Корректор коэффициента мощности. Схема

На сегодняшний день существуют два подхода к построению источников питания, дающих на выходе стабильное выходное напряжение или ток — источники питания с параметрической и с импульсной стабилизацией.

В линейных источниках стабилизация выходного параметра осуществляется за счет нелинейного элемента. Импульсные — работают по принципу управления энергией в катушке индуктивности с помощью одного или нескольких коммутирующих ключей.

Преимущество первых — низкий уровень высокочастотных шумов, что важно для аналоговой аппаратуры. За импульсными источниками — более высокие мощности и лучшее соотношение мощности и размеров. Кроме того, они имеют более высокий КПД. Вопросы сложности или простоты схемотехники являются весьма спорными, т.к. современная промышленность предлагает широкий спектр решений, в том числе и однокристальных, для любых приложений.

Но для сети линейные и импульсные источники питания являются нелинейной нагрузкой — форма потребляемого тока будет отличаться от синусоидальной, что приведет к возникновению дополнительных гармоник, а следовательно — к появлению реактивной составляющей мощности, дополнительному нагреву и потерям в линиях электропередач. Кроме того, другим потребителям энергии приходится применять дополнительные меры для защиты от сетевых помех — особенно в случае импульсных блоков высокой мощности, работающих под нагрузкой. Ограничения на допустимые наводки в сети от работающего прибора регламентируются соответствующими международными и государственными стандартами. Можно не сомневается, что российские стандарты в этой области будут ужесточаться и приближаться к мировым. В итоге именно те компании, которые освоят техники снижения сетевых помех, получат значительное преимущество над конкурентами.

Для снижения влияния потребителя тока на сеть применяются активные или пассивные корректоры. Пассивные корректоры представляют собой дроссели, чаще всего применяемые в устройствах небольшой мощности и некритичные к габаритным размерам. В остальных случаях целесообразно применение активных высокочастотных корректоров, часто называемых корректорами коэффициента мощности (ККМ или PFC — Power Factor Correction). К основным задачам ККМ можно отнести:

  • Придание потребляемому от сети току синусоидальной формы (снижение коэффициента гармоник);
  • Ограничение выходной мощности;
  • Защиту от короткого замыкания;
  • Защиту от пониженного или повышенного напряжений.

Фактически, ККМ можно рассматривать как некий буферный каскад (схему), снижающий взаимное влияние питающей сети и источника питания.

Типовая структура корректора мощности представлена на рисунке 1.

Рис. 1.

ККМ может быть реализован не только на дискретных элементах, но и при помощи специализированных микросхем — контроллеров ККМ (PFC-корректоры). К основным производителям контроллеров корректоров коэффициента мощности относятся:

  • STMicroelectronics- L4981, L656x;
  • Texas Instruments- UCx854, UC28xx;
  • International Rectifier — IR115x;
  • ON Semiconductor- MC3x262, MC33368, NCP165x, NCP160x;
  • Fairchild Semiconductor- FAN48xx, FAN69x, FAN7527;
  • Linear Technology Corporation- LTC1248.

ККМ-контроллеры STMicroelectronics

Компания STMicroelectronics предлагает несколько серий производительных контроллеров ККМ, способных обеспечить различные режимы работы прибора. Дополнительные опции упрощают построение импульсных источников питания, учитывая стандарты энергосбережения и требования к уровню вносимых в питающую сеть искажений.

Таблица 1. Контроллеры корректора коэффициента мощности STMicroelectronics

Микросхема Корпус Режим работы Напряжение
питания, В
Ток потребления, мА активный/стартовый (низкопотребляющий) Примечание
L4981 PDIP 20; SO-20 ССМ 19,5 12/0,3 Мягкий старт; защита от перенапряжения, перегрузки по току
L6561 DIP-8; SO-8 TM 11…18 4/0,05 Защита от перенапряжения
L6562A DIP-8; SO-8 TM, Fixed-Off-Time 10,5…22,5 3,5/0,03 Защита от перенапряжения
L6562AT SO-8 TM, Fixed-Off-Time 10,5…22,5 3,5/0,03 Защита от перенапряжения
L6563H SO-16 TM, tracking boost 10,3…22,5 5/0,09
L6563S SO-14 TM, tracking boost 10,3…22,5 5/0,09 Высоковольтный старт; защита от перенапряжения, разрыва обратной связи, насыщения индуктора
L6564 SSOP 10 TM, tracking boost 10,3…22,5 5/0,09 Высоковольтный старт; защита от перенапряжения, разрыва обратной связи, насыщения индуктора

Микросхема контроллера корректора мощности L4981 позволяет построить высокоэффективные блоки питания с синусоидальным током потребления. Коэффициент мощности может достигать величины 0,99 при низком уровне гармоник. Сама микросхема реализована по технологии BCD 60II и работает по принципу контроля среднего тока (CCM), поддерживая синусоидальность потребляемого тока.

L4981 может быть использована в системах с питающими напряжениями 85…265 В без внешнего драйвера силового ключа. Серия «A» для ШИМ-контроллера использует фиксированную частоту; серия «B» для оптимизации входного фильтра дополнительно использует частотную модуляцию.

Также в состав микросхемы входят: прецизионный источник опорного напряжения, усилитель рассогласования, схема блокировки работы при критическом падении напряжения, датчик тока, схема мягкого старта и защита от перенапряжения и перегрузки по току. Уровень срабатывания защиты по току для L4981A задается при помощи внешнего резистора; для повышения точности в серии L4981B используется внешний делитель напряжения.

Ключевые особенности:

  • Boost-ШИМ с коэффициентом мощности до 0,99;
  • Искажение тока не более 5%;
  • Универсальный вход;
  • Мощный выходной каскад (биполярные и МОП-транзисторы);
  • Защита от просадки напряжения с гистерезисом и программируемым порогом включения;
  • Встроенный источник опорного напряжения с точностью 2% (доступен извне);
  • Низкий ток запуска (~0,3мА);
  • Система мягкого включения.

Серия L6561 является улучшенной версией PFC-контроллера L6560 (полностью с ним совместима). Основные новшества:

  • Улучшенный аналоговый умножитель, позволяющий устройству работать в широком диапазоне входных напряжений (от 85 до 265В) с превосходными показателями коэффициента гармоник (THD);
  • Стартовый ток уменьшен до нескольких миллиампер (~4мА);
  • Добавлен вывод разрешения работы, гарантирующий низкое энергопотребление в режиме ожидания (stand by ).

Ключевые возможности, воплощенные в смешанной технологии BCD:

  • Ультранизкий стартовый ток (~50мкА);
  • 1% встроенный источник опорного напряжения;
  • Программируемая защита от перенапряжения;
  • Токовый датчик без внешнего фильтра низких частот;
  • Малый ток покоя.

Выходной каскад способен управлять силовыми МОП- или IGBT-ключами с токами управления до 400 мА. Микросхема работает в переходном режиме работы корректоров коэффициента мощности — Transition Mode (TM) — промежуточный режим между непрерывным (CCM) и прерывистым (DCM). L6561 оптимизирована для балластных схем питания газоразрядных ламп, сетевых адаптеров, импульсных источников питания.

Контроллер ККМ L6562A/L6562AT также работает в переходном режиме (TM) и совместим повыводно с предшественниками L6561 и L6562. Его высоколинейный умножитель имеет специальную схему, уменьшающую рассогласование входного переменного тока, что позволяет оперировать в широком диапазоне входных напряжений с низким коэффициентом гармоник при различных нагрузках. Выходное напряжение контролируется операционным усилителем с высокоточным источником опорного напряжения (до 1% точности).

L6562A/L6562AT в режиме покоя имеет потребление порядка 60 мкА и рабочий ток всего 5 мА. Наличие входа управления включением/выключением облегчает создание конечных устройств, отвечающих требованиям стандартов Blue Angel, EnergyStar, Energy2000 и ряда других.

Эффективная двухуровневая система защиты от перенапряжения срабатывает даже в случае возникновения перегрузки в момент запуска корректора или же в случае отрыва нагрузки при работе.

Выходной каскад способен обеспечить выходной ток до 600 мА и входной до 800 мА, что является достаточным для управления мощными силовыми MOSFETs или IGBT-ключами. В дополнение к указанным выше возможностям L6562A может оперировать в проприетарном режиме фиксированного времени выключения (Fixed-Off-Time ) — рисунок 2.


Рис. 2.

Серии ККМ-контроллеров L6563, L6563S, L6563H, L6564 построены по схеме типового корректора коэффициента мощности, работающего в режиме TM с рядом дополнительных возможностей.

L6563, L6563S имеют режим работы Tracking boost, двунаправленный вход упреждения напряжения, вход разрешения работы, прецизионный источник опорного напряжения (точность при 25°С в пределах 1…1,5%). Кроме того, в микросхему интегрированы: схемы защиты от перенапряжения с настраиваемым порогом, разрыва контура обратной связи (выключение микросхемы), насыщения индуктора (выключение микросхемы); программируемый детектор критического падения переменного напряжения. Максимальный ток потребления L6563х составляет не более 6 мА в активном режиме, стартовый ток менее 100 мкА.

Микросхема контроллера корректора
коэффициента мощности L6562A

Сферы применения ККМ-контроллера включают в себя:

  • Импульсные блоки питания, отвечающие требованиям стандартов IEC61000-3-2 (телевизоры, мониторы, компьютеры, игровые консоли);
  • AC/DC-преобразователи/зарядные устройства с мощностью до 400 Вт;
  • Электронный балласт;
  • Входной уровень серверов и веб-серверов.

