Большая энциклопедия нефти и газа. Статическая устойчивость

Основной задачей электроэнергетики является бесперебойное, устойчивое обеспечение потребителя электрической энергией. Необходимо определить, при каких условиях возможно обеспечение устойчивой работы генераторов, какую величину мощности можно передать по линии электропередачи, от каких факторов зависит обеспечение устойчивости, почему нарушается устойчивая, параллельная работа синхронных генераторов, находящихся в нормальной работе. Приступим к рассмотрению этих вопросов.

Рис 7. Простейшая схема электрической системы

Для представленной схемы электропередачи в предыдущем разделе было получено выражение электрической мощности в зависимости от угла между векторами э.д.с. Eq и напряжения приемных шин U, которое называют угловой характеристикой:

При заданных величинах Eq, U, Xd мощность генератора является функцией угла, причем эта зависимость нелинейна - синусоидальна. Для полноты на этом же графике рисуют характеристику мощности турбины PТ, а так как она не зависит от угла, ее представляют прямой линией.

Рис. 8.

Баланс мощностей на валу генератора, т.е. синхронная работа обеспечивается при Pг=PT , т.е. при равенстве вращающей механической мощности (момента) турбины и тормозной электромагнитной мощности (момента) генератора. Данное утверждение вытекает и из дифференциального уравнения относительного движения ротора синхронной машины, рассмотренного в предыдущей лекции

при Pг=PT,=пост. (21)

Как видно из графика рис 8, условие PГ = PT выполняется в двух точках 1 и 2, которым соответствует углы 1 и 2 . Необходимо определить в какой из этих точек генератор будет работать устойчиво.

Предположим, что в результате какого-то воздействия угол в точке 1 отклонился на малую величину. При этом электромагнитная мощность генератора и передаваемая по линии электропередачи мощность увеличивалась на величину P1, в то время как механическая мощность турбины не изменилась вследствие инерционности. Нарушилось условие баланса мощностей (моментов) на валу, так как (Pг1 + P1)>PT, причем на валу преобладает тормозной момент, под действием которого ротор генератора тормозится. В результате угол начинает уменьшаться и 0, и ротор возвращается в точку 1, где обеспечивается равновесие моментов. Аналогичный процесс - возвращение в точку 1 происходит, если угол в этой точке уменьшиться на.

Если такое же увеличение угла на величину происходит в точке 2, то возникающий на валу избыточный момент будет ускоряющим, так как (Pг2 - P2)

Следовательно, из двух точек 1 и 2 режим в точке 1 является устойчивым, так как ротор при малых отклонениях возвращается в исходную точку. Следовательно, признаком устойчивости работы синхронного генератора является возвращение в исходный режим. Необходимо помнить, что восстановление первоначального режима или же близкого к нему является основным показателем устойчивой работы синхронного генератора и соответственно электрической системы.

По мере увеличения мощности турбины и, соответственно, мощности передаваемой по линии согласно графика, увеличивается также и величина угла, приближаясь к точке 3. Эта точка, с одной стороны, показывает максимальную активную мощность генератора, которую можно передать при m=900:

где Pm= - максимальная мощность. С другой стороны, точка является граничной, разделяющей устойчивую и неустойчивую области работы генератора.

Необходимо помнить, что пределы изменения угла:

0900 является зоной устойчивой работы синхронного генератора;

- >900 область не устойчивой работы синхронного генератора.

Максимальную мощность Pm= называют идеальным статическим пределом передаваемой мощности, соответствующей постоянству напряжения U, что не всегда выполняется.

В практических расчетах, в целях количественной оценки уровня статической устойчивости (устойчивости при малых отклонениях) вводят понятие коэффициента запаса статической устойчивости, определяемой соотношениям:

Величина Kc устанавливается в пределах не менее:

20% в нормальных режимах,

8% в послеаварийных режимах.

Было установлено, что устойчивая работа синхронного генератора обеспечивается, если знаки приращений угла и мощности P= PT ± Pг совпадают. Тогда для отклонений можно написать:

или, переходя к производной: , так как PT=пост.

Таким образом, статическая устойчивость будет обеспечена при выполнении условия

Это условие является математическим критерием статической устойчивости синхронной машины. Проблема и сущность устойчивости при малых возмущениях сводятся к принятию мер, при которых это условие будет выполнено. Они будут рассмотрены далее.

