Единицы измерения информации. Единицы измерения информации: какие чаще всего используются и как рассчитываются байты, биты и мегабайты

В современные компьютеры мы можем вводить текстовую информацию, числовые значения, а также графическую и звуковую информацию. Количество информации, хранящейся в ЭВМ, измеряется ее “длиной” (или “объемом”), которая выражается в битах. Бит- минимальная единица измерения информации (от английского BInary digiT -- двоичная цифра). Каждый бит может принимать значение 0 или 1. Битом также называют разряд ячейки памяти ЭВМ. Для измерения объема хранимой информации используются следующие единицы:

1 байт= 8 бит;

1 Кбайт= 1024 байт (Кбайт читается как килобайт);

1 Мбайт= 1024 Кбайт (Мбайт читается как мегабайт);

1 Гбайт= 1024 Мбайт (Гбайт читается как гигабайт).

Бит (от англ. binary digit ; также игра слов: англ. bit - немного)

По Шеннону бит - это двоичный логарифм вероятности равновероятных событий или сумма произведений вероятности на двоичный логарифм вероятности при равновероятных событиях.

Один разряд двоичного кода (двоичная цифра). Может принимать только два взаимоисключающих значения: да/нет, 1/0, включено/выключено, и т.п.

Базовая единица измерения количества информации, равная количеству информации, содержащемуся в опыте, имеющем два равновероятных исхода. Это тождественно количеству информации в ответе на вопрос, допускающий ответы «да» либо «нет» и никакого другого (то есть такое количество информации, которое позволяет однозначно ответить на поставленный вопрос). В одном двоичном разряде содержится один бит информации.

В вычислительной технике и сетях передачи данных обычно значения 0 и 1 передаются различными уровнями напряжения либо тока. Например, в микросхемах на основе TTL 0 представляется напряжением в диапазоне от +0 до + 3 В , а 1 в диапазоне от 4,5 до 5,0 В.

Скорость передачи данных в сети обычно измеряется битами в секунду. Примечательно, что с ростом скорости передачи данных, бит приобрёл также ещё одно метрическое выражение: длину. Так, в современной гигабитной сети (1 Гигабит/сек) на один бит приходится примерно 30 метров провода. Из-за этого сложность сетевых адаптеров существенно возросла. Раньше, например, в одно-мегабитных сетях длина бита в 30 км была почти всегда заведомо больше длины кабеля между двумя устройствами.

В вычислительной технике, особенно в документации и стандартах, слово «бит» часто применяется в значении двоичный разряд. Например: первый бит - первый двоичный разряд байта или слова, о котором идёт речь.

В настоящее время бит - это наименьшая возможная единица измерения информации в вычислительной технике, но интенсивные исследования в области квантовых компьютеров предполагают наличие q-битов.

Байт (англ. byte ) - единица измерения количества информации, равная обычно восьми битам, может принимать 256 (2 8) различных значений.

Вообще, байт- это последовательность битов, число которых фиксировано, минимальный адресуемый объём памяти в компьютере. В современных компьютерах общего назначения байт равен 8 битам. Для того, чтобы подчеркнуть, что имеется в виду восьмибитный байт, в описании сетевых протоколов используется термин «октет» (англ. octet ).

Иногда байтом называют последовательность битов, которые составляют подполе слова. На некоторых компьютерах возможна адресация байтов разной длины. Это предусмотрено инструкциями извлечения полей ассемблеров LDB и DPB на PDP-10 и в языке Common Lisp.

В IBM-1401 байт был равен 6 битам так же, как и в Минск-32, а в БЭСМ - 7 битам, в некоторых моделях ЭВМ производства Burroughs Computer Corporation (ныне - Unisys) - 9 битам. Во многих современных цифровых сигнальных процессорах используется байт длиной 16 бит и больше.

Название было впервые использовано в 1956 году В. Бухгольцем при проектировании первого суперкомпьютера IBM 7030 для пучка одновременно передаваемых в устройствах ввода-вывода битов (шести штук), позже в рамках того же проекта расширили байт до восьми (2 3) бит.

Кратные приставки для образования производных единиц для байта применяются не как обычно: во-первых, уменьшительные приставки не используются совсем, а единицы измерения информации меньшие чем байт называются специальными словами (ниббл и бит); во-вторых, увеличительные приставки означают за каждую тысячу 1024=2 10 (килобайт равен 1024 байтам, мегабайт равен 1024 килобайтам или 1 048 576 байтам, и т. д. с гигабайтами, терабайтами и петабайтами (больше пока не употребляются)). Разница возрастает с ростом веса приставки. Более правильно использовать двоичные приставки, но на практике они пока не применяются, возможно, из-за неблагозвучности - кибибайт, мебибайт и т. п.

Иногда десятичные приставки используются и в прямом смысле, например при указании ёмкости жёстких дисков: у них гигабайт может обозначать миллион кибибайт, т. е. 1 024 000 000 байт, а то и просто миллиард байт, а не 1 073 741 824 байт, как, например, в модулях памяти.

Килобайт (кбайт, кБ) м., скл. - единица измерения количества информации, равная (2 10) стандартным (8-битным) байтам или 1024 байтам. Применяется для указания объёма памяти в различных электронных устройствах.

