Безопасность IP-телефонии через SIP. Шифрование VoIP, защита от взлома, VPN

Код курса БТ19, 2 дня

Статус

Аннотация

Курс посвящен комплексным вопросам анализа защищенности и обеспечения безопасности IP-телефонии (Voice over IP (VoIP) -- системы связи, обеспечивающей передачу речевого сигнала по сети Интернет или по любым другим IP-сетям).Подробно рассматриваются современные подходы к построению инфраструктуры IP-телефонии и ее защита, уязвимости и атаки на ее компоненты. Особое внимание уделяется системам мониторинга и методологии анализа защищенности VoIP-сети.

Более 50% учебного времени уделяется практическим работам по анализу защищенности и настройке компонентов VoIP в соответствии с требованиями безопасности как небольших организаций, так и предприятий с развитой филиальной сетью и территориально распределенными пользователями.

В курсе использованы материалы и рекомендации таких компетентных в области информационной безопасности международных организаций как European Telecommunications Standards Institute (ETSI), International Telecommunication Union (ITU), Voice over IP Security Alliance (VOIPSA) и ряда других.

Применяемая в процессе обучения технология виртуализации серверов и рабочих мест позволяет каждому специалисту индивидуально выполнять практические работы в индивидуальной VoIP-сети. Коллективная работа специалистов осуществляется с применением программных и программно-аппаратных телефонов.

Аудитория:

  • Системные и сетевые администраторы, ответственные за эксплуатацию VoIP-приложений
  • Администраторы информационной безопасности
  • Эксперты и аналитики по вопросам компьютерной безопасности, ответственные за анализ состояния информационной безопасности, определение требований к защищенности сетевых ресурсов и защите от утечки конфиденциальной информации по техническим каналам.

Предварительная подготовка

  • Базовые знания по IP-сетям, основным протоколам и службам стека TCP/IP
  • Навыки работы с ОС Windows 2003/2008 и Linux

Вы можете проверить свои знания протоколов стека TCP/IP, запросив в Учебном центре тест для самопроверки.

  • БТ05 « »
  • БТ03 « »

По окончанию обучения

Вы приобретете знания:

  • о современных механизмах и средствах защиты VoIP-сетей
  • об уязвимостях протоколов и служб VoIP: SIP, H.323, RTP
  • о применении защищенных протоколов TLS, SRTP

Вы сможете:

  • применять сетевые анализаторы для мониторинга трафика
  • проводить анализ защищиты VoIP-сетей
  • обеспечивать безопасное функционирование IP-телефонии и конференцсвязи

Пакет слушателя

  • Фирменное учебное пособие
  • Версии основных рассматриваемых в курсе средств защиты, дополнительная и справочная информация по тематике курса в электронном виде

Дополнительно

После успешной сдачи зачета выпускники получают свидетельства об обучении Учебного центра «Информзащита».

Выпускники Учебного центра могут получать бесплатные консультации специалистов центра в рамках пройденного курса.

Программа курса

  • Основные понятия и определения VoIP. Терминология. Архитектуры VoIP и их составляющие. Качество передачи речевой информации. Кодеки.
  • Основные протоколы VoIP . Архитектура. Анализ протоколов VoIP. Сетевой анализатор Wireshark.
  • Уязвимости и атаки на VoIP. Классификация уязвимостей IP-телефонии.
  • Инвентаризация VoIP сети. Инвентаризация VoIP приложений. Инвентаризация пользователей.
  • Перехват VoIP-трафика . Нарушение маршрутизации. Атака «человек посередине».
  • Манипулирование в системах VoIP. Удаление регистрации абонентов. Несанкционированная регистрация. Перехват регистрации.
  • Атаки на протокол передачи трафика реального времени RTP (Real-Time Protocol). Микширование речевых сигналов.
  • Спам в VoIP-сетях. Организация спама при помощи Asterisk.
  • Механизмы обеспечения безопасности IP-телефонии. Уровни информационной инфраструктуры корпоративной сети. Концепция глубокоэшелонированной защиты. Обзор механизмов и средств защиты сетей.
  • Планирование защищённой сетевой инфраструктуры IP-телефонии. Выбор местоположения VoIP сервера в сети. Обеспечение сетевой безопасности VoIP сервера. Конфигурирование межсетевого экрана. Использование систем обнаружения атак. Настройка сетевого оборудования.
  • Анализ защищенности VoIP. Методология. Системы анализа защищённости. Варианты классификации. Архитектура и принципы работы сканеров. Программа SiVuS (SIP Vulnerability Scanner).
  • Криптографическая защита в VoIP сетях. Криптографические методы защиты информации. Виртуальная частная сеть. Общие принципы построения VPN. Управление ключами. Модель инфраструктуры открытых ключей. Формат сертификатов открытых ключей X.509. Использование TLS (Transport Layer Security), SRTP (Secure Real-time Transport Protocol). Настройка Asterisk.
  • Аппаратно-программный комплекс шифрования «Континент». Создание VPN на основе АПКШ "Континент". Применение АПКШ «Континент» для защиты VoIP.
  • Office Communication Server. Архитектура. Варианты использования. Установка и настройка Office Communication Server.

Итоговый зачет

В современном мире информация является одним из ценнейших ресурсов, поэтому ее защита - важная задача. Немалую роль в работе организации любого уровня играют телефонные переговоры. В силу возрастающей популярности IP-телефонии, все острее встает вопрос обеспечения ее безопасности в общем и конфиденциальности разговоров в частности.

Знание основных источников опасности для сетей IP-телефонии, а также понимание методов устранения этих угроз поможет сохранить репутацию и финансовые ресурсы компании. Не смотря на то, что в статье описаны решения под бесплатную платформу Asterisk, проблематика актуальна для любых других платформ IP-телефонии.

Основные виды угроз для VoIP-сетей:

  • Перехват и манипулирование данными

Наиболее часто встречаемая уязвимость телефонных сетей, особенно опасная для IP-телефонии. В случае применения IP-телефонии злоумышленнику не нужен физический доступ к линии передачи данных. Находящееся внутри корпоративной сети устройство перехвата, скорее всего, может быть обнаружено, внешнее прослушивание отследить практически невозможно. Кроме того, перехваченные данные или голос могут быть переданы далее с изменениями. В таких условиях весь незашифрованный голосовой поток необходимо считать небезопасным.