Ключевыми особенностями L6562A являются:

  • Проприетарное решение умножителя;
  • Настраиваемые уровни защиты от перенапряжения;
  • Ультранизкий стартовый ток- 30мкА;
  • Низкий ток покоя- 2,5мА;
  • Мощный выходной каскад для управления силовыми ключами- -600,800мА.

Микросхемы выпускаются в компактных восьмивыводных корпусах DIP-8 и SO-8. Структурная схема L6562A показана на рисунке 3.


Рис. 3.

Инверсный вход усилителя ошибки разделяет функции вывода разрешения работы микросхемы. При напряжении на нем ниже 0,2 В он выключает микросхему, тем самым понижая ее энергопотребление, а при превышении порога в 0,45 В микросхема переходит в активный режим. Основное назначение данной функции — управление ККМ-контроллером, например, он может управляться следующим за ним ШИМ-контроллером преобразователя напряжения. Дополнительной возможностью, предоставляемой функцией выключения, является автоматическое отключение в случае замыкания на землю напряжения низкоомного резистора выходного делителя или обрыва цепи делителя.

Выходной сигнал усилителя ошибки поступает на его инверсный вход через компенсирующие цепи обратной связи. Фактически, работа данных цепей определяет стабильность выходного напряжения, высокий коэффициент мощности и низкий уровень гармоник.

После выпрямителя основное питающее напряжение поступает на вход умножителя через делитель напряжения и служит источником опорного синусоидального сигнала для токовой петли.

Напряжение с измерительного резистора в цепи силового ключа поступает на вход компаратора ШИМ, где сравнивается с опорным синусоидальным сигналом для определения момента размыкания ключа. Для снижения влияния импульсных помех аппаратно реализована задержка в 200 нс от фронта импульса. По отрицательному фронту импульса размагничивания индуктора происходит замыкание силового ключа.

Примером схемы включения L6562A может служить повышающий источник напряжения на 400 В (рисунок 4).


Рис. 4.

Вторым примером может служить применение L6562A в составе источника питания для светодиодных светильников (рисунок 5).


Рис. 5.

L6562A имеет специализированную схему, снижающую влияние переходных процессов в районе нулевого переменного входного напряжения, когда диоды в выпрямительном мосту еще закрыты, и ток через мост равен нулю. Для борьбы с данным эффектом встроенная схема заставляет ККМ-контроллер перекачивать больше энергии в момент пересечения нуля сетевым напряжением (увеличивается промежуток времени нахождения силового ключа в открытом состоянии). В результате уменьшается промежуток времени, в течение которого потребление энергии (тока) схемой недостаточно, и полностью разряжается фильтрующий конденсатор, стоящий после моста. Низкое значение опорного напряжения позволяет использовать более низкоомный резистор для измерения тока в цепи силового ключа, соответственно снижается и рассеиваемая на нем мощность (меньше рассеиваемой мощности ® меньше нагрев ® ниже требования к системе охлаждения и вентиляции). Низкие входные токи динамической защиты от перенапряжения допускают применение высокоомного верхнего резистора в делителе напряжения цепи обратной связи по напряжению без увеличения влияния шума. В итоге снижается ток потребления схемы в режиме ожидания (важно в связи с требованиями стандартов энергосбережения). В таблице 2 приведены основные параметры ККМ-контроллера L6562A.

Таблица 2. Основные эксплуатационные параметры L6562A

Параметр Значение
Пороги включения/выключения, В 12,5/10
Разброс значений порога выключения (макс), В ± 0,5
Ток микросхемы перед запуском (макс), мкА 60
Усиление умножителя 0,38
Значение опорного напряжения, В 1,08
Время реакции на изменение тока, нс 175
Динамический ток переключения схемы OVP, мкА 27
Пороги детектора нуля, выключения/срабатывания/удержания, В 1,4/0,7/0
Пороги включения/выключения микросхемы, В 0,45/0,2
Падение напряжения на внутреннем драйвере ключа, В 2,2
Задержка относительно фронта импульса в датчике тока, нс 200

Все это делает L6562A прекрасным недорогим решением для ИБП мощностью до 350 Вт, совместимых с требованиями стандартов EN61000-3-2.

Варианты применения и методика расчета типовых узлов для схем на основе L6562A/АТ приводятся в руководствах по применению; список основных документов приведен ниже.

AN3159: STEVAL-ILH005V2: 150 W HID electronic ballast — встраиваемый блок электронного балласта мощностью до 150 Вт.

AN2761: Solution for designing a transition mode PFC preregulator with the L6562A — примеры построения предварительного регулятора с ККМ в транзитивном режиме на основе L6562A.

AN2782: Solution for designing a 400 W fixed-off-time controlled PFC preregulator with the L6562A — Пример разработки 400-ваттного предварительного регулятора с ККМ на базе L6552A в режиме фиксированного времени во выключенном состоянии.

AN2928: Modified buck converter for LED applications — Модифицированный понижающий преобразователь для светодиодного освещения.

AN3256: Low-cost LED driver for an A19 lamp — Светодиодный драйвер для ламп А19 по низкой цене.

AN2983: Constant current inverse buck LED driver using L6562A — Светодиодный драйвер постоянного тока на L6562A.

AN2835: 70 W HID lamp ballast based on the L6569, L6385E and L6562A — Схема электронного балласта для газоразрядных ламп.

AN2755: 400 W FOT-controlled PFC pre-regulator with the L6562A — 400-ватный предварительный регулятор на базе L6562A в режиме fixed-off-time.

AN2838: 35 W wide-range high power factor flyback converter demonstration board using the L6562A — Демонстрационная плата 35-ваттного широкодиапазонного конвертера с высоким коэффициентом мощности на основе L6562A.

AN3111: 18 W single-stage offline LED driver — Автономный одноуровневый 18-ваттный светодиодный драйвер.

AN2711: 120 VAC input-Triac dimmable LED driver based on the L6562A — Тиристорный регулируемый светодиодный драйвер на L6562A мощностью 120 Вт.

Демонстрационные платы, предлагаемые STMicroelectronics, позволяют быстро разобраться с различными режимами работы микросхем, а также посмотреть, как поведут себя устройства в разных условиях эксплуатации. Кроме того, отладочные средства служат прототипами устройств. На момент написания статьи для ознакомления с L6562A предлагается следующий набор отладочных средств — таблица 3.

Таблица 3. Отладочные средства для L6562A

Плата Внешний вид Описание
STEVAL-ILL027V2 18-ваттный автономный светодиодный драйвер
EVL6562A-TM-80W Оценочная плата 80-ваттного корректора коэффициента мощности работающего в режиме TM
STEVAL-ILL013V1 Регулируемый автономный ККМ и светодиодный драйвер с регулировкой мощности на базе L6562A
EVL6562A-LED Демонстрационная плата светодиодного драйвера постоянного тока на L6562A
STEVAL-ILL016V2 Тиристорный автономный светодиодный драйвер на L6562AD и TSM1052
STEVAL-ILL019V1 35-ваттный автономный светодиодный драйвер для четырехканальных светодиодных источников типа HB RGGB
STEVAL-ILL034V1 Светодиодный драйвер для ламп типа A19 на базе L6562A (ориентировано на американский рынок)
EVL6562A-400W L6562A Предварительный регулятор напряжения с корректором коэффициента мощности в режиме fixed-off-time

ККМ-контроллеры STMicroelectronics серий L6563S/H

Помимо стандартных функций и возможностей контроллеры коэффициента мощности серии L6563S/H (рис. 6) имеют ряд опций, улучшающих характеристики конечных устройств, работающих на их основе.


Рис. 6.

Среди отличительных особенностей:

  • Возможность работы в режиме tracking boost;
  • 1/V 2 -коррекция;
  • Защита от перенапряжения, разрыва цепи обратной связи, насыщения индуктора.

Высоколинейный умножитель с коррекцией ступенчатых искажений основного тока позволяет микросхемам работать в широком диапазоне входного переменного напряжения при минимальном уровне нелинейных искажений даже при больших нагрузках.

Выходное напряжение контролируется усилителем ошибки и прецизионным источником напряжения (1% при 25°С). Стабильность контура обратной связи отслеживается упреждающей связью по напряжению (1/V 2 -коррекция), которая в данной микросхеме использует уникальную проприетарную технику, позволяющую существенно улучшить переходные процессы на линии при падениях или скачках сетевого напряжения (т.н. двунаправленная связь — «bidirectional»).

ККМ-контроллер L6563H имеет тот же набор функций, что и L6563/L6563S, с добавлением высоковольтного источника запуска. Эта возможность востребована в приложениях с жесткими требованиями по энергосбережению, а также в тех случаях, когда контроллер ККМ работает в режиме мастера.

Дополнительно L6563H имеет возможность работы в режиме отслеживания повышения (tracking boost operation ) — выходное напряжение изменяется, реагируя на изменения сетевого напряжения.

L6563H может быть использован в составе блоков питания мощностью до 400 Вт при соответствии требованиям стандартов EN61000-3-2, JEITA-MITI.

Микросхема L6564 является более компактной версией L6563S в корпусе SSOP-10 — имеет тот же драйвер, источник опорного напряжения и систему управления. В серии L6563A отсутствует защита от насыщения индуктора.

Так же, как и L6562A, ККМ-контроллеры L6263x могут работать в режиме фиксированного времени выключения (Fixed-Off-Time ). Кроме того, выводы состояния контроллера позволяют управлять ШИМ-контроллером DC/DC-преобразователя, питаемого предварительным регулятором ККМ-контроллера при нештатных ситуациях (разрыв обратной связи, насыщение индуктора, перегрузка). С другой стороны, возможно отключение ККМ-контроллера в том случае, если DC/DC-конвертор работает на малую нагрузку. В отличие от серий L6562x имеются отдельные входы управления контроллером, что делает управление достаточно гибким.