Название «килобайт» общепринято, но формально неверно, так как приставка кило -, означает умножение на 1 000, а не 1 024. Правильной для 2 10 является двоичная приставка киби- .

Таблица 1.2- Кратные приставки для образования производных единиц

Мегабайт (Мбайт, М) м., скл. - единица измерения количества информации, равная 1048576 (2 20) стандартным (8-битным) байтам или 1024 килобайтам. Применяется для указания объёма памяти в различных электронных устройствах.

Название «Мегабайт» общепринято, но формально неверно, так как приставка мега- , означает умножение на 1 000 000, а не 1 048 576. Правильной для 2 20 является двоичная приставка меби- . Сложившимся положением пользуются крупные корпорации, производящие жёсткие диски, которые при маркировке своих изделий под мегабайтом понимают 1 000 000 байт, а под гигабайтом - 1 000 000 000 байт.

Самую оригинальную трактовку термина мегабайт используют производители компьютерных дискет, которые понимают под ним 1 024 000 байта. Таким образом, дискета, на которой указан объём 1,44 Мбайт на самом деле вмещает лишь 1440 Кбайт, то есть 1,41 Мбайт в обычном понимании.

В связи с этим получилось, что мегабайт бывает коротким, средним и длинным:

короткий - 1 000 000 байт

средний - 1 024 000 байт

длинный - 1 048 576 байт

Гигабайт - кратная единица измерения количества информации, равная 1 073 741 824 (2 30) стандартным (8-битным) байтам или 1 024 мегабайтам.

Приставка СИ гига- используется ошибочно, так как она обозначает умножение на 10 9 . Для 2 30 же следует употреблять двоичную приставку гиби-. Сложившимся положением пользуются крупные корпорации, производящие жёсткие диски, которые при маркировке своих изделий под мегабайтом понимают 1 000 000 байт, а под гигабайтом - 1 000 000 000 байт

Машинное слово- машинно-зависимая и платформозависимая величина, измеряемая в битах или байтах, равная разрядности регистров процессора и/или разрядности шины данных (обычно некоторая степень двойки). Размер слова совпадает, также, с минимальным размером адресуемой информации (разрядностью данных, расположенных по одному адресу). Машинное слово определяет следующие характеристики машины:

разрядность данных, обрабатываемых процессором;

разрядность адресуемых данных (разрядность шины данных);

максимальное значение беззнакового целого типа, напрямую поддерживаемого процессором: если результат арифметической операции превосходит это значение, то происходит переполнение;

максимальный объём оперативной памяти, напрямую адресуемой процессором.

Максимальное значение слова длинной n бит можно легко рассчитать по формуле 2 n −1

Таблица 1.3 - Размер машинного слова на различных платформах

Наш высокотехнологичный век отличается своими широкими возможностями. С развитием электронных вычислительных машин перед людьми открылись удивительные горизонты. Любую интересующую новость теперь можно найти в глобальной сети совершенно бесплатно, не выходя из дома. Это прорыв в сфере техники. Но как же столько данных может храниться в памяти компьютера, обрабатываться и передаваться на далекие расстояния? Какие единицы измерения информации в информатике существуют? И как с ними работать? Сейчас не только люди, непосредственно занимающиеся написанием компьютерных программ, но и обычные школьники должны знать ответы на эти вопросы. Ведь это основа всего.

в компьютерной науке

Мы привыкли считать, что информация - это все те знания, которые доносят до нас. Но в информатике и компьютерных науках это слово имеет немного другое определение. Это базовая составляющая всей науки об электронных вычислительных машинах. Почему базовая, или фундаментальная? Потому что компьютерная техника обрабатывает данные, сохраняет и доносит до людей. Минимальная единица измерения информации исчисляется в битах. Сведения хранятся в компьютере до тех пор, пока юзер не захочет просмотреть их.

Мы привыкли думать, что информация - единица языка. Да, это так, но в информатике используется другое определение. Это сведения о состоянии, свойствах и параметрах объектов окружающей нас среды. Совершенно ясно, что чем больше мы узнаем сведений об объекте или явлении, тем больше понимаем, что наше представление о них мизерное. Но теперь благодаря такому огромному объему совершенно бесплатных и доступных со всех точек планеты материалов стало гораздо проще обучаться, заводить новые знакомства, работать, отдыхать и просто расслабляться за чтением книг или просмотром кинофильмов.

Алфавитный аспект измерения объема информации

Печатая документы для работы, статьи на сайты и ведя свой личный блог в интернете, мы не задумываемся о том, как проходит обмен данными между пользователем и самой вычислительной машиной. Как машина способна понимать команды, в каком виде хранит все файлы? В информатике за единицу измерения информации принят бит, который может хранить из ноликов и единиц. Суть алфавитного подхода в измерении текстовых символов заключается в последовательности знаков. Но не стоит переплетать алфавитный подход с содержанием текста. Это совершенно разные вещи. Объем таких данных пропорционален количеству введенных символов. Благодаря этому получается, что информационный вес знака из бинарного алфавита равен одному биту. Единицы измерения информации в информатике существуют разные, как и любые другие меры. Бит - это минимальная величина измерения.