  • Подмена и взлом пользовательских данных

Отказ от использования или упрощение механизмов аутентификации и авторизации в IP-телефонии открывает для злоумышленника возможность не санкционированно получить доступ к системе, подменив данные о пользователе своими. Возможен также взлом учетных данных пользователей посредством перебора или прослушивания незащищенных каналов связи. Подобная уязвимость может быть использована для совершения дорогостоящих звонков за счет жертвы, сводя на нет всю возможную выгоду от использования IP-телефонии. Также эта брешь в безопасности может применяться для приема звонков, предназначенных взломанной либо записи перехваченных звонков на носители злоумышленника с целью применения данной информации в корыстных целях.

  • Ограничение доступности

Одной из разновидностей атак является «отказ в обслуживании» (Denial of Service, DoS). Эта атака нацелена на превышение предельной нагрузки на систему большим количеством коротких звонков или информационного мусора. Без постоянного отслеживания признаков подобных атак и применения пассивных средств защиты, это приводит к тому, что серверы IP-телефонии не справляются с возросшей нагрузкой и не в состоянии обслуживать подключенных абонентов.

Безопасность IP-телефонии – комплексный подход!

При проектировании любой коммуникационной системы важно понимать, что ни одно из самостоятельных технических решений безопасности не в состоянии обеспечить абсолютную защиту от всех возможных угроз.

Проанализировав основные источники угроз безопасности IP-телефонии, можно выделить ключевые критерии защищенности:

  • Конфиденциальность

Необходимость обеспечения защиты траффика IP-телефонии для предотвращения перехвата или прослушивания телефонных звонков, внесения изменений в передаваемую информацию, кражи учетных данных пользователей.

  • Целостность

Обеспечение уверенности, что передаваемая информация не подвергается правке со стороны неавторизованных пользователей, что запросы на выполнение определенных задач или функций (например, совершение звонка или внесение изменений в настройки системы IP-телефонии ) инициированы авторизованными пользователями или приложениями.

  • Доступность

Бесперебойное функционирование корпоративной системы IP-телефонии в условиях DoS-атак, различных «червей», «вирусов» и т.п.

Как защитить IP-телефонию?

Рассмотрим наименее защищенный и, при этом, один из самых распространенных примеров реализации IP-телефонии.


Рисунок 1 - Реализация IP-телефонии


Сервер телефонии на базе IP-АТС Asterisk имеет прямой выход в сеть интернет для обслуживания удаленных филиалов и связи с SIP-провайдером, предоставляющим доступ к внешним линиям связи. Аутентификация пользователей происходит по IP-адресам.

Решение задач информационной безопасности должно быть комплексным, поскольку каждый способ защиты не только закрывает свою часть информационного периметра, но и дополняет другие решения.

Настройка сервера телефонии

Последним рубежом защиты является сам сервер IP-телефонии. Существует несколько классических методов защиты сервера от атак.

Метод защиты

Описание

Применение политики сложных паролей

Получение учетных данных методом перебора (bruteforce) требует значительных затрат времени и вычислительных ресурсов, усложнение паролей позволит сделать данный метод атак нецелесообразным

Отключение гостевых звонков

Разрешение на совершение исходящих звонков имеют только пользователи системы. Этой настройкой можно отсечь попытки позвонить извне без предварительной авторизации

Отключение ответа о неверном пароле

По умолчанию Asterisk выдает одну ошибку о неверном пароле для существующего аккаунта и другую для несуществующего аккаунта. Существует множество программ для подбора паролей, поэтому злоумышленнику не составит труда проверить все короткие номера и собирать пароли лишь к существующим аккаунтам, которые ответили «неверный пароль»

Использование систем блокировки доступа после неудачных попыток регистрации

Просмотр отчетов системы на предмет обнаружения попыток взлома позволят выделить и блокировать IP-адрес атакующего. Таким образом, можно сократить количество мусорного SIP трафика и защититься от множественных попыток взлома

Ограничение направлений звонков, доступных абонентам, применение схемы «запрещено все, кроме разрешенного»

В случае получения злоумышленником учетных данных пользователя системы, он сможет совершать звонки только по определенным направлениям. Это позволит избежать несанкционированного совершения дорогостоящих международных звонков

Регулярные проверки системы на предмет попыток взлома, контроль параметров

Организация системы мониторинга состояния системы позволит улучшить качество IP-телефонии и отметить типовые для данной конфигурации параметры. Отклонения этих параметров от полученных типовых значений поможет выявить проблемы с оборудованием, каналами связи и выявить попытки вторжения злоумышленников

Применение межсетевых экранов

Межсетевой экран пропускает исходящий трафик от сервера телефонии к SIP-провайдеру и фильтрует входящий по определенным правилам. Рациональным решением можно считать закрытие на межсетевом экране всех сетевых портов для IP-телефонии, кроме необходимых для ее корректной работы и администрирования. Этот же метод защиты целесообразно применять на самом сервере телефонии, чтобы защитить его от внутренних атак.

Таким образом, сервер телефонии доступен из внешних сетей только по определенным служебным портам, подключение к которым, из соображений безопасности, будет выполняться с применением шифрования.

Шифрование телефонных разговоров

Для защиты конфиденциальных переговоров и минимизации возможности попадания конфиденциальной или коммерческой информации в руки злоумышленника необходимо защитить передаваемые по открытым каналам связи данные от перехвата и прослушивания.

Поскольку для совершения звонка клиент и сервер предварительно обмениваются служебными данными для установления соединения, данную проблему можно разделить на две составляющих – защиту служебных данных IP-телефонии и защиту голосового трафика. В качестве средства защиты могут быть использованы протокол TLS (Transport Layer Security) для защиты SIP сигналов и протокол SRTP (Secure Real Time Protocol) для защиты голосового трафика.