AN3142: Solution for designing a 400 W fixed-off-time controlled PFC preregulator with the L6563S and L6563H — 400-ваттный ККМ-регулятор на L6563S и L6563H в режиме fixed-off-time.

AN3027: How to design a transition-mode PFC pre-regulator with the L6563S and L6563H — Разработка ТМ ККМ-контроллера с помощью L6563S and L6563H.

AN3203: EVL250W-ATX80PL: 250W ATX SMPS demonstration board — Демонстрационная плата ATX блока питания на 250 ВТ.

AN3180: A 200 W ripple-free input current PFC pre-regulator with the L6563S 1 — Корректор коэффициента мощности на L6563L свободный от шума входного тока.

AN2994: 400 W FOT-controlled PFC pre-regulator with the L6563S — 400-ваттный ККМ-контроллер на L6563S в режиме fixed-off-time.

AN3119: 250 W transition-mode PFC pre-regulator with the new L6563S — 250-ваттный ККМ-контроллер на L6563S в режиме transition-mode.

AN2941: 19 V — 75 W SMPS compliant with latest ENERGY STARR criteria using the L6563S and the L6566A — Импульсный блок питания с выходным напряжением 19 В мощностью 75 Вт совместимый с требованиями новейшего стандарта Energy Starr.

AN3065: 100 W transition-mode PFC pre-regulator with the L6563S — 100-ваттный ККМ-контроллер на L6563S в режиме transition-mode.

Демонстрационные платы для L6563S/ L6564 показаны в таблице 4.

Таблица 4. Отладочные средства для L6563S/ L6564

Наименование Внешний вид Описание
EVL250W-ATX80PL Плата ATX блока питания на 250 Вт
EVL6563S-250W 250-ваттный предварительный регулятор с ККМ на базе L6563S в режиме TM
EVL6563S-100W 100-ваттный предварительный регулятор с ККМ на базе L6563S в режиме TM
EVL6563S-200ZRC Корректор коэффициента мощности на L6563S свободный от шума входного тока (200 Вт)
EVL185W-LEDTV Блок питания мощностью 185 Вт для LED-телевизоров с корректором коэффициента мощности, режимом ожидания на базе L6564, L6599A, и VIPER27L

Дополнительно по запросу разработчика могут быть предоставлены программные продукты для автоматизации разработки и расчета схем на L6563S, L6564 в режимах TM и fixed-off-time.

Рекомендации по выбору компонентов
для ККМ-контроллера

Для корректной работы микросхем ККМ-контроллеров, стабильной работы прибора и его соответствия требованиям стандартов необходимо выбрать подходящий режим работы.

Как правило, для мощностей меньше 200 Вт ККМ-контроллеры L6562A/3S/3H/4 включаются в режиме TM. Для приборов, оперирующих мощностями более 200 Вт, применяется микросхема L4981 (ее режим работы CCM). Возможно также применение серий L6562A/3S/3H/4 в режимах Fixed-Off-Time или Reeple-Steering.

Силовой MOSFET-ключ и выпрямительный диод для силовой части корректора мощности или источника питания можно легко выбрать из продукции STMicroelectronics.

Для устройств малой мощности (до 100 Вт) подходят силовые ключи семейства SuperMesh3, например, серии STx10N62K3. Для средней мощности (100…1000 Вт) — семейство MDMesh2 серии STx25NM50M. И для мощных источников, работающих с мощностями более 1 кВт — семейство MDMesh5 серии STP42N65M5.

Заключение

Несмотря на сравнительно небольшой по количеству серий ассортимент предлагаемых ККМ-контроллеров, продукция STMicroelectronics, благодаря ряду удачных схемотехнических решений и разнообразию возможных режимов работы, перекрывает практически весь спектр приложений импульсных преобразователей энергии — повышающие/понижающие блоки питания, драйверы светодиодных светильников, корректоры коэффициента мощности.

Кроме того, для всего спектра приложений осуществляется информационная и техническая поддержка разработчика — от рекомендаций по применению и программ для расчета блоков и узлов до отладочных и демонстрационных плат.

Получение технической информации, заказ образцов, поставка — e-mail:

О компании ST Microelectronics

1. ЗАЧЕМ ЭТО НАДО?

Сразу скажем, что вопреки поверхностным утверждениям наличие корректора коэффициента мощности само по себе не дает улучшения формальных характеристик устройства, в котором он применен. Наоборот, введение ККМ как достаточно сложного устройства пока приводит к заметному удорожанию и усложнению продукта в целом (конечно, по мере развития техники цена будет снижаться). Тем не менее, уже сейчас введение ККМ в усилители мощности дает ряд очень важных преимуществ, с лихвой окупающих это усложнение.

Первым и самым важным преимуществом является тот факт, что при использовании усилителей с ККМ с той же проводкой без нарушения каких-либо норм можно использовать как минимум втрое-вчетверо более мощные усилители. Кстати, никакого нарушения физических (и юридических) законов здесь нет, а почему так получается - расскажем дальше.

Второе, не менее важное, но редко упоминаемое преимущество состоит в том, что обеспечить высокую энергоемкость блока питания с ККМ намного легче, чем традиционного. Энергоемкость - это мера способности блока питания отдавать в течение некоторого времени мощность в нагрузку, не "просаживая" сеть и не сильно снижая выходное напряжение. С практической точки зрения недостаток энергоемкости приводит к тому, что выходная мощность усилителя на низких частотах (там, где она нужнее всего!) оказывается намного меньше, а искажения других сигналов при наличии низкочастотного - намного выше, чем при измерениях на частоте 1 кГц, результаты которых (иногда всего лишь желаемые) рекламируются в описании. Проще говоря, при недостатке энергоемкости усилитель начинает "захлебываться" и искажать сигнал во время громких низкочастотных звуков, например, при ударе бочки. К сожалению, для усилителей с традиционным блоком питания этот нежелательный эффект скорее правило, нежели исключение. Поэтому при необходимости обеспечения хорошего качества и приходилось выбирать усилитель с большим запасом по мощности.

Третье преимущество - блок питания с ККМ по принципу действия стабилизирует выходное напряжение. Поэтому выходная мощность усилителя перестает жестко зависеть от напряжения сети - даже при "просевшей" сети отдается полная мощность.

Еще одним, совсем неожиданным преимуществом является то, что сетевой фон (тот самый) при использовании только усилителей с ККМ, оказывается, как правило, децибел на 10 ниже.

2. ЧТО ЭТО ТАКОЕ И КАК ЭТО РАБОТАЕТ?

Несмотря на многообразие реально существующих устройств, принцип работы ККМ можно рассмотреть на следующем простом примере (см. рис. 1).

Корректор коэффициента мощности - это не что иное, как почти обычный импульсный регулятор, питающийся выпрямленным, но несглаженным сетевым напряжением и стабилизирующий напряжение на выходном накопительном конденсаторе C2. Основной принцип его действия довольно прост и состоит в следующем. Сначала на короткое время замыкается ключ S1, и в катушке индуктивности L1 в полном соответствии с учебником физики начинает нарастать ток. Спустя некоторое время ключ размыкается, а энергия, накопленная в катушке, через диод переходит в выходной накопительный конденсатор. Этот цикл непрерывно повторяется, в результате чего на накопительный конденсатор поступают порции энергии, величина которых зависит от входного напряжения, величины индуктивности и времени замкнутого состояния ключа. Для того чтобы размеры катушки и потери в ней были невелики, величину индуктивности выбирают небольшой, а, соответственно, частоту повторения таких циклов делают достаточно высокой - десятки и сотни тысяч раз в секунду. Необходимо заметить, что при чрезмерно высокой частоте потери на переключение транзистора, используемого в качестве ключа, становятся весьма

существенными. Самое важное здесь то, что при надлежащем управлении вход такого преобразователя со стороны сети будет выглядеть как некоторое сопротивление (ток в каждый момент времени пропорционален напряжению), и в то же время на выходном конденсаторе будет поддерживаться некоторое постоянное напряжение, практически не зависящее от нагрузки и напряжения сети (!). При этом между напряжением в сети и током, отбираемым от нее, не будет ни сдвига фаз (cos j 1)*, ни нарушения пропорциональности.

Высокое напряжение на накопительном конденсаторе облегчает задачу обеспечения энергоемкости блока питания, поскольку содержание энергии в конденсаторе пропорционально квадрату напряжения, тогда как размеры и вес у конденсаторов равной емкости примерно пропорциональны напряжению. В результате конденсатор емкостью 2200 мкФ при напряжении 430В содержит больше 200 Дж энергии, а такой же конденсатор при напряжении 60В - всего около 4 Дж, или в 50 (!) раз меньше. Объем же у этих конденсаторов, отличается всего раз в шесть-восемь. Поэтому для достижения одинаковой энергоемкости при низких напряжениях требуются конденсаторы огромной емкости - более 100000 мкф в данном случае. В то же время для безупречной работы образцового высококачественного усилителя энергоемкость его блока питания должна быть не ниже 0,5…0,8 Дж на Вт суммарной выходной мощности, для концертных усилителей (кроме сабвуферных) вполне приемлемо 0,2…0,4 Дж на Вт. То есть усилитель 2х1000 Вт должен иметь энергоемкость блока питания как минимум 400 Дж, или 200000 мкФ на 60В, а желательно раза в три больше.