Необходимо отметить еще раз, что возможность передачи активной мощности по линии электропередачи связано именно с наличием угла сдвига между векторами э.д.с. Eq и напряжения приемной системы U, другими словами, угла сдвига между векторами напряжений по концам передачи. Таким образом, изменение впуска энергоносителя (пара или воды) в турбины передающей станции и их механической мощности отражается на электрическом режиме передачи изменением угла, который является величиной, характеризующей и устойчивость передачи, и ее предельный режим.

Меры обеспечения запаса статической устойчивости электрической системы

В целях избежания нарушений статической устойчивости электрической системы необходимо выполнение следующих условий:

Предельные мощности, передаваемые по линиям электропередачи не должны превышать предельно-допустимые значения, что равносильно установлению предельных углов сдвигов роторов генераторов;

Уровни напряжений, в особенности в узлах нагрузки не должны снижаться ниже допустимого.

Обеспечение этих условий осуществляется как в процессе эксплуатации электрической системы, так и в процессе ее проектирования с подбором соответствующих оборудований, так как их параметры должны быть выбраны, исходя из этих требований.

Величина запаса статической устойчивости в силу вышеперечисленных условий имеет существенное практическое значение, а ее обеспечение и увеличение зависят от многих факторов.

Рассмотрим наиболее важные из них.

Пусть задана простая схема электрической системы

Рис 9 Простейшая схема электрической системы.

Рис 10. Схема замещения электрической системы

Мощность, передаваемая от генератора, определяется выражением:

В случае неучета активных сопротивлений элементов электрической сети (ri=0) эта формула упрощается

Из структуры формулы видно, что воздействуя или изменяя величины, входящие в Pm, можно увеличить максимум характеристики или, что то же самое, увеличить предельно-передаваемую мощность и тем самым повысить запас статической устойчивости, определяемый соотношением:

Рассмотрим их по отдельности и определим возможности их изменения. Начнем с индуктивных сопротивлений.

Сопротивления. Сопротивления трансформаторов и их изменение связаны с конструктивными особенностями аппарата, поэтому в период эксплуатации работающий трансформатор в расчетах статической устойчивости представляется заданным сопротивлением, определяемым номинальными данными: мощностью, напряжениями короткого замыкания ступеней и т.д. Сопротивления линий электропередач входящих в формулу, могут изменяться в случае отключения одной из цепей, части и участка. Так как Xл входит в знаменатель выражения мощности соответственно, меняется максимум угловой характеристики: при отключении одной из цепей его значение с Pm1 уменьшается до Рm2,а значение угла, соответствующий нормальному режиму увеличивается с 1 до 2. В целях увеличения Pm добавляют новую цепь.

Рис 11.

Следует заметить, что повышение числа параллельных цепей линии электропередачи в целях увеличения предельно-передаваемой мощности и запаса статической устойчивости является дорогостоящим мероприятием. Поэтому в линиях большой протяженности применяют (помимо перехода к более высокому классу напряжения) расщепление фазных проводов ЛЭП. Как известно, удельное индуктивное сопротивление линии, отнесенное к 1 км, определяется:

где Dср - среднегеометрическое расстояние между проводами фаз, rэ - эквивалентный радиус.

Уменьшение индуктивного сопротивления линии при расщеплении проводов фазы объясняется перераспределением магнитных полей проводов: поля между расщепленными проводами ослабляются и вытесняются наружу, как бы увеличивая сечение провода при той же затрате металла. Необходимо отметить, что каждый дополнительный провод при его расщеплении дает все меньший и меньший дополнительный эффект. Например, при двух проводах в фазе индуктивное сопротивление уменьшается на 19%, при трех - на 28%, при четырех - на 32% и т.д.

Величины удельных индуктивных сопротивлений при расщеплении изменяются от 0,410,42 ом/км - до 0,26 0,29 ом/км. Фазный провод расщепляется на два, три, четыре и большее число проводов, включенные параллельно. Например, при напряжении линии 330 кВ - 2 провода в фазе, 500 кВ - 3 провода, 750 кВ - 5 провода и 1150 кВ - 8 проводов в фазе. Поэтому такая мера приводит к повышению предельно-передаваемой мощности, не увеличивая расхода материала провода, так как общее сечение его не растет.

Учет нагрузки постоянным сопротивлением увеличивает общее сопротивление и поэтому снижает максимум характеристики.

Наибольшим индуктивным сопротивлением обладает синхронный генератор.