Рисунок 2 - Шифрование IP-телефонии


TLS — криптографический протокол, обеспечивающий защищённую передачу данных между узлами в сети, является стандартным методом для шифрования SIP-протокола. TLS обеспечивает конфиденциальность и целостность передаваемой информации, осуществляет аутентификацию.

После установления защищенного соединения начинается передача голосовых данных, обезопасить которые позволяет применение протокола SRTP.

Протокол SRTP считается одним из лучших способов защиты IP телефонии на базе IP-АТС Asterisk. Основное преимущество этого протокола – отсутствие какого-либо влияния на качество связи. Схема работы протокола SRTP выглядит так: каждому совершаемому вами звонку присваивается уникальный код, который делает подслушивание разговоров неавторизированными в системе пользователями практически невозможным. Благодаря этому протокол SRTP выбирают как для обычных, так и для конфиденциальных звонков.

Не следует забывать о необходимости защиты подключения сервера телефонии к внешним каналам связи (мобильная связь, телефонные сети общего пользования).

Применение шифрованных туннелей VPN

В случае необходимости организации систем с повышенными требованиями к защите IP-телефонии, возможно подключение удаленных пользователей посредством виртуальных частных сетей (VPN). Содержание перехваченных пакетов, отправленных по шифрованным VPN туннелям понятно только владельцам ключа шифрования. Этот же метод применим для защиты подключений к поставщикам услуг IP-телефонии. На текущий момент многие VoIP провайдеры предлагают возможность VPN-подключения.


Рисунок 3 - Схема работы IP-телефонии через VPN-туннель


Однако технология VPN имеет ряд недостатков, ограничивающих ее применение:

  • снижение качества связи из-за задержек, создаваемых шифрованием;
  • повышенная нагрузка на каналы связи и оборудование, вызванная необходимостью шифрования;
  • усложнение сетевой структуры.

Применение перечисленных методов защиты сервера позволит свести к минимуму вероятность взлома, а при успешном обходе системы безопасности минимизировать ущерб.


Рисунок 4 - Комплексная защита IP-телефонии


Абсолютную гарантию безопасности, к сожалению, не сможет дать ни один комплекс мер. Рассмотренные выше аспекты лишь частично решают задачу построения защищенной коммуникационной системы . На практике следует рассматривать всю инфраструктуру корпоративной сети, проводить глубокий анализ требуемого уровня защиты. Необходимо учитывать не только необходимость обеспечения безопасности IP-телефонии , но и выходов на внешние каналы связи (мобильная связь, телефонные сети общего пользования). Только такой подход, вместе с постоянным совершенствованием систем информационной безопасности , позволит создать надежную и защищенную систему.


Для создания полноценной защиты от прослушивания необходимо "спрятать" сервер IP-телефонии, для чего отлично подходит решение «Сервер в Израиле» .

Системная интеграция. Консалтинг

IP-телефония? Ее тоже атакуют!

Принцип действия

Принцип действия технологии IP-телефонии прост. Центральным ее компонентом является сервер (шлюз), который отвечает за соединение телефонной и IP сетей, т.е. он подключен как к телефонной сети и может дозвониться до любого обычного телефона, так и к сети передачи данных (например, Internet) и может получить доступ к любому компьютеру. В функции данного устройства входят:

    Ответ на вывоз вызывающего абонента

    Установление соединение с удаленным шлюзом и вызываемым абонентом

    Оцифровка (кодирование), сжатие, разбиение на пакеты и восстановление сигнала

Данный шлюз (например, Cisco Catalyst 4000 Access Gateway Module или Cisco VG200) на вход принимает обычный телефонный сигнал, оцифровывает его (если сигнал не цифровой) и проводит сжатие полученных данных, после чего передает в IP-сеть в виде обычных пакетов (но не очень большого размера). На другом конце шлюз восстанавливает сигнал в обратном порядке. Данный компонент может и не использоваться, если вы не планируете интегрировать свои IP-телефоны в телефонную сеть общего пользования (см. рис.1).

Для того чтобы можно было построить распределенную сеть IP-телефонии необходимо наличие диспетчера, который отвечает за распределение вызовов между шлюзами (например, Cisco CallManager). Помимо этой задачи диспетчер проводит аутентификацию и авторизацию абонентов, а также обладает интерфейсом к биллинговой системе.

Для удобства администрирования большого числа удаленных шлюзов и диспетчеров может использоваться специальное программное обеспечение, называемое монитором. Ну и, наконец, последним обязательным элементом сети IP-телефонии является абонентский пункт, который может быть реализован как программным (например, Cisco IP SoftPhone), так и аппаратным способом (например, Cisco IP Phone, подключаемые напрямую к Ethernet-порту коммутатора). Причем в первом случае звонки можно осуществлять даже через домашний компьютер, оснащенный звуковой картой и микрофоном, а во втором случае, в качестве абонентского пункта выступает т.н. IP-телефон. Еще одним компонентом архитектуры IP-телефонии можно назвать специализированные пользовательские приложения, возникшие благодаря интеграции голоса, видео и данных (call-центры, системы унифицированной обработки сообщений).

Зачем атакуют IP-телефонию?

Сети IP-телефонии – хорошая цель для хакеров. Некоторые из них могут подшутить над вами, послав вам голосовое сообщение от имени руководства компании. Кто-то может захотеть получить доступ к голосовому почтовому ящику вашего руководства или даже захочет перехватить голосовые данные о финансовых сделках, которыми обмениваются сотрудники финансового департамента или бухгалтерии. Ваши конкуренты могут захотеть подорвать вашу репутацию путем выведения из строя шлюзов и диспетчеров, тем самым, нарушая доступность телефонных услуг для ваших абонентов, что, в свою очередь, может также привести к нанесению ущерба бизнесу ваших клиентов. Существуют и другие причины, например, звонки за чужой счет (кража сервиса).

Возможные угрозы

Главная проблема с безопасностью IP-телефонии в том, что она слишком открыта и позволяет злоумышленникам относительно легко совершать атаки на ее компоненты. Несмотря на то, что случаи таких нападений практически неизвестны, они могут быть при желании реализованы, т.к. атаки на обычные IP-сети практически без изменений могут быть направлены и на сети передачи оцифрованного голоса. С другой стороны, похожесть обычных IP-сетей и сетей IP-телефонии подсказывает нам и пути их защиты, но об этом чуть дальше.