На практике же энергоемкость традиционных блоков питания у подавляющего большинства усилителей гораздо ниже, и причиной тому не только банальная экономия производителей на трансформаторах и конденсаторах. Не менее существенно то обстоятельство, что выпрямитель с конденсаторами большой емкости представляет собой цепь, нагружающую сеть только в короткие промежутки времени (во время "верхушек" синусоид), зато большими токами (см. рис. 2), где, кстати, видно, что форма сетевого напряжения сильно искажена такими выпрямителями). Причем, чем лучше трансформатор и выше емкость, тем сильнее выражено это явление. Включать подобный блок питания в сеть можно только при наличии устройств "мягкого" пуска, иначе будут сгорать предохранители. Далее, любой, даже небольшой скачок напряжения сети в сторону повышения вызывает резкий рост величины этих импульсов тока, что приводит к выходу выпрямителей из строя. Именно поэтому емкость конденсаторов (и, соответственно, энергоемкость блоков питания) в большинстве усилителей с традиционным блоком питания выбрана много меньшей, чем это необходимо для обеспечения надлежащего запаса мощности на низких частотах.

Взглянув на рис. 3, можно заметить еще два обстоятельства.

Первое - это то, что пиковый потребляемый ток оказывается в несколько раз выше, чем средний. Но полезная мощность определяется средним током, тогда как падение напряжения на проводах - пиковым. А он оказывается много больше среднего.

Второе обстоятельство - ток, потребляемый короткими импульсами, имеет высокую скорость изменения, и, соответственно создает больше помех.

Еще одна проблема возникает в трехфазных сетях. Из-за того, что фазы напряжений в трехфазной сети сдвинуты на время, значительно большее, чем длительность этих импульсов тока, они в нулевом проводе перестают компенсироваться. Более того, ток в нулевом проводе окажется примерно равным сумме фазных токов, тогда как в нормальной ситуации ток через него вообще не

должен течь, и нулевой провод обычно делают более тонким, чем фазные. Если учесть, что ток через него становится больше, чем через фазные, а также то, что установка предохранителей в нулевой провод запрещена, нетрудно догадаться, что тут недалеко и до пожара. Поэтому величина гармоник тока потребления ограничена достаточно жесткими международными стандартами. Традиционные блоки питания при мощности выше 150...200 Вт удовлетворить этим стандартам принципиально не в состоянии. Это приведет к тому, что при больших мощностях традиционные блоки питания просто-напросто оказываются "вне закона".

Всех этих проблем можно избежать, если со стороны сети блок питания будет выглядеть как чисто активное сопротивление, подобно утюгу или лампочке накаливания.

Именно так и работает блок питания с корректором коэффициента мощности. Исчезают проблемы, связанные с нестабильностью сети, а также появляется возможность обеспечить необходимую энергоемкость блока питания.

Становится совершенно очевидным - применение корректора коэффициента мощности является не только обязательным (с точки зрения закона), но и совершенно необходимым для "честной" работы профессиональных высококачественных усилителей.

* Небольшое дополнение: cos j и коэффициент мощности часто путают, хотя это не одно и то же. Cos j - это мера того, какая доля тока, протекающего в проводах, фактически уходит в нагрузку (и выполняет полезную работу), при этом как напряжение, так и ток полагаются строго синусоидальными. Если сдвига фаз нет, cos j = 1. Если сдвиг фаз достигает 90 градусов независимо от знака, cos j обращается в нуль - полезная мощность просто не передается в нагрузку.

Коэффициент мощности совпадает с cos j только в случае чисто синусоидальных токов и напряжений. Если же ток или напряжение несинусоидальны, применимым остается только коэффициент мощности, который показывает какая доля тока, прошедшего по проводам и нагревающего их, с пользой ушла в нагрузку. Коэффициент мощности обычного выпрямителя не превышает 0,25…0,3, тогда как у хорошего ККМ он составляет не менее 0,92…0,95, т.е. в 3-4 раза больше (вот откуда трех-четырехкратная разница!).

С. КОСЕНКО, г. Воронеж

Хорошо известно, что активная мощность, потребляемая нагрузкой от источника переменного тока, далеко не всегда равна произведению эффективного значения тока на эффективное значение напряжения. Многие считают, что это относится только к нагрузкам с реактивной составляющей сопротивления, создающей фазовый сдвиг между законами изменения тока и напряжения. При подсчете мощности реактивность нагрузки учитывают еще одним сомножителем - коэффициентом мощности, равным косинусу угла сдвига фазы (cos Фи). Чем меньше этот сдвиг, тем ближе к единице этот коэффициент.

Однако к уменьшению коэффициента мощности приводит и нелинейность нагрузки, причем это явление со сдвигом фазы не связано. Типичный пример - обычный выпрямитель. Потребляемый им ток имеет импульсный характер, протекая только в интервалах времени, когда мгновенное значение переменного входного напряжения больше напряжения на сглаживающем конденсаторе и диод (или диоды) выпрямителя открыт. Амплитудное и эффективное значения этого тока намного больше среднего тока нагрузки, а коэффициент мощности значительно ниже единицы. Чтобы увеличить этот коэффициент, необходимо максимально приблизить форму потребляемого тока к синусоидальной.


Схема одного из вариантов устройства, выполняющего эту операцию и называемого корректором коэффициента мощности, изображена на рис. 1. Он построен на специализированной микросхеме-контроллере L6562 фирмы STMicroelectronics. Полезно ознакомиться с описанием предшественника этого контроллера L6561 и их сравнительными данными .

ККМ представляет собой однотактный импульсный повышающий преобразователь напряжения с накоплением энергии в магнитопроводе трансформатора Т1 и последующей ее передачей в нагрузку.

Основные технические характеристики
Входное переменное (50 Гц) напряжение, В.........220±20 %
Коэффициент мощности, % .......96
Коэффициент гармонических искажений входного тока, % ..............8
Выходное постоянное напряжение, В.................400
Мощность нагрузки, Вт...........80
КПД, %.........................96

Нa вход преобразователя через фильтр высокочастотных помех (двухобмоточный дроссель L1 с конденсаторами CI- С4) и выпрямительный мост VD1 поступает пульсирующее с частотой 100 Гц напряжение U„. Конденсатор С5 сравнительно небольшой емкости не сглаживает пульсации выпрямленного напряжения, а лишь замыкает цепь протекания высокочастотных составляющих входного тока преобразователя Il, уменьшая их проникновение в сеть и влияние импеданса сети на работу ККМ.

После включения прибора в сеть начинают заряжаться через резисторы R5 и R7 конденсаторы С10 и С11 Контроллер DA1 заработает, как только напряжение на конденсаторах и, следовательно, между его выводами 8 и 6 достигнет 13 В (в случае снижения этого напряжения до 10,3 В он снова перейдет в нерабочее состояние с потреблением тока не более 90 мкА). Под действием импульса, вырабатываемого внутренним генератором пусковых импульсов (ГПИ) A3, на выходе триггера D2 будет установлен высокий логический уровень, а на выходе усилителя А6 (выв. 7 микросхемы) - напряжение, достаточное для открывания транзистора VT1. Через обмотку I трансформатора Т1 и открытый транзистор потечет линейно нарастающий ток.
Транзистор будет закрыт, как только триггер D2 перейдет в состояние с низким уровнем на выходе, а это случится в момент срабатывания компаратора А5, сравнивающего напряжение, снимаемое с резистора R13 - датчика тока транзистора VT1, с напряжением на выходе перемножителя А4. Так как ток в обмотке трансформатора, как и во всякой индуктивности, не может прекратиться мгновенно, после закрывания транзистора он потечет, спадая, через диод VD4, заряжая конденсатор С13 и питая нагрузку. В интервалах времени, когда транзистор VT1 открыт и ток через диод VD4 не течет, заряд, накопленный в конденсаторе С13, расходуется на питание нагрузки.
Спад тока в обмотке I трансформатора Т1 до нуля зафиксирует узел А1 (обнаружитель нулевого значения тока, ОНЗТ), для его работы на выв. 5 контроллера подано напряжение с обмотки II трансформатора. В этот момент триггер D2 вновь будет установлен в состояние с высоким уровнем на выходе, а транзистор VT1 открыт. Далее процесс повторяется периодически.

Участки графика тока обмотки I трансформатора Т1, изображенные на рис. 2 линиями розового цвета, соответствуют протеканию тока через транзистор VT1, а линиями голубого цвета - через диод VD4 На том же рисунке имеется временная диаграмма изменения напряжения U, на затворе коммутирующего транзистора. В реальнос¬ти отношение частоты коммутации к частоте входного напряжения значительно больше изображенного на рис. 2 Элементы преобразователя обычно выбирают так, что частота следования его импульсов не опускается ниже 40 кГц. Так как частота пусковых импульсов, генерируемых узлом А1, не превышает 13 кГц, на работу ККМ в установившемся режиме этот узел не влияет.