Между величинами параметров машин и их стоимостью существует определенная связь, так как индуктивные сопротивления определяются величинами электромагнитных нагрузок. Уменьшение индуктивных сопротивлений синхронного генератора, в особенности Xd чрезвычайно трудный и дорогой путь, связанный с увеличением габаритов машины и снижением коэффициента полезного действия. Рассмотрим этот вопрос более подробно.

Как известно, величины синхронных индуктивных сопротивлений обратно пропорциональны величине воздушного зазора машины.

где - воздушный зазор.

В то же время Xd обратно пропорционален также току возбуждения

Из этих соотношений видно, что для уменьшения синхронного индуктивного сопротивления необходимо увеличить воздушный зазор и ток возбуждения, что необходимо для создания дополнительного магнитного потока, обеспечивающего возросшие энергетические процессы. Следовательно, при этом возникает необходимость увеличить мощность возбуждения, усилить обмотку возбуждения и других обмоток, что связано с повшением расхода материала. В связи с затруднением размещения обмотки возбуждения это приведет к увеличению габаритов генератора. Поэтому в целом уменьшение Xd и Xq приведет к удорожанию машины.

Уменьшение переходных индуктивностей Xd", Xq" синхронного генератора возможно за счет повышения плотности тока в обмотке, что ведет к росту потерь, снижению к.п.д., увеличению веса генератора и соответственно стоимости генератора.

Отмеченные проблемы являются особо важными при создании современных, высоко использованных синхронных генераторов мощностью 200-1200 МВт.

Более эффективным является применение АРВ различных типов, с помощью которых, по существу, происходит компенсация синхронного и переходного индуктивностей генераторов.

Изменение э.д.с. генератора (в данном случае Eq) приводит к изменению двух важнейших параметров: его коэффициента мощности и напряжения на шинах машины. Современные высокоиспользованные синхронные генераторы изготавливают с высокими значениями номинального коэффициента мощности cоs =0,9-1. Увеличение номинального коэффициента мощности, при заданной активной мощности, приводит к уменьшению номинальной реактивной мощности, габаритов и стоимости генератора, так как при этом снижается полная мощность машины () и, следовательно, расход активного и конструкционного материала будет меньше. С другой стороны, увеличение cоs приводит к уменьшению э.д.с. Eq, что снижает запас статической устойчивости. Кроме того, экономически оптимальная длина передачи реактивной мощности, вырабатываемой генератором, ограничивается расстоянием (25-70)км. Необходимая для нагрузки реактивная мощность должна вырабатываться на месте потребления.

Изменение напряжения генератора зависит от его нагрузки и для его поддержания на требуемом уровне, например, номинальном, в широком диапазоне изменения нагрузки необходимо изменение э.д.с. генератора путем изменения его тока возбуждения. Эта задача успешно решается различными типами АРВ, по существу компенсирующими внутреннее сопротивление генератора.

Например, при наличии АРВ-с, внутреннее сопротивление синхронного генератора до шин отправного конца, включая сопротивление трансформатора XT1, может быть компенсировано за счет соответствующего регулирования возбуждения генератора, обеспечивающего постоянство напряжения UГ=const. Максимум угловой характеристики в этом случае может быть определен из соотношения

Для сравнения приведены угловые характеристики при различных типах АРВ (рис.12)

Рис 12

Как видно из формулы активной мощности (28), ее величина определяется произведением э.д.с. генератора и напряжения системы, или в более общем виде зависит от квадрата напряжения. Поэтому в первом приближении можно считать, что происходит рост напряжения линии в два раза равноценно увеличению количества цепей передачи в четыре раза. Отсюда следует, что повышение напряжения передачи для увеличения предельно передаваемой мощности является более экономичным, чем рост числа цепей передачи.

Продольная и поперечная компенсации параметров линии электропередачи также являются мерами повышения предельно-передаваемой мощности и увеличения запаса статической устойчивости.

Продольная компенсация означает последовательное включение конденсаторов в линии, при котором величина сопротивления уменьшается с Хл до (Хл-Хс) где Хс - емкостное сопротивление конденсатора. Эта мера особенно эффективна при длинных линиях электропередачи.

Поперечная компенсация представляет собой синхронный компенсатор, подключенный к линии передачи через трансформатор. Поддерживая напряжения в точке подключения, СК по существу дает эффект уменьшения длины линии и, соответственно, её сопротивления. В настоящее время применяются весьма эффективные, быстродействующие статические источники реактивной мощности (СИРМ) с временем срабатывания (0,02ч0,06) сек.