Содержательный аспект высчитывания объема информации

Измерение информации базируется на основе теории вероятности. В данном случае рассматривается вопрос о том, какое количество данных содержится в получаемом человеком сообщении. Тут в ход идут теоремы дискретной математики. Для расчета материалов берутся две разные формулы в зависимости от вероятности события. При этом остаются прежними единицы измерения информации в информатике. Задачи расчета количества символов, графики по содержательному подходу гораздо сложнее, чем по алфавитному.

Виды информационных процессов

Существуют основные три типа процессов, осуществляемых в электронной вычислительной машине:

  1. Как проходит данный процесс? Через инструменты ввода данных, будь то клавиатура, оптическая мышь, принтер или другие получает сведения. Затем конвертирует их в бинарный код и записывает на жесткий диск в битах, байтах, мегабайтах. Для перевода любой единицы измерения информации в информатике существует таблица, по которой можно высчитать, сколько в одном мегабайте бит, и осуществить другие переводы. Компьютер все делает автоматически.
  2. Хранение файлов и данных в памяти устройства. Компьютер способен запоминать все в бинарном виде. Двоичный код состоит из нулей и единиц.
  3. Еще один из основных процессов, происходящих в электронной вычислительной машине, - передача данных. Она тоже осуществляется в бинарном виде. Но на экран монитора информация выводится уже в символьном или другом привычном для нашего восприятия виде.

Кодирование информации и мера ее измерения

За единицу измерения информации принят бит, с которым достаточно легко работать, ведь он может вмещать значение 0 или 1. Как компьютер осуществляет кодирование обычных десятичных чисел в двоичный код? Рассмотрим небольшой пример, который объяснит принцип кодирования информации компьютерной техникой.

Допустим, у нас есть число в привычной системе исчисления - 233 . Чтобы перевести его в бинарный вид, необходимо делить на 2 до того момента, пока оно не станет меньше самого делителя (в нашем случае - 2).

  1. Начинаем деление: 233/2=116. Остаток записываем отдельно, это и будут составляющие ответного бинарного кода. В нашем случае это 1.
  2. Вторым действием будет такое: 116/2=58. Остаток от деления - 0 - опять записываем отдельно.
  3. 58/2=29 без остатка. Не забываем записывать оставшийся 0, ведь, утеряв всего один элемент, вы получите уже совершенно другую величину. Этот код далее будет храниться на винчестере компьютера и являть собой биты - минимальные единицы измерения информации в информатике. 8-классники уже способны справиться с переводом чисел из десятичного типа исчисления в двоичный, и наоборот.
  4. 29/2=14 с остатком 1. Его и записываем отдельно к уже полученным двоичным цифрам.
  5. 14/2=7. Остаток от деления равен 0.
  6. Еще немного, и бинарный код будет готов. 7/2=3 с остатком 1, который и записываем в будущий ответ двоичного кода.
  7. 3/2=1 с остатком 1. Отсюда записываем в ответ две единицы. Одну - как остаток, другую - как последнее оставшееся число, которое уже не делится на 2.

Необходимо запомнить, что ответ записывается в обратном порядке. Первое получившееся бинарное число из первого действия будет последней цифрой, из второго - предпоследней, и так далее. Наш итоговый ответ - 11101001 .

Такое записывается в памяти компьютера и хранится в этом виде до тех пор, пока пользователь не захочет посмотреть на него с экрана монитора. Бит, байт, мегабайт, гигабайт - единицы измерения информации в информатике. Именно в таких величинах и хранятся бинарные данные в компьютере.

Обратный перевод числа из бинарной в десятичную систему

Для того чтобы осуществить обратный перевод из бинарной величины в десятичную систему исчисления, необходимо воспользоваться формулой. Считаем количество знаков в двоичной величине, начиная с 0. В нашем случае их 8, но если начинать отсчет с нуля, тогда они заканчиваются порядковым номером 7. Теперь необходимо каждую цифру из кода умножить на 2 в степени 7, 6, 5,…, 0.

1*2 7 +1*2 6 +1*2 5 +0*2 4 +1*2 3 +0*2 2 +0*2 1 +1*2 0 =233. Вот и наше начальное число, которое было взято еще до перевода в бинарный код.

Теперь вам известна суть компьютерным устройством и минимальная мера хранения информации.

Минимальная единица измерения информации: описание

Как уже упоминалось выше, наименьшей величиной измерения информации считается бит. Это слово английского происхождения, в переводе оно означает "двоичная цифра". Если посмотреть на данную величину с другой стороны, то можно сказать, что это ячейка памяти в электронных вычислительных машинах, которая хранится в виде 0 либо 1. Биты можно перевести в байты, мегабайты и еще большие величины информации. Электронная вычислительная машина сама занимается такой процедурой, когда сохраняет бинарный код в ячейки памяти винчестера.

Некоторые пользователи компьютера могут захотеть вручную и быстро перевести меры объема цифровой информации из одной в другую. Для таких целей были разработаны онлайн-калькуляторы, они сию же секунду осуществят операцию, на которую вручную можно было бы потратить много времени.

Единицы измерения информации в информатике: таблица величин

Компьютеры, флеш-накопители и другие устройства запоминания и обработки информации отличаются между собой объемом памяти, который обычно исчисляется в гигабайтах. Необходимо посмотреть на основную таблицу величин, чтобы увидеть сопоставимость одной единицы измерения информации в информатике в порядке возрастания со второй.