Напряжение на выходе перемножителя А4 пропорционально мгновенному значению напряжения Uвх, часть которого поступает на выв. 3 контроллера через делитель из резисторов R1-R3. В результате форма огибающей вершин импульсов тока, показанная на рис. 2 пунктиром, совпадает с формой входного напряжения. По такому же закону изменяется среднее значение потребляемого тока Icp, что и требуется для выполнения ККМ своей основной функции. Из графиков на рис. 2 следует (это можно показать и аналитически), что в рассматриваемом случае фиксирована длительность интервалов времени, соответствующих открытому состоянию транзистора VT1. Частота коммутации, изменяясь периодически с удвоенной частотой сетевого напряжения, зависит также от его амплитуды и от тока нагрузки. Индуктивность первичной обмотки трансформатора выбирают такой, чтобы частота следования импульсов тока не выходила за пределы 40. .200 кГц. Кроме того, магнитопровод трансформатора не должен насыщаться под действием импульса тока максимальной амплитуды (Ilmax) - в установившемся режиме приблизительно в три раза больше тока нагрузки ККМ

Фактически трансформатор Т1 использован как накопительный дроссель. Почти вся энергия, поступившая в его магнитное поле за время, когда коммутирующий транзистор открыт, поступает в нагрузку при закрытом тран зисторе. Лишь небольшая часть этой энергии с помощью вторичной обмотки ответвляется на формирование сигнала нулевого значения тока и на питание контроллера по цепи R6C8VD2VD3. Упомянутые выше резисторы R5 и R7 обеспечивают ток, достаточный лишь для запуска контроллера.

Стабилизация выходного напряжения ККМ (UВЫХ) достигается тем, что на второй вход перемножителя А4 контроллера поступает сигнал рассогласования, полученный в результате сравнения части выходного напряжения, снимаемого с резистивного делителя R14-R17, с формируемым внутри контроллера образцовым напряжением 2,5 В. В результате при

колебаниях тока нагрузки и амплитуды входного напряжения амплитуда огибающей импульсов тока изменяется таким образом, что выходное напряжение поддерживается равным заданному (400 В).

Усилитель сигнала рассогласования А2 охвачен цепью отрицательной обратной связи (ЦОС), схема и параметры которой выбирают так, чтобы была обеспечена динамическая устойчивость стабилизатора при достаточно быстрой реакции на дестабилизирующие факторы. В простейшем случае ЦОС - это просто конденсатор С9 (см. рис. 1). уменьшающий усиление сигнала рассогласования с повышением его частоты при достаточно большом коэффициенте передачи постоянной составляющей. Например, чтобы ослабить составляющую с частотой F в N раз, емкость конденсатора обратной связи должна быть равна

Например, при F = 100 Гц и N = 1000 требуется конденсатор емкостью приблизительно 1,6 мкФ.

Однако стабилизатор с простейшей ЦОС бывает склонен к возникновению автоколебаний из-за малого запаса по фазе на частоте единичного усиления. Если фазовый сдвиг на этой частоте достигает 180°, обратная связь из отрицательной превращается в положительную со всеми вытекающими неприятными последствиями.

Чтобы устранить это явление и обеспечить достаточный запас по фазе, последовательно с конденсатором обратной связи включают резистор. Именно такая ЦОС R7C8 показана на рис. 1 в качестве основной, а конденсатор С9 и требующийся в некоторых случаях резистор R9 изображены пунктиром В контроллере L6562 предусмотрена защита от превышения допустимого значения выходного напряжения. Принцип ее работы поясняет фрагмент схемы контроллера на рис. 3. Элементы А2, А4, А6, конденсатор С7 и резисторы R8, R14-R17 те же, что и на рис. 1. Имеются два вида защиты - статическая и динамическая. Первую обеспечивает компаратор А7. Он изменяет состояние, если напряжение на выходе усилителя А2 падает ниже 2,25 В, что соответствует превышению заданного выходного напряжения ККМ на 10 %. Сигнал с выхода компаратора через элемент ИЛИ D3 поступит на вход блокировки усилители А6, в результате чего транзистор VT1 (см. рис 1) будет немедленно закрыт и останется закрытым, пока за счет разрядки конденсатора С13 током нагрузки напряжение на выходе ККМ не упадет до допустимого уровня.

Динамическая защита предохраняет от скачков выходного напряжения, вызванных, например, резким сбросом нагрузки. Ее действие основано на том, что в установившемся режиме ток зарядки-разрядки конденсатора ЦОС (С7) и практически равный ему выходной ток усилителя А2 близки к нулю.


При резком изменении выходного напряжения приращение тока, текущего через резисторы R14 и R15, вызывает равное ему увеличение выходного тока усилителя, заряжающего конденсатор. Усилитель А2 имеет специальный выход контроля выходного тока, соединенный со входом компаратора А8. Если значение тока, втекающего в выв. 2 контроллера, превысит 37 мкА, будет включено так называемое "мягкое торможение" - ограничение длительности импульсов на выв. 7, приводящее к постепенному снижению выходного напряжения. Если же втекающий ток превысит 40 мкА, произойдет "резкое торможение" с полной блокировкой усилителя А6. Благодаря гистерезисным свойствам компаратора А8 нормальная работа будет восстановлена только после уменьшения втекающего тока до 10 мкА. Потребление тока контроллером по цепи питания, равное в рабочем режиме 4 мА, уменьшается до 1,4 мА при срабатывании защиты.

Кроме контроллера L6562, в описанный ККМ можно устанавливать аналогичные микросхемы других изготовителей, например. МС34262, IL34262. Диод VD4 должен быть быстродействующим с рабочей частотой не менее 200 кГц и способным выдерживать пиковые значения коммутируемого тока. Конденсаторы С1- С5 - пленочные или керамические на напряжение не менее 630 В. Дроссель L1 - ДФ90ПЦ или ДФ110ПЦ от телевизоров серий ЗУСЦТ-5УСЦТ.

Магнитопровод трансформатора Т1 - Ш6*6 из феррита М2000НМ1 со стандартным каркасом, все неиспользуемые выводы которого удалены. Обмотку I (73 витка) наматывают жгутом из десяти проводов ПЭВ-2 0,12 в четыре слоя, избегая сползания и проваливания витков верхнего слоя в нижний


У щечек каркаса. Каждый слой и обмотку в целом изолируют лакотканью или другим изоляционным материалом, способным выдержать импульсы амплитудой более 400 В. Измеренная индуктивность обмотки I готового трансформатора - 650 мкГн. Обмотка II - шесть витков провода ПЭВ-2 0,12, намотанных "вразрядку" по всей ширине каркаса.

Для создания в магнитопроводе немагнитного зазора подготавливают две вставки из стеклотекстолита толщиной 0,25 мм. Собирая трансформатор, их вставляют между торцами крайних стержней половин магнитопровода, после чего магнитопровод склеивают. На собранный трансформатор надевают экран - короткозамкнутый виток из полосы медной фольги шириной 10 мм. Это необходимо для снижения уровня излучаемых устройством помех. С общим проводом виток не соединяют.

Эксплуатация ККМ показала, что температура магнитопровода трансформатора Т1 достигает приблизительно 70 "С. Чтобы уменьшить нагрев, желательно вместо магнитопровода из феррита 2000НМ1 применить изготовленный из феррита 2500НМСI или аналогичного зарубежного. Также реко мендуется устанавливать в ККМ оксидные конденсаторы с максимальной рабочей температурой 105 °С.

Применение способа общей коррекции коэффициента мощности для бытовых и промышленных нагрузок приводит к уменьшению гармонических искажений без необходимости установки дорогостоящих корректоров коэффициента мощности в каждом потребительском устройстве.

При выпрямлении синусоидального переменного тока с емкостной фильтрацией от источника потребляются импульсы тока большой амплитуды. Значения пиков тока могут достигать 600% тока, потребляемого линейной активной нагрузкой той же мощности. Выпрямители с емкостным фильтром, используемые в сетевых источниках питания, является причиной прерываний тока. Ток протекает, только если напряжение переменного тока превышает постоянное напряжение на конденсаторе. Интервал, когда ток заряжает конденсатор, определяет угол прохождения тока выпрямителя. Этот угол или коэффициент мощности нагрузки зависит от импеданса источника, величины ёмкости, а также от величины нагрузки преобразователя. При малой нагрузке угол прохождения тока может иметь величину всего лишь несколько градусов, а при полной нагрузке этот угол будет больше. Но даже при больших нагрузках ток не является непрерывным, он имеет форму коротких импульсов с относительно большой амплитудой и содержит много высших гармоник.

Поэтому обычное выпрямление переменного тока, которое применяется во входных схемах большинства блоков питания электронного оборудования, подключенного к сети, представляет собой очень нерациональное решение, создающее много проблем. При высоких уровнях мощности (от 200 до 500 Вт и выше) эти проблемы становятся ещё более серьёзными.

Описанные пики тока являются причиной сильных искажений напряжения сети и дополнительных потерь. Также при этом генерируется широкий спектр гармоник, которые могут создавать помехи для другого оборудования. Из-за искажения формы тока коэффициент мощности падает до величины порядка 0,45. Кабельная сеть, сама установка, трансформаторы – всё должно проектироваться с учётом пиковых значений тока. Большие падения напряжения, обусловленные искажениями, должны компенсироваться.

Пики тока являются причиной излучаемых помех. Излучаемые помехи, возникающие из-за высокочастотной коммутации импульсных преобразователей, хорошо известны и устраняются с помощью специальных фильтров, которые устанавливаются во все подобные устройства. Импульсы прерывающегося тока, возникающие при заряде емкости источника питания, являются иным видом помех. Они могут влиять на работу чувствительного оборудования, связанного с сетью переменного тока.

Имеются два вида такого влияния. Во-первых, импульсы тока большой амплитуды генерируют электромагнитные поля, достаточно сильные, чтобы влиять на чувствительные усилители. Во-вторых, так как сеть переменного тока имеет ненулевой импеданс источника, большие пики тока становятся причиной "срезания" вершин синусоиды напряжения. Эта ситуация наглядно представлена на рис. 1. Разложение соответствующей кривой в ряд Фурье показывает, что данный факт значительно снижает коэффициент мощности.