Эти устройства имеют регулируемые реактор и нерегулируемый конденсатор, а также систему управления. Они, помимо повышения мощности, выполняют широкий круг задач осуществляют пофазное регулирование параметров режима, подавляют перенапряжение, регулируют напряжения в широком диапазоне, повышают запас статической и динамической устойчивости.

Семейству компенсаторов относятся также регулируемые и нерегулируемые реакторы, компенсирующие емкость линий электропередачи и поддерживающие напряжение в точке подключения за счет нелинейной характеристики насыщения сердечника.

Необходимо еще раз напомнить, что критерием статической устойчивости синхронного генератора является условие и при максимальной передаваемой мощности Рm синхронизирующая мощность становится равным нулю.

Поэтому в практических условиях передавать эту мощность невозможно, т.к. малейший толчок нагрузки в ЭЭС вызывает выпадение генератора из синхронизма, поэтому нормальная передаваемая мощность P0 должна быть меньше Pmax. И ее величина определится, исходя из коэффициента запаса статической устойчивости системы.

Из вышеизложенного можно заключить следующее:

Идеальным пределом передаваемой мощности называется максимальная мощность, передаваемая в систему при допущении постоянства напряжения на шинах приемного конца.

Критерием статической устойчивости простейшей системы является положительность производной передаваемой мощности по углу между э.д.с генераторов и напряжением приемного конца передачи.

Коэффициент запаса статической устойчивости показывает на какую величину можно увеличить передаваемую мощность от станции в сеть, чтобы не допустить нарушение устойчивости электрической системы.

4. Современные автоматические регуляторы возбуждения (АРВ-с,АРВ-п) могут компенсировать индуктивные сопротивления элементов, включая и индуктивные сопротивления синхронного генератора, за счет эффективного регулирования системы возбуждения в зависимости от параметров режима электрической системы.

Оценивая все перечисленные меры увеличения статического предела мощности, можно заключить, что наиболее экономичными являются меры, направленные на поддержание постоянства напряжения на зажимах генераторов и на шинах нагрузки. Применение различных типов АРВ на генераторах и современных быстродействующих статических источников реактивной мощности является практически наиболее рациональной и экономической мерой повышения пределов передаваемой мощности и запаса статической устойчивости, как отдельной передачи, так и электрической системы в целом.

Брянский филиал Национального государственного Университета физической культуры, спорта и здоровья имени П.Ф. Лесгафта, Санкт-Петербург

(БФ НГУ им. П.Ф. Лесгафта, Санкт-Петербург)

КОНТРОЛЬНАЯ РАБОТА

По дисциплине

«Физика»

Студента отделения

Заочного обучения (ОЗО)

II курса, 21-АУЗ группы

Головачёв В.В.

Проверила преподаватель: Юрченко Н.И.

Брянск 2016

1. Статика. Устойчивость. Виды равновесия……………………………3

2. Использование закона статики в спорте………………………………8

Список литературы………………………………………………………17

Статика. Устойчивость. Виды равновесия

Статикой называется раздел механики, изучающий условия равновесия тел. Из второго закона динамики следует, что если геометрическая сумма всех внешних сил, приложенных к невращающемуся телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс. Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю.

На рис. 1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке. Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил. Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения. Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы. Произведение модуля силы на плечо d называется моментом силы M. Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. 2). Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов. Оба эти условия не являются достаточными для покоя.

Катящееся по горизонтальной поверхности колесо – пример безразличного равновесия (рис. 3). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают устойчивые и неустойчивые состояния равновесия. Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние. При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия. Шар, лежащий на плоской горизонтальной поверхности, находится в безразличном состоянии равновесия. Шар, находящийся в верхней точке сферического выступа, – пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 4).

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси – состояние равновесия неустойчиво (рис. 5).

Особым случаем равновесия является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры, то есть внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза (рис. 6), которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м. Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.

Cтраница 1


Статическая устойчивость характеризуется направлением моментов и сил, возникших после нарушения равновесия. Если они направлены так, что стремятся вернуть самолет к исходному режиму, то самолет статически устойчив.  

Статическая устойчивость не рассматривает сам процесс возвращения самолета в состояние, которое он имел до действия возмущения.  

Статическая устойчивость по углу атаки определяется реакцией вертолета на изменение угла атаки - угла между направлением скорости полета и плоскостью несущего винта.  

Статическая устойчивость по скорости характеризуется стремлением вертолета без вмешательства летчика к сохранению скорости исходного режима полета. Если по какой-то причине увеличилась скорость полета, то это приводит к изменению маховых движений лопастей. Возникающие при этом силы способствуют уменьшению скорости. Вертолет статически устойчив по скорости в большей части диапазона скоростей. Небольшая неустойчивость по скорости может наблюдаться при полете с малой скоростью.  