Использование максимальной единицы измерения информации

В наше время максимальную меру объема информации, которая называется йоттабайтом, планируют использовать в агентстве национальной безопасности в целях хранения всех аудио- и видеоматериалов, полученных из общественных мест, где установлены видеокамеры и микрофоны. На данный момент йоттабайты - наибольшие единицы измерения информации в информатике. Это предел? Вряд ли кто-то сможет дать сейчас точный ответ.

Приветствую всех читателей моего блога. Каждый ли из вас знает, в каких единицах измеряется информация? Многие из вас, всего скорее, уже знакомы с такими понятиями, как бит и байт. По крайней мере, вы слышали о них. Каждый из пользователей также постоянно сталкивается с такими единицами измерения информации, как мегабайты, гигабайты и терабайты. Несмотря на их известность, не все из вас четко понимают, как сделать перевод одной величины в другую.

В процессе пересчета имеются свои нюансы. Именно из-за них у пользователей возникают трудности. Проблема заключается в том, что в основном люди используют десятичную систему счисления, к которой уже давно все привыкли. Например, если у единицы измерения присутствует приставка «кило», тогда величину нужно просто умножить на одну тысячу. Однако информация, которая передается или хранится в цифровом виде, измеряется с помощью величин двоичной системы. В связи с этим, чтобы узнать, сколько КБ в МБ, недостаточно выполнить простое умножение на 1000. С этой особенностью необходимо разобраться более подробно, что и будет сделано дальше в статье.

Что представляет собой бит/байт?

Сегодня компьютерами уже невозможно никого удивить. В такой технике применяются единицы измерения информации, которые будут описаны ниже. Они используются для обозначения объема как винчестера (HDD и SSD), так и оперативной памяти (ОЗУ).

Бит - это минимальная единица. Она обозначается маленькой буквой «б». Следом за ней идет байт. Он уже обозначается большой буквой «Б». В компьютерной терминологии в качестве единицы измерения информации биты используются гораздо реже по сравнению с байтами, после которых расположились производные от этой величины. Это килобайты (КБ), мегабайты (МБ), гигабайты (ГБ) и так далее. Всем известные приставки у слова «байт» не позволяют выполнить легкий перевод величины, умножив значение на 10 в соответствующей степени. Такое правило для пересчета единиц измерения информации не действует. По какой причине его нельзя применить для данного перевода будет рассказано далее.

Похожие величины также применяются, когда осуществляется измерение скорости передаваемой информации. Сегодня для этих целей чаще всего используют интернет. Передаваемая информация через такой канал измеряется в килобитах, мегабитах и так далее. В связи с тем, что с помощью этих величин обозначается скорость, то происходит подсчет именно бит в секунду. Другими словами, сколько их передается за единицу времени. Поэтому у каждого пользователя возникает вопрос относительно числа бит, содержащихся в 1 байте, а так же, как правильно пересчитать КБ в Кб.

Компьютерная техника применяет для функционирования исключительно значения двоичной системы. Если изъясняться по-другому, тогда можно сказать, что цифровые устройства работают только с цифрами: 0 и 1. Первое знакомство с такой системой происходит еще в школе. Из курса информатики ученикам становится известно, что за единицу принят бит. Он представляет собой 1 разряд информации. При этом бит может равняться только нулю или единице. Другими словами, сигнал может присутствовать или отсутствовать.

В то же время байт имеет более сложное понятие. Одна такая величина в двоичной системе состоит из 8 бит. При этом 1 Bit - это двойка в определенной степени, которая может быть равна от 0 до 7. Если принять во внимание все возможные комбинации единиц и нулей, тогда станет ясно, что их максимальное значение составляет 256. Это наибольшая величина. Она равна максимальному объему информации, который, возможно, закодировать в 1 байте.

Важно! Чтобы осуществить перевод числа из двоичной системы в привычную, т. е. десятичную, нужно выполнить сложение всех двоек, каждая из которых имеет свою степень. Однако их необходимо брать только в тех битах, где присутствует сигнал, который возможен, если величина измерения равна единице.

Стоит знать, что один байт разбивается на две части, каждая из которых состоит из 4 бит. Это полубайты. Каждый из них еще называется нибблом. Один полубайт позволяет выполнить кодировку любого 16-теричного числа. Этот процесс осуществляется при помощи 4 битов. Другими словами, закодировать можно цифры 0-15.

Перевод Мб в МБ

Для лучшего уяснения изложенного материала необходимо хорошо понять, что интернет-скорость нередко измеряется в Кб, Мб и Гб. В то же время специальное программное обеспечение мерит скорость интернет-канала в КБ и МБ. Многие пользователи используют для этих целей Speedtest. Поэтому приходится понимать, сколько бит в МБ. Хотя в данном переводе нет ничего сложного. Так, в 1 байт входит 8 бит. Это позволяет посчитать количество Кб в 1 КБ - их будет 8. Следовательно, 1 МБ равен 8 Мб. Точно также выполняется подсчет гигабит или другой подобной величины. Если нужно осуществить перевод в обратном направлении, тогда проводится деление единицы измерения на 8.