Атаки на обычную телефонию применимы и для ее IP-родственницы - фонарь.

IP-телефония, являясь прямой родственницей обычной телефонии и IP-технологии, вобрала в себя не только их достоинства, но и их недостатки. Т.е. атаки, присущие обычной телефонии, также могут быть применены и для ее IP-составляющей. Перечислю некоторые из них, часть их которых я рассмотрю более подробно:

    Подслушивание телефонных переговоров

    Отказ в обслуживании

    Подмена номера

    Кража сервисов

    Неожидаемые вызовы

    Несанкционированное изменение конфигурации

    Мошенничество со счетом.

Перехват данных

Перехват данных – самая большая проблема, как обычной телефонии, так и ее IP-родственницы.

Однако в последнем случае эта опасность намного выше, т.к. злоумышленнику уже не надо иметь физический доступ к телефонной линии. Ситуацию ухудшает еще и тот факт, что множество протоколов, построенных на базе стека TCP/IP, передают данные в открытом виде. Таким грехом страдают HTTP, SMTP, IMAP, FTP, Telnet, SQL*net и, в том числе, протоколы IP-телефонии. Злоумышленник, который смог перехватить голосовой IP-трафик (а он по умолчанию между шлюзами не шифруется) может без труда восстановить исходные переговоры. Для этого существуют даже автоматизированные средства. Например, утилита vomit (Voice Over Misconfigured Internet Telephones), которая конвертирует данные, полученные в результате перехвата трафика с помощью свободно распространяемого анализатора протоколов tcpdump, в обычный WAV-файл, прослушиваемый с помощью любого компьютерного плейера. Эта утилита позволяет конвертировать голосовые данные, переданные с помощью IP-телефонов Cisco и сжатые с помощью кодека G.711. Мало того, помимо несанкционированного прослушивания злоумышленники могут повторно передать перехваченные голосовые сообщения (или их фрагменты) для достижения своих целей.

Однако сразу хочу отметить, что перехват голосовых данных - не такая простая задача, как кажется на первый взгляд. Злоумышленник должен иметь информацию об адресах шлюзов или абонентских пунктов, используемых VoIP-протоколах (например, H.323) и алгоритмах сжатия (например, G.711). В противном случае, злоумышленнику будет трудно настроить ПО для перехвата трафика или объем перехваченных данных и время для их анализа превысит все допустимые пределы.

Перехват данных может быть осуществлен как изнутри корпоративной сети, так и снаружи. Квалифицированный злоумышленник, имеющий доступ к физической среде передаче данных, может подключить свой IP-телефон к коммутатору и таким образом подслушивать чужие переговоры. Он также может изменить маршруты движения сетевого трафика и стать центральным узлом корпоративной сети через который проходит интересующий его трафик. Причем, если во внутренней сети вы можете с определенной долей вероятности обнаружить несанкционированно подключенное устройство, перехватывающее голосовые данные, то во внешней сети обнаружить ответвления практически невозможно. Поэтому любой незашифрованный трафик, выходящий за пределы корпоративной сети, должен считаться небезопасным.

Отказ в обслуживании

Традиционная телефонная связь всегда гарантирует качество связи даже в случае высоких нагрузок, что не является аксиомой для IP-телефонии. Высокая нагрузка на сеть, в которой передаются оцифрованные голосовые данные, приводит к существенному искажению и даже пропаданию части голосовых сообщений. Поэтому одна из атак на IP-телефонию может заключаться в посылке на сервер IP-телефонии большого числа "шумовых" пакетов, которые засоряют канал передачи данных, а в случае превышения некоторого порогового значения могут даже вывести из строя часть сети IP- телефонии (т.е. атака "отказ в обслуживании"). Что характерно, для реализации такой атаки нет необходимости "изобретать велосипед" - достаточно использовать широкие известные DoS-атаки Land, Ping of Death, Smurf, UDP Flood и т.д. Одним из решений этой проблемы является резервирование полосы пропускания, которого можно достичь с помощью современных протоколов, например, RSVP. Более подробно способы защиты будут рассмотрены далее.

Отказ в обслуживании - серьезная проблема для устройств IP-телефонии. - фонарь

Подмена номера

Для связи с абонентом в обычной телефонной сети вы должны знать его номер, а в IP-телефонии – роль телефонного номера выполняет IP-адрес. Следовательно, возможна ситуация, когда злоумышленник, используя подмену адреса, сможет выдать себя за нужного вам абонента. Именно поэтому задача обеспечения аутентификации не обойдена вниманием во всех существующих VoIP- стандартах и будет рассмотрена чуть позже.

Атаки на абонентские пункты

Необходимо понимать, что абонентские пункты, реализованные на базе персонального компьютера являются менее защищенными устройствами, чем специальные IP-телефоны. Этот тезис также применим и к любым другим компонентам IP-телефонии, построенным на программной основе. Это связано с тем, что на такие компоненты можно реализовать не только специфичные для IP- телефонии атаки. Сам компьютер и его составляющие (операционная система, прикладные программы, базы данных и т.д.) подвержены различным атакам, которые могут повлиять и на компоненты IP-телефонии. Например, Internet-черви Red Code, Nimda, различные троянцы и вирусы, DoS-атаки и их распределенные модификации – все это способно, если не вывести из строя голосовую IP-инфраструктуру, то существенно нарушить ее функционирование. При этом, даже если в самом ПО не найдено уязвимостей (до поры до времени), то используемые им другие программные компоненты третьих фирм (особенно широко известные) могут снизить общую защищенность до нуля. Ведь давно известно общее правило - "защищенность всей системы равна защищенности самого слабого ее звена". Для примера можно привести Cisco CallManager, который использует для своего функционирования Windows 2000 Server, MS Internet Information Server и MS SQL Server, каждый из которых обладает своим букетом дыр.