Статическая устойчивость - это способность системы восстанавливать исходный (или близкий к исходному) режим после малого его возмущения.  

Примеры динамической неустойчивости (апериодической.  

Статическая устойчивость тесно связана со статической управляемостью. Если самолет статически устойчив, то при изменении режима появляется стабилизирующий момент, который должен быть уравновешен рулевым моментом.  

Статическая устойчивость характеризуется отношением момента устойчивости к опрокидывающему моменту, которое называется коэффициентом устойчивости.  

Зоны устойчивой и неустойчивой работы на угловой характеристике синхронного генератора (а и угловые характеристики при различных токах возбуждения (б.  

Статическая устойчивость обеспечивается только при углах Э, соответствующих М Ммакс.  

Статическая устойчивость при регулировании возбуждения машины по любому из параметров (току, напряжению, углу) и их первым производным может быть рассмотрена также методом анализа коэффициентов синхронизирующего и демпферного моментов.  

Статическая устойчивость определяется видом механической характеристики производственного механизма и двигателя.  

Статическая устойчивость схематически подразделяется на продольную и боковую. Таким образом, исследуются только такие движения аппарата, которые происходят в его плоскости симметрии при отсутствии крена и скольжения. При анализе боковой устойчивости рассматриваются возмущенные движения летательного аппарата, связанные с изменением углов крена и скольжения при неизменном угле атаки. Такие движения всегда взаимосвязаны. Отклонение элеронов вызывает не только крен, но и скольжение. Вместе с тем поворот рулей направления приводит также к накренению. Поэтому исследование боковой устойчивости связано с анализом как моментов крена, так и моментов рыскания.  

Статическая устойчивость установившегося режима всегда существует, если существует данный установившийся режим. Статически неустойчивый режим не может существовать длительно, так как малые возмущения (например, изменения нагрузок потребителей) немедленно приведут к его нарушению.  

Статическая устойчивость регулируемой системы может исследоваться в аспектах решения двух задач: задач анализа - когда проверяется устойчивость, определяется предельно устойчивый режим системы, выявляются вид переходного процесса и некоторые показатели качества его протекания при заданной системе регулирования возбуждения; задач синтеза - когда, исходя из определенных требований к устойчивости и качеству переходного процесса регулируемой системы, определяются вид системы регулирования возбуждения, закон регулирования и параметры АРВ.  

Статическая устойчивость -способность сист. восстанавливать исходный р-м после малого его возмущения. Предельный р-м -р-м,при котором очень малое увеличение нагрузок вызывает нарушение его устойчивости. Пропускной способностью элемента системы называют наибольшую мощность, кот. можно передать через элемент с учетом всех ограничивающих факторов. Позиционная система -такая система, в кот. пар-ры р-ма зависят от текущего состояния, взаимного положения независимо от того как было достигнуто это состояние. При этом реальные динамич.хар-ки эл-ов сист. заменяются статическими. Статические хар-ки -это связи параметров р-ма системы, представленные аналитически или графически не зависящие от времени. Динамические хар-ки –связи пар-ов,полученных при условии,что они зависят от времени. Запас по напряжению: k u =. Запас по мощности: k р =

Допущения,принимаемые при анализе устойчивости : 1.Скорость вращения роторов синхр.машин при протекании электромеханич. ПП изменяется в небольших пределах(2-3%)синхронной скорости. 2.Напряжение и токи статора и ротора генератора изменяются мгновенно. 3.Нелинейность пар-ов сист.обычно не учитывается. Нелинейность же пар-ов р-ма-учитывается. Когда от такого учета отказываются,это оговаривают и сист.называется линеаризованной. 4.Перейти от одного р-ма эл.сист. к др. можно,изменив собственные и взаимные сопротивл.схемы, ЭДС генераторов и двигателей. 5.Исследование динамич.устойчивости при несимметричных возмущениях производится в схеме прямой послед-ти.

Задачи расчета устойчивости эл.системы: 1.Расчет параметров предельных р-ов(предельной передаваемой мощ-ти по линиям эн.сист.,критического U узловых точек сист.,питающих нагрузку) 2.Определение значений коэф-ов запаса.Наряду с приведенными формулами расчета коэф-ми запаса по напряжению и мощности могут вычисляться коэф-ты запаса по настроечным параметрам АРВ: S k = где kmax и kmin – максим.и мин.значения пар-ов,соответвствующих границе области статической устойчивости. 3.Выбор мероприятий по повышению статической устойчивости энергосист.или обеспечению заданной пропускной способности передачи. 4. Разаработка требований,направленных на улучшение устойчивости сист.Выбирается настройка АРВ,обеспечивающая требуемую точность поддержания напряж.