Теперь становится понятно, что 1 МБ интернета - это объем конкретной информации, передаваемой через канал, которую воспринимает пользователь. Он равен 1024 килобайтам. Этого объема хватит для открытия определенного количества страниц в зависимости от используемого устройства, так как в мобильных версиях они весят чуть-чуть меньше по сравнению с компьютерными вариантами. Так, если на одну страницу нужно потратить 100 КБ, тогда пакет из 1 МБ трафика позволит их открыть не более 10 штук.

Какое количество байт в одном МБ и ГБ?

Подавляющему большинству пользователей известно, что присутствие приставки «кило» означает необходимость умножения числа на 10 в третьей степени. Другими словами, увеличение происходит в тысячу раз. Если же используется приставка «мега», тогда умножение выполняется на 10 в 6 степени. Например, единица превращается в 1000000. Когда применяется приставка «гига», то в этом случае число умножается на 10 9 .

Однако при рассмотрении вопроса, сколько в МБ байт, необходимо учитывать, что использовать вышеперечисленные правила для пересчета единиц измерения нельзя, так как величины относятся исключительно к двоичной системе, а к ней применяется иной способ подсчета. В основе вычислений лежит не 10 в определенной степени, а 2. Другими словами, применяются приставки киби, меби и так далее вместо кило, мега и т. д.

Чтобы обозначить единицы, с помощью которых измеряется информация, превышающая байт, в информатике используются кибибайты, мебибайты, гибибайты и так далее. Однако сложилось так, что подавляющая часть русскоязычных пользователей применяет «неправильные» приставки вида кило, мега и т. д. Тем более правильные названия в русском языке звучат немного смешно. Это особенно относится к йобибайту. Поэтому всем нужно понимать, что сегодня практически всегда используются неправильные названия единиц, применяющиеся для обозначения объема информации.

Путаница у пользователей возникает именно из-за вышеописанных нюансов. Многие считают, что килобайт равняется тысячи байтов. Однако данное утверждение является неверным, так как 1 КБ – это 1024 байт. Другими словами, необходимо двойку возвести в десятую степень. Только такое утверждение является верным. Исходя из этого, можно легко посчитать, например:

  • сколько байтов в 1 МБ - 1048576 байт (двойка возводится в двадцатую степень или 1024 умножается на 1024);
  • сколько байт в 1 ГБ - 107374824 байт (двойка возводится в 30 степень или 1024 три раза умножается на само себя);
  • сколько МБ в 1 ГБ - 1024 мегабайт;
  • сколько ГБ в 1 ТБ - 1024 гигабайт.

Итак, как узнать, сколько МБ получится из определенного числа байтов. Для получения точного результата необходимо исходное количество единиц разделить на двойку, возведенную в двадцатую степень. Здесь нужно хорошо уяснить, что деление осуществляется не на 1000000, как это принято в десятичной системе исчисления, а на 1048576. Данное число немного больше миллиона. Именно из-за этого важного нюанса правильный результат будет меньше, чем ожидалось изначально.

Чтобы вы, дорогие читатели моего блога, могли более быстро выполнить пересчет определенной единицы в байты, я приведу в порядке возрастания степени. Именно их нужно использовать для возведения двойки: 0, 10, 20, 30, 40, 50. Эти значения соответствуют байтам, килобайтам, мегабайтам, гигабайтам, терабайтам, петабайтам.

Почему терабайтный диск вмещает 900 ГБ?

Производители винчестеров умело пользуются малой осведомленностью некоторых пользователей. Так, практически каждый покупатель нового HDD после форматирования обнаруживал, что вместо обещанного 1 ТБ система показывает чуть больше 900 ГБ свободного места на носителе. В результате многие пользователи начинают интересоваться, куда пропадают почти 10% объема жесткого диска.

Секрет кроется в том, что производители HDD во время измерения объема дисков используют не двоичную, а десятичную систему. Другими словами, они при подсчетах принимают 1 килобайт за тысячу байт. В результате разница составляет 24 единицы измерения информации. Если же учитывать достаточно большой объем жесткого диска, то производитель остаются в выигрыше, так как разница увеличивается уже в десятки гигабайт.

Если бы каждый из производителей HDD использовал правильный подсчет объема дисков, тогда 1 ГБ равен был бы 107374824 байт. При пересчете в терабайт нужно данное значение еще умножить на 1024. В результате терабайтный диск вмещал бы 109951819776 байт.

Теперь вы знаете, как определяют производители объем памяти выпущенных устройств. Они используют очень простой трюк, чтобы всегда оставаться в выигрыше. При этом потребители приобретают товар, полезность которого на 10% меньше.

Здравствуйте, уважаемые читатели блога сайт! В условиях бурного развития информационных технологий недурственно бы получить знания по некоторым фундаментальным аспектам, хотя бы основным. Это может оказать серьезную помощь в дальнейшем.

В интернете, которым мы пользуемся благодаря компьютерам, вся информация хранится или передается в закодированном цифровом формате, а потому должны обязательно существовать способы измерить объем этих данных, ведь от этого зависит системность работы с ними. Такими единицами измерения служат бит и байт.