Атаки на диспетчеры

Злоумышленники могут атаковать и узлы (Gatekeeper в терминах H.323 или Redirect server в терминах SIP), которые хранят информацию о разговорах пользователей (имена абонентов, время, продолжительность, причина завершения звонка и т.д.). Это может быть сделано, как с целью получения конфиденциальной информации о самих разговорах, так и с целью модификации и даже удаления указанных данных. В последнем случае биллинговая система (например, у оператора связи) не сможет правильно выставлять счета своим клиентам, что может нарушить функционирование или нанести ущерб всей инфраструктуре IP-телефонии.

Стандарты IP-телефонии и механизмы их безопасности

Отсутствие единых принятых стандартов в данной области (см. рис.2) не позволяет разработать и универсальные рекомендации по защите устройств IP-телефонии. Каждая рабочая группа или производитель по-своему решает задачи обеспечения безопасности шлюзов и диспетчеров, что приводит к необходимости тщательного их изучения перед выбором адекватных мер по защите.

Безопасность H.323

H.323 - протокол, который позволяет построить VoIP-систему от начала и до конца. H.323 включает в себя ряд спецификаций, в т.ч. и H.235, которая реализует некоторые механизмы безопасности (аутентификацию, целостность, конфиденциальность и невозможность отказа от сообщений) для голосовых данных.

Аутентификация в рамках стандарта H.323 может быть реализована как с помощью алгоритмов симметричной криптографии (в этом случае не требуется никакого предварительного обмена между взаимодействующими устройствами и не так интенсивно нагружается центральный процессор), так и с помощью сертификатов или паролей. Кроме того, спецификация H.235 позволяет использовать в качестве механизма аутентификации IPSec, который также рекомендуется к применению и в других стандартах IP-телефонии.

После установки защищенного соединения, которое происходит через 1300 tcp-порт, узлы, участвующие в обмене голосовыми данными, обмениваются информацией о методе шифрования, которое может быть задействовано на транспортном (шифрование пакетов RTP-протокола) или сетевом (с помощью IPSec) уровне.

Безопасность SIP

Данный протокол, похожий на HTTP и используемый абонентскими пунктами для установления соединения (не обязательно телефонного, но и, например, для игр), не обладает серьезной защитой и ориентирован на применение решений третьих фирм (например, PGP). В качестве механизма аутентификации RFC 2543 предлагает несколько вариантов и, в частности, базовую аутентификацию (как в HTTP) и аутентификацию на базе PGP. Пытаясь устранить слабую защищенность данного протокола, Майкл Томас из компании Cisco Systems разработал проект стандарта IETF, названный "SIP security framework", который описывает внешние и внутренние угрозы для протокола SIP и способы защиты от них. В частности, к таким способам можно отнести защиту на транспортном уровне с помощью TLS или IPSec. Кстати, компания Cisco в своей архитектуре безопасности корпоративных сетей SAFE, очень большое внимание уделяет практическим вопросам защиты IP- телефонии.

Безопасность MGCP

Стандарт MGCP, определенный в RFC 2705 и неприменяемый на оконечных устройствах (шлюзы MGCP могут работать как с компонентами, поддерживающими H.323, так и с компонентами, поддерживающими SIP), использует для защиты голосовых данных протокол ESP спецификации IPSec. Может также использоваться и протокол AH (но только не в сетях IPv6), который обеспечивает аутентификацию и целостность данных (connectionless integrity) и защиту от повторений, передаваемых между шлюзами. В то же время, протокол AH не обеспечивает конфиденциальности данных, которая достигается применением ESP (наряду с другими тремя защитными функциями).

Обеспечение безопасности

Выбор правильной топологии

Не рекомендуется использовать для VoIP-инфраструктуры концентраторы, которые облегчают злоумышленникам перехват данных. Кроме того, т.к. оцифрованный голос обычно проходит по той же кабельной системе и через тоже сетевое оборудование, что и обычные данные, стоит правильно разграничить между ними информационные потоки. Это, например, может быть сделано с помощью механизма VLAN (однако не стоит полагаться только на них). Сервера, участвующие в инфраструктуре IP-телефонии желательно размещать в отдельном сетевом сегменте (см. рис.3), защищенном не только с помощью встроенных в коммутаторы и маршрутизаторы механизмов защиты (списки контроля доступа, трансляция адресов и обнаружение атак), но и с помощью дополнительно установленных средств защиты (межсетевые экраны, системы обнаружения атак, системы аутентификации и т.д.).

Вы должны помнить, что передача голосовых данных по вашей корпоративной сети накладывает на ее проектирование особый отпечаток. Большое внимание вы должны уделить вопросам высокой доступности и отказоустойчивости. Если пользователи еще могут привыкнуть к непродолжительному выходу из строя Web-сервера или почтовой системы, то привыкнуть к нарушению телефонной связи они не смогут. Обычная телефонная сеть так редко выходит из строя, что многие пользователи закономерно наделяют свойством безотказности и ее IP-сестру. Поэтому сбой в работе VoIP- инфраструктуры может подорвать к ней доверие со стороны пользователей, что в свою очередь может привести к отказу от ее использования и нанесению материального ущерба ее собственнику.

Физическая безопасность

Желательно запретить неавторизованный доступ пользователей к сетевому оборудованию, в т.ч. и коммутаторам, и по возможности все неабонентское оборудование разместить в специально оборудованных серверных комнатах. Это позволит предотвратить несанкционированное подключение компьютера злоумышленника. Кроме того, следует регулярно проверять наличие несанкционированно подключенных к сети устройств, которые могут быть "врезаны" напрямую в сетевой кабель. Для определения таких устройств можно использовать различные методы, в т.ч. и сканеры (например, Internet Scanner или Nessus), дистанционно определяющие наличие в сети "чужих" устройств.