Статическая устойчивость простейшей системы.

Статическая устойчивость СЭС – это устойчивость при малых возмущениях режима. В установившемся режиме между энергией источника W r , и энергией, расходуемой покрытие потерь, имеется баланс. При изменении параметра режима П на ΔП, этот баланс нарушается. Если в системе энергия W=W H +после возмущения расходуется интенсивнее, чем приобретается от внешнего источника, то новый режим не может быть обеспечен энергией и в системе должен восстановиться прежний установившийся. Такая система устойчива. Из определения устойчивости следует, что условием сохранения устойчивости системы (критерием устойчивости) является соотношениеили в дифференциальной форме. Величинуназывают избыточной энергией. Эта энергия положительна, если дополнительная генерируемая энергия возрастет интенсивнее, чем нагрузка системы с учётом потерь в ней. При этом условии критерий устойчивости запишется в видеДля обеспечения устойчивости системы значение имеет запас её статической устойчивости, харак-ся углами сдвига роторов генераторов и напряжениями в узловых точках системы. Чтобы проверить статическую устойчивость системы, нужно составить диф. уравнения малых колебаний для всех элементов, а затем исследовать корни характеристического уравнения на устойчивость.

Математическое описание СЭС для исследования устойчивости основывается на теории диф. уравнений. Анализ устойчивости режимов реальных СЭС сводится к исследованию устойчивости решений систем диф. уравнений. В общем виде СЭС описываются системами уравнений высокого 60.1. порядка. Для практических расчётов порядок системы уравнений обычно не превышает шести. Для оценки устойчивости применяют линеаризацию систем диф. уравнений и понижение их порядка с целью получения простых универсальных методов и алгоритмов расчёта. В линейных системах уравнений и системах с несущественной нелинейностью устойчивость анализируется методом малых колебаний. Для больших возмущений при анализе устойчивости используется второй метод Ляпунова или численное интегрирование. Понижение порядка систем уравнений, описывающих исследуемые процессы, может быть достигнуто их упрощением: 1) разделением процессов на быстрые и медленные с обособленным их рассмотрением; 2) заменой групп источников или двигателей одним эквивалентным; 3)представлением нагрузки обобщенными характеристиками; 4) линеаризацией характеристик элементов СЭС; 5) разделением сложной системы на простые подсистемы, которые можно рассматривать независимо.

Статическая устойчивость нагрузки (действительный предел мощности, статическая устойчивость двигателей нагрузки). Нагрузка электрической системы оказывает влияние на устойчивость синхронных генераторов. Если мощность приёмной системы соизмерима с мощностью электропередачи, то напряжение на шинах нагрузки изменяется при изменении режима работы электропередачи. В этом случае предел передаваемой мощности (называемый действительным пределом) существенно ниже предела при постоянстве напряжения на шинах нагрузки.

Действительный предел мощности. Рассмотрим электропередачу, в которой приёмная система представлена нагрузкой и местной электростанцией. рис. а - принципиальная схема; б - характеристики мощности при и н = 1.0, 0.9, 0.8, 0.7 (кривые 1-4 соответственно, действительная характеристика мощности - жирная кривая). Мощность последней соизмерима с мощностью передающей станции, поэтому при увеличении передаваемой от электростанции G 1 активной мощности напряжение нашинах нагрузки и н будет уменьшаться. Построив семейство характеристик мощности для различных значений напряжения и н, можно получить действительную характеристику мощности. Для этого необходимо при увеличении угла перемещать рабочую точку с одной характеристики на другую в соответствии с уменьшением напряженияи н. Максимум действительной характеристики мощности, который называют действительным пределом мощности, достигается при угле меньше 90°. Величина максимума ниже предела мощности при условии и н = const . Следовательно, снижение напряжения и н ухудшает статическую устойчивость. Влияние нагрузки на напряжение и н определяется регулирующим эффектом нагрузки, т.е. степенью снижения активной и реактивной мощностей нагрузки с уменьшением напряжения на её шинах. Регулирующий эффект оказывает значительное влияние на действительный предел мощности, и с ним приходится считаться в практических расчётах устойчивости.