По аналогии с известными нам физическими единицами измерения, которые при большой их величине для удобства исчисления получают увеличительные приставки (1000 метров = 1 километр, 1000 грамм = 1 килограмм), единица информации байт тоже имеет свои производные (килобайт, мегабайт, гигабайт и т.д.). Однако, в случае бита и байта существуют нюансы, о которых я подробнее и поведаю.

Что представляют из себя единицы информации бит (bit) и байт (byte)

Чтобы было понятнее, придется изложить все поподробнее и начать, так сказать, с истоков. Однако постараюсь донести информацию без заумных математических формул и терминов. Дело в том, что существует несколько позиционных систем счисления. Не буду их перечислять, поскольку в этом нет необходимости.

Двоичная и десятичная системы счисления

Самая известная из них, с которой мы все сталкиваемся ежедневно, это десятичная система. В ней любое число состоит из цифр (от 0 до 9), каждая из которых является разрядом, занимая строго соответствующую ей позицию. Причем разрядность увеличивается справа налево (единицы, десятки, сотни, тысячи и т.д.).

Возьмем для примера число 249, которое можно представить в виде суммы произведений цифр на 10 в степени, соответствующей данному разряду:

249 = 2×10 2 + 4×10 1 + 9×10 0 = 200 + 40 + 9

Таким образом, нулевой разряд - это единицы (10 0), первый - десятки (10 1), второй - сотни (10 2) и т.д. В компьютере, как и в других электронных устройствах, вся информация распределяется по файлам () и кодируется соответствующим образом в цифровом формате, причем в силу простоты использования применяется двоичная система счисления, на которой остановлюсь отдельно.

В двоичной системе числа представляются с помощью всего двух цифр: 0 и 1. Попробуем записать уже рассмотренное нами число 249 в двоичной системе, чтобы понять ее суть. Для этого делим его на 2, получив целое частное с остатком 1. Эта единичка и будет самым младшим разрядом, который будет, как и в случае десятичной системы, крайним справа.

Далее продолжаем операцию деления и каждый раз целые числа также делим на 2, получая при этом в остатке 0 или 1. Их последовательно и записываем справа налево, получив в итоге 249 в двоичной системе. Операцию деления следует проводить до тех пор, пока в результате не появится нуль:

249/2 = 124 (остаток 1) 124/2 = 62 (остаток 0) 62/2 = 31 (остаток 0) 31/2 = 15 (остаток 1) 15/2 = 7 (остаток 1) 7/2 = 3 (остаток 1) 3/2 = 1 (остаток 1) 1/2 = 0 (остаток 1)

Теперь записываем цифры в остатке последовательно справа налево и получаем наше подопытное число в двоичной системе:

11111001

Чтобы не осталось темных пятен, проведем обратное действие и попробуем перевести то же самое число из двоичной в десятичную систему, проверив заодно правильность выше изложенных действий. Для этого умножаем опять же по порядку слева направо нуль или единицу на 2 в степени, соответствующей разряду (по аналогии с десятичной системой):

1×2 7 + 1×2 6 + 1×2 5 + 1×2 4 + 1×2 3 + 0×2 2 + 0×2 1 + 1×2 0 = 128 + 64 + 32 + 16 + 8 + 0 + 0 + 1 = 249

Как видите все получилось, и мы смогли преобразовать число, записанное в двоичной системе, на его запись в десятичной системе счисления.

Сколько бит в байте при использовании двоичной системы в информатике

Я не зря предоставил чуть выше краткий математический экскурс, поскольку именно двоичная система служит основой измерения, используемой в электронных устройствах. Базовой единицей количества информации, равной разряду в двоичной системе, как раз и является бит.

Этот термин происходит от английского словосочетания b inary digit (bit ), что означает двоичное число. Таким, образом, бит может принимать лишь два возможных значения: 0 или 1. В информатике это означает два совершенно равных с точки зрения вероятности результата ("да" или "нет") и не допускает другого толкования.

Это очень важно с точки зрения корректной работы системы. Идем дальше. Количество бит, которое обрабатывается компьютером в один момент, называется байтом (byte) . 1 байт равен 8 битам и, соответственно, может принимать одно из 2 8 (256) значений, то есть от 0 до 255:


Итак, нам теперь доподлинно известно, что такое байт, и какую роль он играет в качестве единицы измерения при обработке информации, хранящейся и обрабатываемой в цифровом виде. Кстати, в международном формате байт может обозначаться двумя способами - byte или B.

Перевести числа в десятичном формате на двоичную систему можно с помощью калькулятора. Если у вас ОС Windows 7, то вызвать этот инструмент можно так: Пуск - Все программы - Стандартные - Калькулятор. В меню «Вид» выбираете формат «Программист» и вводите желаемое число (в моем примере это 120):


Теперь включите радиокнопки «Bin» и «1 байт», после чего получаете запись данного числа в двоичной системе:


На что здесь следует обратить внимание? Во-первых , в строке на дисплее представлены лишь семь разрядов (биты со значениями ноль или единица), хотя мы уже знаем, что их должно быть восемь, если значение байта от 0 до 255:

Здесь все просто. Если самый старший разряд (бит), расположенный крайним слева, принимает значение 0, то он просто не записывается. Два или более нулевых бита тоже опускаются (по аналогии с десятичными числами - ведь к сотням мы не прописываем 0 тысяч, например).