Такие искажения напряжения могут отрицательно влиять на устройства, работа которых зависит от синусоидальности переменного тока. Если к сети с искажениями подключено более одного устройства, проблема усугубляется, потому что входные конденсаторы каждого из источников питания заряжаются во время одного и того же пика синусоиды напряжения.

Влияние низкого коэффициента мощности и гармоник, генерируемых выпрямителями с емкостным фильтром, является проблемой уже длительное время. Такие гармоники должны подавляться, поэтому был разработан и принят стандарт МЭК 61 000-3-2. Изучение этого стандарта показывает, что следование ему приводит к снижению уровня гармоник, генерируемых оборудованием, но стандарт не требует полного подавления искажений или повышения коэффициента мощности. Таким образом, сеть с ограниченным уровнем искажений соответствует стандарту и без полного подавления гармоник или повышения до единицы коэффициента мощности источников питания. На практике при увеличении количества оборудования, подключаемого к сети, суммарный ток гармоник может возрасти.

Для смягчения проблем, описанных выше, всё чаще используются схемы коррекции коэффициента мощности. Такие схемы, однако, увеличивают затраты, поэтому альтернативным решением может быть общая схема коррекции коэффициента мощности. На рис. 2 приведены формы токов при одинаковой мощности нагрузки, подключенной к схеме выпрямителя с емкостной фильтрацией со схемой активной коррекции коэффициента мощности и без неё.

Методы коррекции коэффициента мощности

Основной причиной низкого коэффициента мощности и циркуляции больших токов, создаваемых импульсными источниками питания, являются пульсации тока заряда входного фильтра. Поэтому решение заключается во введении элементов для увеличения угла прохождения тока выпрямителя. Имеется много путей решения этой задачи:

  • пассивная и активная коррекция коэффициента мощности,
  • пассивная или активная фильтрация гармоник в сети
  • принятие несинусоидальности напряжения/тока в системе в качестве нормы.

Наиболее популярными являются применение схем пассивной и высокочастотной активной коррекции коэффициента мощности. Ниже рассмотрим краткий обзор пассивной коррекции и подробно разберем активную коррекцию коэффициента мощности.

Пассивная коррекция коэффициента мощности

Пассивная коррекция коэффициента мощности сводится к использованию индуктивности во входной цепи, то есть так называемого индуктивного входного фильтра. Если величина индуктивности достаточно велика, она запасает достаточно энергии для поддержания выпрямителя в проводящем состоянии в течение всего полупериода и уменьшает гармонические искажения, возникающие из-за прерывания тока через выпрямитель. На практике, пассивная коррекция коэффициента мощности уменьшает токи гармоник и существенно повышает коэффициент мощности, но не решает проблему полностью. На рис. 3а показана упрощенная схема пассивной коррекции коэффициента мощности, а на рис. 3b – типовые формы входных напряжения и тока. Схема обеспечивает более низкие искажения по сравнению со схемой без коррекции, но имеет более высокое потребление реактивной мощности на частоте сети. Таким образом, происходит переход от коэффициента мощности для всего спектра гармоник к коэффициенту мощности на частоте основной гармоники.

Активная коррекция коэффициента мощности

При активной высокочастотной коррекции коэффициента мощности нагрузка ведёт себя подобно активному сопротивлению, при этом её коэффициент мощности близок к единице, а величины генерируемых гармоник ничтожны. Форма входного тока подобна показанной на рис. 2. При этом обеспечиваются все преимущества импульсного преобразования (небольшие размеры и масса). Могут использоваться различные конфигурации, включая повышающий и понижающий преобразователи. Здесь описывается повышающий преобразователь по причине его относительной простоты и популярности.

На рис. 4 показана упрощенная схема активной коррекции коэффициента мощности. Как следует из названия повышающего преобразователя, его выходное напряжение выше входного. При этом увеличивается количество энергии, запасаемой в конденсаторе фильтра (C 0), рис. 4. Повышающий преобразователь может обеспечить относительно стабильные выходные параметры в широком диапазоне входных напряжений. Он вырабатывает высокое напряжение на выходном конденсаторе независимо от изменений входного напряжения. Таким образом, время удержания напряжения становится независимым от напряжения сети. Это также делает оборудование менее восприимчивым к просадкам напряжения.

Схема контролирует форму выпрямленного двухполупериодным выпрямителем входного напряжения, среднюю величину входного напряжения и выходное напряжение (V0). На основании этих трёх сигналов осуществляется модулирование формы среднего входного тока в соответствии с выпрямленным напряжением сети и одновременно регулируется выходное напряжение при изменениях напряжения сети и величины нагрузки. Для обеспечения коррекции коэффициента мощности форма входного тока повышающего регулятора приводится в соответствие с формой входного напряжения путём управления ключом MOSFET (Q). Для управления входным током может использоваться или режим управления пиками тока, или режим управления средним значением тока. Для считывания значений тока может применяться много способов. Как показано на рис. 4, для этого может даже использоваться резистор (Rs).

Эта схема управления коэффициентом мощности управляет током через повышающий дроссель (Ip) посредством модуляции ширины импульсов. Рабочая частота выбирается достаточно высокой, чтобы поддерживать непрерывный ток через дроссель, при этом дроссель становится регулируемым источником тока. При использовании выпрямленного напряжения источника и формы тока в качестве опорных сигналов ток через дроссель, который является током, потребляемым от источника, становится синусоидальными и совпадает по фазе с напряжением источника, при этом поддерживается высокий коэффициент мощности. Контур стабилизации напряжения преобразователя управляет током через повышающий дроссель. Поэтому ток, потребляемый от источника, определяется необходимостью поддержания постоянным напряжения (примерно 390 В) на конденсаторе фильтра (V0) при изменении входного напряжения переменного тока, нагрузки постоянного тока, заданного значения и т.п.

Специфические аспекты проблемы

Обычно маломощное оборудование, которое подключается к сети в офисах и жилых помещениях, включает в себя люминесцентные лампы, лампы накаливания, небольшие электродвигатели, компьютеры, оконечные компьютерные устройства, принтеры, телевизоры и т.п. Маломощное электронное оборудование, построенное по традиционным схемам, потребляет пульсирующие несинусоидальные пики тока, о которых шла речь выше. Хотя номинальная мощность таких устройств редко превышает 200 Вт, их совокупный эффект может быть очень значительным. С другой стороны, люминесцентные лампы, лампы накаливания и электродвигатели потребляют синусоидальный ток, и любое отклонение коэффициента мощности от единицы может быть скорректировано с помощью шунтирующего конденсатора. Все современные люминесцентные лампы с электронным балластом содержат схему активной коррекции коэффициента мощности. Поэтому предмет нашего рассмотрения ограничивается электронным оборудованием, которое включает в себя компьютеры, компьютерные оконечные устройства, принтеры, телевизоры и т.п.

Чтобы смягчить проблему, ЕС приняло с января 2001 г. стандарт МЭК 61000-3-2. К сожалению, в настоящее время большинство производителей источников питания считают наиболее простым и экономичным способом добиться соответствия стандарту установку небольшого последовательного дросселя во входной цепи. Этот дроссель изменяет форму входного тока, что позволяет заменить более жесткие ограничения класса D стандарта МЭК 61 000-3-2 на менее жесткие ограничения класса А. Такой способ добиться соответствия стандарту не учитывает оригинальную идею стандарта. Конечно, дроссель формально снижает величину гармоник тока, генерируемых оборудованием, но не решает проблему в целом. Можно сказать, дроссель улучшает ситуацию в индивидуальном случае.

Однако рассмотрим ситуацию, когда к сети подключены тысячи таких устройств. Если каждое из устройств имеет пониженные искажения, суммарный ток также искажён меньше. Конечно, при этом также существует предел количества устройств, которые можно подключить без чрезмерных искажений, но этот предел выше, чем для устройств без дросселя. Токи гармоник, которые циркулируют между такими нагрузками и генератором через линии электропередачи, будут значительными. Поэтому дроссели, устанавливаемые в каждом устройстве, решают проблему соответствия стандарту для их производителя, но на глобальном уровне проблема далека от решения.

В настоящее время единственным решением проблемы является встраивание схемы активной коррекции коэффициента мощности в каждое устройство. Однако это увеличивает стоимость и уменьшает показатели надёжности оборудования в связи с добавлением компонентов схемы активной коррекции коэффициента мощности. В большинстве случаев, использование дополнительной схемы активной коррекции коэффициента мощности в маломощном оборудования невозможно по экономическим причинам.

Схема общей коррекции коэффициента мощности

Перед рассмотрением схемы общей коррекции коэффициента мощности попытаемся понять принцип работы типовой схемы корректора коэффициента мощности маломощного электронного устройства. Внутренние схемы таких устройств не питаются непосредственно от выпрямленного напряжения, полученного от сети электроснабжения. Встроенный преобразователь постоянного тока преобразует выпрямленное высокое напряжение сети электропитания в низкое напряжение, к примеру, 5 В или 12 В, используемое для питания внутренних полупроводниковых схем устройства.