Контроль доступа

Еще один достаточно простой способ защиты инфраструктуры VoIP – контроль MAC-адресов. Не разрешайте IP-телефонам с неизвестными MAC-адресами получать доступ к шлюзам и иным элементам IP-сети, передающей голосовые данные. Это позволит предотвратить несанкционированное подключение "чужих" IP-телефонов, которые могут прослушивать ваши переговоры или осуществлять телефонную связь за ваш счет. Разумеется, MAC-адрес можно подделать, но все-таки не стоит пренебрегать такой простой защитной мерой, которая без особых проблем реализуется на большинстве современных коммутаторов и, даже, концентраторов. Узлы (в основном, шлюзы, диспетчеры и мониторы) должны быть настроены таким образом, чтобы блокировать все попытки несанкционированного доступа к ним. Для этого можно воспользоваться как встроенными в операционные системы возможностями, так и продуктами третьих фирм. А так как мы работаем в России, то я рекомендую применять средства, сертифицированные в Гостехкомиссии России, тем более что таких средств немало.

VLAN

Технология виртуальных локальных сетей (VLAN) обеспечивает безопасное разделение физической сети на несколько изолированных сегментов, функционирующих независимо друг от друга. В IP телефонии эта технология используется для отделения передачи голоса от передачи обычных данных (файлов, e-mail и т.д.). Диспетчеры, шлюзы и IP-телефоны помещают в выделенную VLAN для передачи голоса. Как я уже отметил выше, VLAN существенно усложняет жизнь злоумышленникам, но не снимает всех проблем с подслушиванием переговоров. Существуют методы, которые позволяют злоумышленникам перехватывать данные даже в коммутированной среде.

Шифрование

Шифрование должно использоваться не только между шлюзами, но и между IP-телефоном и шлюзом. Это позволит защитить весь путь, который проходят голосовые данные из одного конца в другой. Обеспечение конфиденциальности не только является неотъемлемой частью стандарта H.323, но и реализовано в оборудовании некоторых производителей. Однако этот механизм практически никогда не задействуется. Почему? Потому что качество передачи данных является первоочередной задачей, а непрерывное зашифрование/расшифрование потока голосовых данных требует времени и вносит зачастую неприемлемые задержки в процесс передачи и приема трафика (задержка в 200 . 250 мсек может существенно снизить качество переговоров). Кроме того, как уже было сказано выше, отсутствие единого стандарта не позволяет принять всеми производителями единый алгоритм шифрования. Однако справедливости ради надо сказать, что сложности перехвата голосового трафика пока позволяют смотреть на его шифрование сквозь пальцы.

Кстати, если вы все-таки решитесь использовать шифрование, то помните, что, шифруя голосовые данные, вы скрываете их не только от злоумышленника, но и от средств обеспечения контроля качества (QoS), которые не смогут предоставить им соответствующую полосу пропускания и приоритетное обслуживание. Устранив одну проблему (беззащитность), перед вами встает другая (качество обслуживания). И можно быть уверенным, что при таком раскладе вы предпочтете решение второй проблемы, пренебрегая решением первой. Кстати, шифровать можно тоже не все подряд. Сигнальные протоколы, используемые в IP-телефонии, шифровать не рекомендуется, т.к. в этом случае вы зашифруете и всю служебную информацию, необходимую для поддержания работоспособности всей сети.

Но не стоит сразу отказываться от шифрования - все-таки обезопасить свои переговоры также необходимо. Поэтому стоит с умом подходить к шифрованию VoIP-данных. Например, компания Cisco рекомендует вместо туннеля GRE или применения VPN-концентраторов Cisco VPN 3000 использовать команду Crypto в операционной системе IOS своего оборудования, что позволяет защитить данные при сохранении качества обслуживания. Кроме того, можно использовать выборочное шифрование только для определенных полей в VoIP-пакетах.

Межсетевой экран

Для защиты корпоративной сети обычно используется межсетевые экраны, которые с тем же успехом

могут быть использованы и для защиты VoIP-инфраструктуры. Единственное, что необходимо сделать - добавить ряд правил, учитывающих топологию сети, местоположение установленных компонентов IP-телефонии и т.д. Например, доступ к Cisco CallManager из Internet или демилитаризованной зоны обычно блокируется, однако в случае использования Web- ориентированного управления такой доступ должен быть разрешен, но только для 80-го порта и только для ограниченного диапазона внешних адресов. А для защиты SQL-сервера, входящего в состав Cisco CallManager, можно запретить доступ со всех портов кроме 1433-го.

Кстати, существует два типа межсетевых экранов, которые могут быть использованы для защиты компонентов IP-телефонии. Первый из них, корпоративный, ставится на выходе из корпоративной сети и защищает сразу все ее ресурсы. Примером такого МСЭ является CiscoSecure PIX Firewall. Второй тип - персональный, защищающий только один конкретный узел, на котором может стоять абонентский пункт, шлюз или диспетчер. Примерами таких персональных МСЭ являются RealSecure Desktop Protector или BlackICE PC Protector. Кроме того, некоторые операционные системы (например, Linux или Windows 2000) имеют встроенные персональные межсетевые экраны, что позволяет задействовать их возможности для повышения защищенности инфраструктуры VoIP. В зависимости от используемого стандарта IP-телефонии применение межсетевых экранов может повлечь за собой разные проблемы. Например, после того, как с помощью протокола SIP абонентские пункты обменялись информацией о параметрах соединения, все взаимодействие осуществляется через динамически выделенные порты с номерами больше 1023. В этом случае МСЭ заранее "не знает" о том, какой порт будет использован для обмена голосовыми данными и, как следствие, будет такой обмен блокировать. Поэтому межсетевой экран должен уметь анализировать SIP-пакеты с целью определения используемых для взаимодействия портов и динамически создавать или изменять свои правила. Аналогичное требование предъявляется и для других протоколов IP-телефонии.

Еще одна проблема связан с тем, что не все МСЭ умеют грамотно обрабатывать не только заголовок протокола IP-телефонии, но и его тело данных, т.к. зачастую важная информация находится внутри него. Например, информация об адресах абонентов в протоколе SIP находится именно в теле данных. Неумение межсетевого экрана "вникать в суть" может привести к невозможности обмена голосовыми данными через межсетевой экран или "открытии" в нем слишком большой дыры, которой могут воспользоваться злоумышленники.