Доказательством может служить полная запись полученного числа, которая отображается мелким шрифтом чуть ниже:

0111 1000

Если вы внимательны, то увидите, что здесь во-вторых . Это способ записи в виде двух частей, каждая из которых состоит из четырех бит. В информатике используется еще такое понятие как полубайт, или ниббл (nibble). Это удобно тем, что ниббл можно представить как разряд в шестнадцатеричной системе, которая широко используется в программировании.

Для обработки данных требуется более 1 байта - что тогда?

Выше мы поговорили о том, что байт содержит восемь бит. Это позволяет выразить 256 (два в восьмой степени) различных значений. Однако на практике в основном этого далеко не достаточно и во многих случаях приходится использовать не один, а несколько byte. В качестве примера воспользуемся еще раз калькулятором Windows и переведем число 1000 в двоичную систему:


Как видите, для этого пришлось отщипнуть пару разрядов из второго байта. На практике в компьютерах для обработки достаточно объемной информации применяется такое понятие как машинное слово , которое может содержать 16, 32, 64 bit.

С их помощью можно выразить соответственно 2 16 , 2 32 и 2 64 различных значений. Но в этом случае нельзя говорить о 2, 4 или 8 байтах, это немного разные вещи. Отсюда растут ноги из упоминания, например, 32-, 64-разрядных (-битных) процессоров или других устройств.


Сколько байт в килобайте, мегабайте, гигабайте, терабайте

Ну а теперь самое время перейти к производным байта и представить, какие приставки увеличения здесь используются. Ведь байт как единица очень маленькая величина, и для удобства очень даже полезно использовать аналоги, которые бы обозначали 1000 B, 1 000 000 B и т.д. Здесь тоже есть свои нюансы, о которых и поговорим ниже.

Строго говоря, для представления величин корректно использовать приставки для двоичной системы счисления, которые кратны 2 10 (1024). Это кибибайт, мебибайт, гебибайт и т.д.

1 кибибайт = 2 10 (1024) байт 1 мебибайт = 2 10 (1024) кибибайт = 2 20 (1 048 576) байт 1 гебибайт = 2 10 (1024) мебибайт = 2 20 (1 048 576) кибибайт = 2 30 (1 073 741 824) байт 1 тебибайт = 2 10 (1024) гебибайт = 2 20 (1 048 576) мебибайт = 2 30 (1 073 741 824) кибибайт = 2 40 (1 099 511 627 776) байт

Но данные словосочетания не прижились в широком использовании. Возможно, одной из причин стала их неблагозвучность. Поэтому пользователи (и не только) повсеместно употребляют вместо двоичных десятеричные приставки (килобайты, мегабайты, гигабайты, терабайты), что является не совсем корректным, поскольку по сути (в соответствии с правилами десятичной системы счисления) это означает следующее:

1 килобайт = 10 3 (1000) байт 1 мегабайт = 10 3 (1000) килобайт = 10 6 (1 000 000) байт 1 гигабайт = 10 3 (1000) мегабайт = 10 6 (1 000 000) килобайт = 10 9 (1 000 000 000) байт 1 терабайт = 10 3 (1000) гигабайт = 10 6 (1 000 000) мегабайт = 10 9 (1 000 000 000) килобайт = 10 12 (1 000 000 000 000) байт

Но раз уж так сложилось, ничего не поделаешь. Важно лишь помнить, что на практике часто используются килобайт (Кбайт), мегабайт (Мбайт), гигабайт (Гбайт), терабайт (Тбайт) именно в качестве производных от байта как единицы измерения количества информации в двоичной системе. И в этом случае употребляют, например, термин "килобайт", имея ввиду именно 1024 байта и не что иное.

Однако, очень часто производители накопителей (включая жесткие диски, флэшки, DVD- и CD-диски) при указании объема для хранения информации применяют именно десятичные приставки по прямому назначению (1 Кбайт = 1000 байт), в то время как тот же Виндовс, например, рассчитывает их размер в двоичной системе.

Отсюда и выходит некоторое несоответствие, которое может запутать простого пользователя. Скажем, в документации указана емкость диска 500 Гб , в то время как Windows показывает его объем равным 466,65 Гбайт .

По сути никакого расхождения нет, просто размер накопителя присутствует в разных системах счисления (тот же пень, только сбоку). Для неопытных юзеров это крайне неудобно, но, как я уже сказал, приходится с этим мириться.

Резюмируя, отмечу следующее. Скажем, вам зададут вопрос: сколько байт в килобайте? Теоретически корректным будет ответ: 1 килобайт равен 1000 байтам. Просто надо помнить, что на практике по большей части десятичные приставки используются в качестве двоичных, которые кратны 1024, хотя иногда они применяются по прямому назначению и кратны именно 1000.