На рис. 3а приведена упрощенная схема типовой входной цепи маломощного электронного устройства. Нагрузкой является преобразователь постоянного напряжения, о котором говорилось выше. Напряжение сети выпрямляется, чтобы получить нерегулируемое высокое напряжение на конденсаторе фильтра (C 0). Токи гармоник, возникающие при заряде этого конденсатора, гасятся последовательным дросселем (L). При этом достигается пассивная коррекция коэффициента мощности. При стандартных колебаниях напряжения линии в пределах 230 В ± 10% преобразователь должен быть рассчитан на колебания напряжения в пределах 230 В ± 20%. Таким образом, постоянное напряжение на конденсаторе фильтра будет меняться в пределах от Vin (min) до Vin (max):

Таким образом, последующий преобразователь постоянного тока должен иметь диапазон регулирования от 260 до 390 В. Кроме того, устройство будет работать с любой полярностью источника питания постоянного тока при условии, что его выходное напряжение находится в пределах от 260 до 390 В, благодаря наличию на входе мостового выпрямителя. При работе на постоянном токе дроссель пассивной коррекции коэффициента мощности не имеет никаких функций. Работа на постоянном токе, естественно, не приводит к появлению токов гармоник на входе. Таким образом, мы можем заключить, что маломощное оборудование может также работать от напряжения постоянного тока величиной около 390 В.

Этот факт использует схема общей коррекции коэффициента мощности, представленная в данной статье. Использование постоянного тока имеет и другие преимущества. Предлагаемая схема подробно рассматривается ниже.

Схема общей коррекции коэффициента мощности предполагает, что все маломощные электронные устройства работают от сети или шины постоянного тока. При отсутствии ограничений по полярности входного постоянного напряжения такого оборудования на практике можно подключать любое количеств устройств, которое может питать источник напряжения постоянного тока. На рис. 5 показана упрощенная схема, на которой вместе соединены 30 маломощных электронных устройств. Проводные соединения между источником напряжения постоянного тока и нагрузками являются причиной падения напряжения. Как говорилось выше, напряжение в системе постоянного тока низкого напряжения должно быть в пределах от 260 до 390 В.

Единственным ограничением этой схемы является проблема выбора входного выключателя каждого устройства. Это вопрос безопасности. При этом необходимо учитывать, что такие выключатели должны быть рассчитаны на работу при напряжении 390 В постоянного тока. Величина входного тока существенно уменьшается при работе на напряжении 390 В постоянного тока, поэтому выключатель может быть рассчитан на меньший ток. Таким образом, переход на постоянный ток сильно не изменит стоимость этого выключателя. Кроме того, такие устройства часто подключаются через ИБП, в этом случае нет необходимости в дополнительной проводке.

Номинальная мощность источника напряжения постоянного тока определяется номинальной мощностью каждого устройства и количеством устройств, которые должны питаться от него. При этом необходимо выбрать источник питания для этого источника напряжения. Это могут быть аккумуляторные батареи или другой преобразователь переменного тока в постоянный, который генерирует гармоники, если не имеет схему активной коррекции коэффициента мощности на входе. На рис. 6 показана упрощенная структурная схема предлагаемого устройства. Маломощное электронное оборудование питается от источника напряжения постоянного тока со схемой активной коррекции коэффициента мощности на входе. Входное напряжение переменного тока выпрямляется, и схема активной коррекции коэффициента мощности вырабатывает регулируемое напряжение постоянного тока 390 В.

Номинальная мощность схемы активной коррекции коэффициента мощности определяется типономиналом и количеством конечного оборудования. Стоит отметить, что в настоящее время считается практичным строить схемы активной коррекции коэффициента мощности, имеющие мощность порядка 6 кВт. К выходному напряжению постоянного тока могут быть подключены маломощные электронные устройства: компьютеры, оконечные компьютерные устройства, принтеры, телевизоры и т.п. Исходя из того, что типовая мощность компьютера с монитором составляет около 200 Вт, система коррекции коэффициента мощности в 6 кВт может питать порядка 30 компьютерных систем. Таким образом, мы имеем схему коррекции коэффициента мощности, которая питает 30 компьютерных систем с незначительными токами гармоник и единичным коэффициентом мощности.

Экспериментальные результаты

Чтобы добиться лучшего понимания работы схемы, приведённой выше, было выполнено моделирование в P-Spice. Его результаты были сопоставлены с результатами, полученными на опытном образце на 600 Вт предлагаемой схемы коррекции коэффициента мощности, построенной нами. Система активной коррекции коэффициента мощности имеет единичный коэффициент мощности и поэтому представляет собой активную нагрузку мощностью 600 Вт. На рис. 7а показана схема, использованная для моделирования активной коррекции коэффициента мощности. На рис. 7b приведена схема моделирования трёх параллельно соединённых компьютерных нагрузок на 200 Вт. Эти нагрузки моделировались как импульсные источники питания (ИИП) с постоянной мощностью 200 Вт, имеющие пассивную коррекцию коэффициента мощности. Их внутренняя схема подобна схеме рис. 3а.

Результаты моделирования входных токов и их гармоник трёх компьютеров с мощностью 200 Вт в сравнении с активной нагрузкой с мощностью 600 Вт и единичным коэффициентом мощности показаны на рис. 7с и 7 d. Большая разница величин тока основной гармоники схем пассивной и активной коррекции коэффициента мощности, нагруженных на 600 Вт, наблюдается из-за того, что схема пассивной коррекции коэффициента мощности потребляет прерывающийся несинусоидальный ток, с большим содержанием гармоник, и работает с низким коэффициентом мощности.

Осциллограмма рис. 8а показывает результаты измерений, сделанных на трёх компьютерах с мощностью 200 Вт, включенных параллельно. Все эти компьютеры имеют встроенные схемы пассивной коррекции коэффициента мощности. Канал 1 показывает форму входного напряжения, канал 2 – ток, потребляемый этими тремя компьютерами с постоянной мощностью 200 Вт без схемы общей коррекции коэффициента мощности. Следует обратить внимание, что напряжение переменного тока имеет несколько приплюснутую форму на вершинах синусоиды. Как уже говорилось, причиной этого является наличие нескольких маломощных электронных устройств, подключенных к сети. Измеренное значение КГИ напряжения составило около 4% в схеме с центральной коррекцией коэффициента мощности и в схеме с активной коррекции коэффициента мощности.

Осциллограмма рис. 8b показывает результаты измерений, сделанных на опытном образце мощностью 600 Вт предлагаемой схемы активной коррекции коэффициента мощности, подключенном к сети. Результаты измерений соответствуют результатам моделирования. Канал 1 показывает форму входного напряжения, канал 2 – форму тока, потребляемого схемой общей коррекции коэффициента мощности с подключенными к ней тремя постоянными нагрузками в виде импульсных источников питания с мощностью 200 Вт.

Преимущества предлагаемой схемы

Предлагаемая схема коррекции коэффициента мощности имеет несколько прямых и косвенных преимуществ. Экономические выгоды, обсуждаемые ниже, делают эту схему привлекательной для применения в промышленности. Другие преимущества системы вытекают из этого.

Экономические преимущества

Оценим экономические преимущества, которые можно получить при использовании предлагаемой схемы. Для этого мы определим примерные общие затраты, необходимые для внедрения активной коррекции коэффициента мощности в 30 отдельных компьютерных систем с номинальной мощностью 200 Вт и сравним с затратами на схему общей коррекции коэффициента мощности на 6 кВт.

Схема предназначена для работы при изменении напряжения линии в пределах 230 В ± 20% и подобна схеме рис. 4. На рисунке не показаны фильтры синфазных и дифференциальных помех, которые необходимы для соответствия требованиям ЭМС. Стоимость фильтра электромагнитных помех для схемы коррекции коэффициента мощности на 200 Вт оценивается в $1,5, а для схемы коррекции коэффициента мощности на 6 кВт – в $10.

При встраивании активной коррекции коэффициента мощности в каждую компьютерную систему мы не будем учитывать расходы на входной мостовой выпрямитель (BR1) и конденсатор фильтра (C о), так как компьютерам с пассивной коррекцией коэффициента мощности также нужны эти компоненты. Для схемы коррекции коэффициента мощности на 6 кВт необходимо учитывать стоимость входного моста (BR1) и выходного конденсатора (C 0). Так как мост должен питать нагрузку 6 кВт при минимальном напряжении сети Vin(min) = 184 В, его номинальный ток I br определяется выражением, приведённым ниже. Номинальное напряжение мостового выпрямителя должно быть не менее 400 В.

Поэтому выбранный мостовой выпрямитель 35 A/1200 В типа GBPC3512W фирмы International Rectifier вполне подходит для данной цели. В качестве конденсатора выходного фильтра выбрано параллельное соединение двух конденсаторов 3300 мкФ/400 В. Это соответствует требованию, предъявляемому к значению ёмкости конденсатора фильтра (1 мкФ/Вт). В качестве схемы управления предполагается использование микросхемы коррекции коэффициента мощности для промышленных применений UC3854AN фирмы Texas Instruments.

Максимальное значение тока (I p) через повышающий дроссель (L) или транзистор MOSFET (Q) зависит от минимального действующего значения входного напряжения Vin(min), максимальной выходной мощности (Pin) и тока пульсаций (ΔI) дросселя. Принимая значение пульсаций равным 20%, мы можем определить максимальное значение тока (I p), как показано ниже. Выбор меньшего значения пульсаций приводит к увеличению размеров дросселя, а при большем значении пульсаций уменьшение размеров дросселя компенсируется увеличением высокочастотных потерь в нём. Эти повышенные потери в свою очередь требуют увеличения размеров дросселя для охлаждения и обеспечения возможности применения многожильного обмоточного провода. Повышенный ток пульсаций также приводит к увеличению потерь в транзисторе MOSFET из-за увеличения тока через него и через дроссель:

При Vin(min) = 184 В значения I p для схем на 200 Вт и 6 кВт равны соответственно 1,8 А и 54,6 А.