Аутентификация

Различные IP-телефоны поддерживают механизмы аутентификации, которые позволяют воспользоваться его возможностями только после предъявления и проверки пароля или персонального номера PIN, разрешающего пользователю доступ к IP-телефону. Однако надо заметить, что данное решение не всегда удобно для конечного пользователя, особенно в условиях ежедневного использования IP-телефона. Возникает обычное противоречие "защищенность или удобство".

RFC 1918 и трансляция адресов

Не рекомендуется использовать для VoIP IP-адреса, доступные из Internet, - это существенно снижает общий уровень безопасность инфраструктуры. Поэтому при возможности используйте адреса, указанные в RFC 1918 (10.x.x.x, 192.168.x.x и т.д.) и немаршрутизируемые в Internet. Если это невозможно, то необходимо задействовать на межсетевом экране, защищающем вашу корпоративную сеть, механизм трансляции адресов (network address translation, NAT).

Системы обнаружения атак

Выше уже было рассказано о некоторых атаках, которые могут нарушить работоспособность VoIP- инфраструктуры. Для защиты от них можно использовать хорошо себя зарекомендовавшие и известные в России средства обнаружения атак (intrusion detection system), которые не только своевременно идентифицируют нападения, но и блокируют их, не давая нанести вред ресурсам корпоративной сети. Такие средства могут защищать как целые сетевые сегменты (например, RealSecure Network Sensor или Snort), так и отдельные узлы (например, CiscoSecure IDS Host Sensor или RealSecure Server Sensor).

Спецификацией IETF, где описаны стандартные методы для всех компонентов VPN, является протокол Internet Protocol Security, или IPSec, - иногда его называют туннелирова-нием третьего уровня (Layer-3 Tunneling). IPSec предусматривает стандартные методы идентификации пользователей или компьютеров при инициации туннеля, стандартные способы использования шифрования конечными точками туннеля, а также стандартные методы обмена и управления ключами шифрования между конечными точками. Этот гибкий стандарт предлагает несколько способов для выполнения каждой задачи. Выбранные методы для одной задачи обычно не зависят от методов реализации других задач. Идентификацию можно выполнять с помощью спецификации IPSec, причем она является обязательным компонентом протокола IPv6.

IPSec может работать совместно с L2TP, в результате эти два протокола обеспечивают более надежную идентификацию, стандартизованное шифрование и целостность данных. Следует отметить, что спецификация IPSec ориентирована на IP и, таким образом, бесполезна для трафика любых других протоколов сетевого уровня. Туннель IPSec между двумя локальными сетями может поддерживать множество индивидуальных каналов передачи данных, в результате чего приложения данного типа получают преимущества с точки зрения масштабирования по сравнению с технологией второго уровня.

Некоторые поставщики VPN используют другой подход под названием «посредники каналов» (circuit proxy), или VPN пятого уровня. Этот метод функционирует над транспортным уровнем и ретранслирует трафик из защищенной сети в общедоступную сеть Internet для каждого сокста в отдельности. (Сокет IP идентифицируется комбинацией TCP-соединения и конкретного порта или заданным портом UDP. Протокол IP не имеет пятого - сеансового -уровня, однако ориентированные на сокеты операции часто называют операциями сеансового уровня).

Шифрование информации, передаваемой между инициатором и терминатором туннеля, часто осуществляется с помощью защиты транспортного уровня (Transport Layer Security, TLS), ранее протокола защищенных сокетов (Secure Sockets Layer, SSL). Для стандартизации аутентифицированного прохода через брандмауэры IETF определил протокол под названием SOCKS, и в настоящее время SOCKS 5 применяется для стандартизованной реализации посредников каналов.

В SOCKS 5 клиентский компьютер устанавливает аутентифицированный сокет (или сеанс) с сервером, выполняющим роль посредника (proxy). Этот посредник - единственный способ связи через брандмауэр. Посредник, в свою очередь, проводит любые операции, запрашиваемые клиентом. Поскольку посреднику известно о трафике на уровне сокета, он может осуществлять тщательный контроль, например, блокировать конкретные приложения пользователей, если они не имеют необходимых полномочий. Для сравнения, виртуальные частные сети уровня 2 и 3 обычно просто открывают или закрывают канал для всего трафика по аутентифицированному туннелю. Это может представлять проблему, если нет гарантии защиты информации на другом конце туннеля.

Следует отметить на наличие взаимосвязи между брандмауэрами и VPN. Если туннели завершаются на оборудовании провайдера Интернет, то трафик будет передаваться по вашей локальной сети или по линии связи с провайдером Интернет в незащищенном виде. Если конечная точка расположена за брандмауэром, то туннелируемый трафик можно контролировать с помощью средств контроля доступа брандмауэра, но никакой дополнительной защиты при передаче по локальной сети это не даст. В этом случае конечную точку будет связывать с брандмауэром незащищенный канал.

Расположение конечной точки внутри защищаемой брандмауэром зоны обычно означает открытие прохода через брандмауэр (как правило, через конкретный порт TCP). Некоторые компании предпочитают применять реализуемый брандмауэром контроль доступа ко всему трафику, в том числе и к туннелируемому, особенно если другую сторону туннеля представляет пользователь, стратегия защиты которого неизвестна или не внушает доверия. Одно из преимуществ применения тесно интегрированных с брандмауэром продуктов тунне-лирования состоит в том, что можно открывать туннель, применять к нему правила защиты брандмауэра и перенаправлять трафик на конечную точку на конкретном компьютере или в защищаемой брандмауэром подсети.

Как и любая другая вычислительная функция, работа по созданию сетей VPN проводится с помощью программного обеспечения. Между тем программное обеспечение для VPN может выполняться на самых разных аппаратных платформах. Маршрутизаторы или коммутаторы третьего уровня могут поддерживать функции VNP по умолчанию (или в качестве дополнительной возможности, предлагаемой за отдельную плату). Аппаратно и программно реализуемые брандмауэры нередко предусматривают модули VPN со средствами управления трафиком или без них. Некоторые пограничные комбинированные устройства включают в себя маршрутизатор, брандмауэр, средства управления пропускной способностью и функции VPN (а также режим конфигурации). Наконец, ряд чисто программных продуктов выполняется на соответствующих серверах, кэширует страницы Web, реализует функции брандмауэра и VPN.

