заниматься для себя.

Алексей Колотов: «Для серьезных занятий, проектов, участия в соревнованиях нужно выбирать кружки, с небольшими группами по 6—8 человек и тренером, который приводит учеников к призовым местам на соревнованиях, который постоянно сам развивается и дает интересные задачи. Для занятий в виде хобби можно пойти в группы до 20 человек».

Как выбирать курсы для занятий робототехникой?

При записи на курсы обратите внимание на педагога , рекомендует коммерческий директор компании Promobot Олег Кивокурцев. «Бывают прецеденты, когда педагог просто отдает ребятам оборудование, а дальше занимайтесь кто чем хочет», — согласна с Олегом Татьяна Волкова. От таких занятий толку будет мало.

При выборе курсов также стоит обратить внимание и на имеющуюся материально-техническую базу . Есть ли там конструкторские наборы (не только Lego), имеется ли возможность писать программы, изучать механику и электронику, самому делать проекты. На каждую пару учащихся должен быть свой робототехнический комплект. Желательно с дополнительными деталями (колесами, шестернями, элементами каркаса), если хочется участвовать в соревнованиях. Если с одним набором работает сразу несколько команд то, скорее всего, никаких серьезных соревнования не предполагается.

Поинтересуйтесь, в каких соревнованиях участвует клуб робототехники . Помогают ли эти конкурсы закрепить полученные навыки и дают ли возможность для дальнейшего развития.

Соревнование Robocup 2014

Как изучать робототехнику самостоятельно?

Курсы требуют денег и времени. Если первого не хватает и регулярно ходить куда-либо не получится, можно заняться с ребенком самостоятельным изучением. Важно, чтобы родители обладали необходимой компетенцией в этой сфере: без помощи родителя, ребенку освоить робототехнику будет достаточно сложно, предостерегает Олег Кивокурцев.

Найдите материал для изучения. Их можно брать в Интернете, из заказываемых книг, на посещаемых конференциях, из журнала «Занимательная робототехника». Для самостоятельного изучения есть бесплатные онлайн-курсы, например, «Строим роботов и другие устройства на Arduino: от светофора до 3D-принтера».

Нужно ли изучать роботехнику взрослым?

Если Вы уже вышли из детского возраста, это не значит, что двери робототехники для Вас закрыты. Можно так же записаться на курсы или изучать ее самостоятельно.

Если человек решил заниматься этим как хобби, то путь его будет таким же, как у ребенка. Однако понятно, что дальше любительского уровня без профессионального образования (инженера-конструктора, программиста и электронщика) продвигаться вряд ли получится, хотя, конечно, устраиваться на стажировки в компании и упорно грызть гранит нового для вас направления никто не запрещает.

Олег Кивокурцев: «Взрослому будет проще освоить робототехнику, но важным фактором является время».

Для тех, у кого близкая специальность, но хочется переучиться, также есть разные курсы в помошь. Например, для специалистов по машинному обучению одойдет бесплатный онлайн-курс по вероятностной робототехнике «Искусственный интеллект в робототехнике». Также существуют образовательная программа Intel, просветительский проект «Лекториум», дистанционные курсы ИТМО. Не забудьте и про книги, например, есть много литературы для начинающих («Основы робототехники», «Введение в робототехнику», «Настольная книга робототехника»). Подберите то, что больше всего понятно и подходит вам.

Следует помнить, что серьезная работа отличается от любительского увлечения как минимум стоимостью затрат на оборудование и перечнем поставленных перед работником задач. Одно дело - своими руками собирать самого простого робота, совсем другое - заниматься, например, машинным зрением. Поэтому изучать основы конструирования, программирования и аппаратной инженерии все-таки лучше с ранних лет и впоследствии, если понравилось, поступать в профильный университет.

В какие вузы идти учиться?


Направления, связанные с робототехникой, можно найти в следующих вузах:

— Московский технологический университет (МИРЭА, МГУПИ, МИТХТ);

— Московский государственный технический университет им. Н. Э. Баумана;

— Московский государственный технологический университет «Станкин»;

— Национальный исследовательский университет «МЭИ» (Москва);

— Сколковский институт науки и технологий (Москва);

— Московский государственный университет путей сообщения Императора Николая II;

— Московский государственный университет пищевых производств;

— Московский государственный университет леса;

— Санкт-Петербургский государственный университет аэрокосмического приборостроения (СГУАП);

— Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (ИТМО);

— Магнитогорский государственный технический университет;

— Омский Государственный технический университет;

— Саратовский государственный технический университет;

— Университет Иннополис (Республика Татарстан);

— Южно-Российский федеральный университет (Новочеркасский ГТУ).

Самое главное

Знать азы робототехники в скором времени может оказаться полезно и обывателям, а возможность стать специалистом в этой сфере выглядит очень перспективно, так что хотя бы попробовать себя в «роботостроительстве» определенно стоит.