Вот такая арифметика, надеюсь, что вы не запутались. В публикации я упомянул килобайт, мегабайт, гигабайт и терабайт, а что дальше? Какие еще более крупные единицы количества информации возможны? На этот вопрос ответит таблица, где указаны не только соотношение единиц в обеих системах, но и их обозначения в международном и российском форматах:

Двоичная система Десятичная система
Название Обозначение Степень Название Обозначение Степень
Рос. Межд. Рос. Межд.
байт Б B 2 0 байт Б B 10 0
кибибайт КиБ KiB 2 10 килобайт Кбайт KB 10 3
мебибайт МиБ MiB 2 20 мегабайт Мбайт MB 10 6
гибибайт ГиБ GiB 2 30 гигабайт Гбайт GB 10 9
тебибайт ТиБ TiB 2 40 терабайт Тбайт TB 10 12
пебибайт ПиБ PiB 2 50 петабайт Пбайт PB 10 15
эксбибайт ЭиБ EiB 2 60 эксабайт Эбайт EB 10 18
зебибайт ЗиБ ZiB 2 70 зеттабайт Збайт ZB 10 21
йобибайт ЙиБ YiB 2 80 йоттабайт Ибайт YB 10 24

Ежели желаете быстро определить, например, сколько мегабайт в гигабайте (хотя опытный пользователь, конечно, легко обойдется в этом случае без таблицы), то ищите в таблице ячейки, соответствующее количеству байт в мегабайте и гигабайте, а затем делите большее значение на меньшее.

10 9 /10 6 = 1 000 000 000/1 000 000 = 1000

Получается, что в 1 гигабайте 1000 мегабайт. Точно также можно переводить производные в двоичной системе - мебибайты в кибибайты, тебибайты в гибибайты и т.д.

Переводим байты в биты, килобайты, мегабайты, гигабайты, терабайты в онлайн конвертере

Публикация была бы неполной, если бы я не привел инструмент, с помощью которого можно осуществить перевод byte в различные производные. В сети много разнообразных конвертеров, посредством которых можно произвести эти нехитрые операции. Вот один из них , который мне приглянулся.

Этот конвертер удобен тем, что введя количество byte, можно сразу получить результат во всех возможных измерениях (в том числе перевести биты в байты):

Из данного примера следует, что 3072 байта равно 24576 битам, 3,0720 килобайтам или 3 кибибайтам. Кроме этого, чуть ниже расположены ссылки на миникалькуляторы, где вы сможете быстро произвести конкретный перевод из одной системы единиц в другую.

Всё, что находится на Вашем компьютере — это информация . Но как же её измерить?
Согласитесь, трудно работать с информацией не зная её количества. Попробуем с эти разобраться.

Единицей измерения компьютерной информации принято считать БАЙТ . Но, это не совсем верно, если принять во внимание, что компьютер — это вычислительная машина. А вычисляет компьютер, оперируя «машинным языком», ещё более мелкой единицей, которая называется БИТ .

Бит может быть выражен лишь единицей, либо нолём, и такая система вычисления называется двоичной. Один байт содержит в себе 8 битов. Справедливости ради, стоит заметить, что компьютер использует в своих операциях ещё восьмиричную и шестнадцатиричную системы вычислений. Но, на машинном языке компьютера мы больше останавливаться не будем.

Продолжим с языком пользователей. Если всё упростить, то одним байтом можно представить только один символ. Этот символ может выражаться буквой, цифрой, или каким-то иным значком. Если представить себе, сколько байт содержит одна страница текста обычной книги, а это около 2000 символов, и умножить полученное число на количество страниц, то станет понятна необходимость использования производных единиц измерения. Рассмотрим их:

Кб — килобайт — 1024 байта
Мб — мегабайт — 1024 килобайта
Гб — гигабайт — 1024 мегабайта
Тр — терабайт — 1024 гигабайта

Возникает резонный вопрос, почему не целая тысяча, вроде бы удобней считать, но тут ничего не поделаешь, таков алгоритм вычислений компьютера. Каждая следующая единица измерения порядком выше равна два в десятой степени от предыдущей, математика — наука точная.

Если следовать верхнему списку, то, как уже говорилось, условно можно предположить, что 1байт — один символ, 1кб — 1024 символа, и далее. Как же оценить данные числа, как понять и представить, какое количество информации кроется за их значениями.

Проще это понять имея дело с текстом. Я уже упоминал, что размер одной странички машинописного текста равен в среднем около 2000 символов. Легко подсчитать, что 1мб уместит в себе примерно страниц 500.
Разбавим нашу книгу несколькими десятками оптимизированных картинок ещё на 1мб. И получим книженцию, которая весит 2мб. Возьмём флэшку, или микро-CD карту памяти на 1гб. Вы уже подсчитали, и правильно — туда поместится 500 таких книг. А ведь флэшку, а уж тем более карту памяти, можно свободно положить в пистон брючного кармана. Попробуйте положить в карман хотя бы одну книгу в 500 страниц!

Безусловно, все эти рассуждения очень условны. К изображениям, фильмам, или играм такая оценка вряд ли подходит, но это и информация совсем другого рода. Хотя, может кто и помнит, или видел в кино, бабины со старыми кинофильмами(односерийный фильм по несколько частей и килограммов), прибавьте ещё и магнитофонные бабины, да и старые пластинки были совсем немаленькими — и Вы ощутите разницу между объёмами цифровой информации и информацией на других носителях старшего поколения.


Ещё о картинках. Одна хорошая фотография, или другое изображение может занимать от 2мб и много более. Но, всё красивое всегда требует многого!!!