Механизм VPN немыслим без идентификации. Инфраструктура с открытыми ключами (Public Key Infrastructure, PKI) для электронной идентификации и управления открытыми ключами является в настоящее время основной. Данные PKI целесообразнее всего хранить в глобальном каталоге, обращаться к которому можно по упрощенному протоколу доступа к каталогу (Lightweight Directory Access Protocol, LDAP).

Так как технология VoIP базируется на технологии IP и использует Интернет, она так же наследует все её уязвимости. Последствия этих атак, умноженные на уязвимости, которые следуют из особенностей архитектуры сетей VoIP, заставляют задуматься о способах усиления защиты и тщательном анализе существующей сети IP . Более того, добавление любого нового сервиса, например, голосовой почты в недостаточно защищенную инфраструктуру может спровоцировать появление новых уязвимостей.

Риски и уязвимости, наследованные из IP сетей.

Плохой дизайн сети

Неправильно спроектированная сеть может повлечь за собой большое количество проблем, связанных с использованием и обеспечением необходимой степени информационной безопасности в VoIP сетях. Межсетевые экраны, к примеру, являются уязвимым местом в сети, по причине того, что для правильного функционирования VoIP сети необходимо открывать дополнительные порты, и межсетевые экраны, не поддерживающие технологию VoIP, способны просто оставлять открытыми ранее используемые порты даже после завершения вызовов.

Уязвимые IP АТС и шлюзы

Если злоумышленник получает доступ к шлюзу или АТС, он так же получает доступ к захвату целых сессий (по сути – возможность прослушать вызов), узнать параметры вызова и сети. Таким образом, на безопасность АТС необходимо обратить наибольшее внимание. Убытки от таких вторжений могут достигать значительных сумм.

Атаки с повторением пакетов

Атака с повторением пакета может быть произведена в VoIP сети путем повторной передачи серии корректных пакетов, с целью того, что бы приёмное устройство произвело повторную обработку информации и передачу ответных пакетов, которые можно проанализировать для подмены пакетов (спуфинга) и получения доступа в сеть. К примеру, даже при условии зашифрованных данных, существует возможность повторения пакета с логином и паролем пользователем пользователя, и, таким образом, получения доступа в сеть.

Риски и уязвимости, характерные для VoIP сетей

Подмена и маскировка пакетов
Использование подменных пакетов с неправильным IP-адресом источника могут использоваться для следующих целей:

Перенаправление пакетов в другую сеть или систему

Перехват трафика и атака «man-in-the-middle» (рисунок ниже)

  • Маскировка под доверенное устройство - «Перенос ответственности» за атаку на другое устройство
  • Фаззинг(Fuzzing) - Нагрузка системы пакетами с не полностью корректной информацией, что вызывает ошибки в работе системы при их обработке, например такие как задержки при работе, утечки информации и полный отказ системы
  • Сканирование на предмет возможных уязвимостей - Сканирование портов может дать злоумышленнику начальные данные для проведения полноценной атаки, такие как модели операционных систем, типы используемых сервисов и приложений. При нахождении уязвимого сервиса злоумышленник может получить доступ к управлению всей сетью, и, как следствию, к возможности причинить большой ущерб.
  • Низкая надежность по сравнению с традиционными сетям - Для достижения качественной связи, пакетам, содержащим голосовую и видео нагрузку присваивается высокий приоритет в механизмах качества обслуживания QoS (качества обслуживания). Однако, надежность VoIP и сетей передачи данных стремится к 99,9%, что ниже чем степени надежности в традиционных телефонных сетях, у которых данный параметр стремится к 99,999%. Конечно, разница не столь велика, однако за год эта разница выливается в дополнительные 8.7 часа, во время которых система не работает. Но необходимо понимать, что далеко не каждому предприятию это может повредить.
  • Атаки DDoS(Distributed Denial of Service) - Атаки DoS и DDoS происходят когда злоумышленник посылает крайне большие объемы случайных сообщений на одно или несколько VoIP устройств из одного или нескольких мест (DoS и DDoS соответственно). Атака из нескольких мест используется с помощью «зомби» - скомпрометированные сервера и рабочие станции, которые автоматически посылают вредоносные запросы в соответствии с потребностями злоумышленника. Успешной такая атака считается в момент, когда количество запросов превышает вычислительную мощность объекта, в следствие чего происходит отказ в обслуживании для конечных пользователей.

VoIP системы особенно уязвимы для таких атак, т.к они имеют высокий приоритет в технологии обеспечения качества обслуживания QoS, и для нарушения их работы требуется меньшее количество трафика нежели для обычных сетей передачи данных. Примером DoS атаки против именно VoIP сети может быть атака при множественной передачи сигналов отмены или установления вызова, которая так же имеет название SIP CANCEL DoS атака.


  • CID спуфинг - Один из типов атак с подменой пакетов построен на манипуляциях с идентификатором звонящего (Caller ID или CID), который используется для идентификации звонящего до ответа. Злоумышленник может подменить этот идентификатор текстовой строкой или телефонным номером и может использоваться для осуществления различных действий, вредящих сети или владельцу предприятия. Кроме того, в VoIP сетях нет возможности скрыть этот идентификатор, т.к телефонные номера включены в заголовках пакетов в протоколе SIP. Это позволяет злоумышленнику со сниффером пакетов, например tcpdump узнать телефонные номера даже если они имеют параметр «private» у сервисного провайдера.
  • Заключение - Использование IP-телефонии приносит огромное количество пользы для любой организации – решение на базе VoIP более масштабируемы, легко интегрируемы и их стоимость ниже классических решений. Однако, любая организация, внедрив VoIP решение должна быть в курсе возможных угроз и предпринимать всевозможные усилия для увеличения степени информационной безопасности в сети. Были перечислены лишь некоторые методы атак, но необходимо понимать, что часто используются комбинации атак и практически ежедневно разрабатываются новые атаки. Но понятно уже сейчас, что за данной технологией будущее и она вряд ли уступит пальму первенства другой технологии в обозримом будущем.