При установке выходного напряжения равным 390 В номинальный ток, на который должен быть рассчитан Q, равен соответственно 1,8 А и 54,6 А при номинальном напряжении не менее 400 В. Для схемы на 200 Вт будет достаточным применение одного транзистора MOSFET типа IRFP450, а для преобразователя на 6 кВт будет необходимым применение четырёх параллельно соединённых транзистора MOSFET типа SPW47N60C3. Коэффициент заполнения (Dm) является максимальным при минимальном напряжении сети, его значение, используемое для определения индуктивности:

Принимая рабочую частоту повышающего преобразователя равной 100 кГц, в соответствии с указаниями по применению микросхемы коррекции коэффициента мощности UC3854AN фирмы Texas Instruments:

При Vin(min) = 184 В значения L для схем на 200 Вт и 6 кВт равны соответственно 2,8 мГн и 93 мкГн.

Выбранный дроссель должен иметь индуктивность, равную расчётной, и быть способным проводить постоянный ток соответственно 1,8 А и 54,6 А без насыщения. Необходимые 2,8 мГн можно получить, применив ферритовый сердечник типа EPCOS ETD44-N27 с необходимым воздушным зазором. Индуктивность 93 мкГн можно получить, используя 5 сложенных вместе сердечников типа EE70/33/32-N27 фирмы EPCOS с необходимым воздушным зазором. Стоит отметить, что для схемы пассивной коррекции коэффициента мощности с номинальной мощностью 200 Вт величина индуктивности, необходимая для обеспечения соответствия требованиям стандарта МЭК 61 000-3-2, класс А должна быть равна примерно 80 мГн.

В качестве диода (D) повышающего преобразователя нужно применять диод со сверхбыстрым восстановлением, чтобы потери в транзисторе MOSFET и диоде из-за обратного восстановления не снижали к.п.д. схемы коррекции коэффициента мощности. Номинальное напряжение диода должно быть не менее 400 В, а номинальный ток ID определяется по формуле:

При V о = 390 В значение I D для схемы на 200 Вт составляет 0,75 А, а для схемы на 6 кВт – 22,6 А. Для схемы на 200 Вт можно выбрать диод типа MUR860 фирмы ON Semiconductors, для преобразователя на 6 кВт нужен диод 30EPH06 фирмы International Rectifier.

Таблица № 1. Стоимость компонентов для ККМ 200 Вт и 6 кВт

Обозначение ККМ 200 Вт ККМ 6 кВт
Компонент Стоимость в $ Компонент Стоимость в $
BR1 - - GBPC3512W 2,30
C n 1 мкФ/250 В
пер. тока
0,36 4,7 мкФ/250 В
пер. тока
0,76
L 2,8 мГн 3,60 93 мкГн 28,60
Q IRFP450 1,59 4 х SPW4760C3 12,52
D MUR860 1,34 30EPH06 1,54
C o - - 3300 мкФ/400 В 22,60
U1 Схема управления 6,86 Схема управления 6,86
- Фильтр ЭМП 1,5 Фильтр ЭМП 10,00
Стоимость ККМ 200 Вт 15,25 Стоимость ККМ 6 кВт 85,18

Cn предназначен для фильтрации высокочастотных коммутационных пульсаций повышающего преобразователя, его типовое значение составляет 1 мкФ/250 В перем. тока и 4,7 мкФ/250 В перем. тока соответственно для преобразователя на 200 Вт и 6 кВт.

Общая стоимость выбранных выше силовых компонентов, необходимых для установки схемы ККМ на 200 Вт и 6 кВт, приведена в Таблице № 1. Приводится стоимость для партии 1000 шт., данные основаны на изучении прайс-листов различных мировых дистрибьюторов.

Для обеспечения работы 30 компьютерных систем со схемой активной коррекции коэффициента мощности необходимы затраты не менее $457,5 (30 x $15,25). Расходы, связанные с хранением, сборкой и т.п., вероятно намного превышают эту сумму. Это относится как к приобретению готового оборудования с коррекцией коэффициента мощности, так и к доработке существующего. С другой стороны, стоимость системы коррекции коэффициента мощности, которая может питать 30 имеющихся компьютеров, составит лишь $85,18. Таким образом, предлагаемая схема может быть намного дешевле, чем применение активной коррекции коэффициента мощности в каждом компьютере.

Встроенный источник бесперебойного питания (ИБП)

Предлагаемая схема общей коррекции коэффициента мощности также имеет встроенный источник бесперебойного питания с низкой стоимостью. Стоимость аккумуляторных батарей не учитывается, так как любой ИБП имеет батареи, величина ёмкости которых будет определяться необходимым количеством запасаемой энергии. На рис. 9 показана упрощенная структурная схема встроенного источника бесперебойного питания.

Схема активной коррекции коэффициента мощности 6 кВт вырабатывает требуемое напряжение 390 В постоянного тока для питания подключенных компьютерных систем. Как было показано ранее, эти компьютерные системы нормально работают при напряжении до 260 В. Поэтому подключение к выходу системы активной коррекции коэффициента мощности через диод батареи последовательно соединённых 26 свинцово-кислотных аккумуляторов превращает систему коррекции коэффициента мощности 6 кВт в ИБП. Напряжение на аноде диода будет меняться от напряжения разряженной батареи (273 В) до напряжения холостого хода (360 В). Так как это напряжение меньше выходного напряжения системы коррекции коэффициента мощности, диод всегда смещён в обратном направлении. При отключении входного напряжения сети переменного тока или выходе его величины за заданные пределы диод автоматически откроется, и подключенные компьютерные системы будут продолжать работать от аккумуляторных батарей.

Таким образом, это устройство представляет собой источник бесперебойного питания с нулевым временем переключения. Заряд батарей осуществляется от отдельного зарядного устройства, подключенного к выходу системы коррекции коэффициента мощности. Зарядное устройство независимо контролирует входное напряжение сети переменного тока и отключается при пропадании входного напряжения или выходе его величины за заданные пределы. Таким образом, если не учитывать стоимость аккумуляторных батарей, мы имеем настоящую систему бесперебойного питания при низких затратах.

Повышение надёжности всей системы

Предлагаемая схема коррекции коэффициента мощности позволяет уменьшить общее число компонентов, используемых во всей системе. Встраивание активного корректора коэффициента мощности в каждую отдельную компьютерную систему потребует по крайней мере в 30 раз больше компонентов по сравнению с одной схемой на 6 кВт. При таком сокращении числа компонентов надёжность системы и среднее время ремонта, естественно, очень сильно улучшатся. Кроме того, аккумуляторная батарея обеспечивает резервное питание для критических нагрузок, это может быть использовано во время ремонта. Также для повышения надёжности дополнительную схему коррекции коэффициента мощности можно подключать параллельно существующей схеме через схему автоматического ввода резерва. Такая дополнительная схема также дешевле, чем отдельные схемы коррекции коэффициента мощности для каждой нагрузки.

Универсальная работа в различных сетях

Все схемы коррекции коэффициента мощности могут работать во всём диапазоне распространённых в мире напряжений сети переменного тока от 90 до 264 В. Однако для работы при напряжении 90 В параметры компонентов схемы активной коррекции коэффициента мощности должны быть выбраны соответственно. Это, естественно, увеличивает стоимость. Однако если схема общей коррекции коэффициента мощности предназначена для работы при напряжении 90 В, все подключенные компьютеры, предназначенные для работы от напряжения 230 В будут автоматически работать во всём диапазоне распространённых в мире напряжений сети переменного тока от 90 до 264 В.

Мы рассмотрели схему общей коррекции коэффициента мощности. Проанализировали недостатки пассивной схемы коррекции коэффициента мощности, которая применяется для обеспечения соответствия обязательным требованиям стандарта МЭК 61 000-3-2. Исследовали стоимость и другие преимущества схемы общей коррекции коэффициента мощности по сравнению с имеющимися индивидуальными активными и пассивными схемами. Также обратили внимание на другие преимущества схемы общей центральной коррекции коэффициента мощности, которые связаны с повышением надёжности, наличием встроенного источника бесперебойного питания, возможностью работать в распространённых в мире сетях с любыми нагрузками.

Поэтому можно заключить, что предназначенное для бытового и офисного применение устройство постоянного тока напряжением 390 В имеет много преимуществ, которые перевешивают имеющиеся трудности, связанные с применением систем постоянного тока.

Проблемы отбора мощности классическим выпрямителем

Основной проблемой классического выпрямителя с накопительным конденсатором, работающего от синусоидального или другого непрямоугольного напряжения, является тот факт, что отбор энергии от сети происходит только в те моменты времени, когда напряжение в ней больше, чем напряжение на накопительном конденсаторе. Действительно, конденсатор может заряжаться только если к нему приложено напряжение, большее чем то, до которого он уже заряжен.

Причем в те моменты, когда напряжение сети становится больше напряжения конденсатора, ток зарядки очень велик, а все остальное время он нулевой. Получается, что, например, для синусоидального напряжения питания, наблюдаются всплески тока при достижении напряжением амплитудных значений. Если Ваше устройство потребляет небольшую мощность, то это можно стерпеть. Но для нагрузки, скажем, 1 кВт 220В всплески тока могут достигать 100 А. Что совершенно неприемлемо.

Вашему вниманию подборки материалов:

R7 - 10 Ом.

R6 - 0.1 Ом.

R4 - 300 кОм, R5 - 30 кОм.

R3 - 100 кОм, C4 - 1 нФ. Эти элементы задают частоту работы ШИМ контроллера. Подбираем их так, чтобы частота составила 30 кГц.

C3 - 0.05 мкФ. Это частотная коррекция цепи обратной связи. Если выходное напряжение начинает пульсировать или недостаточно быстро устанавливается при изменении тока нагрузки, то эту емкость надо подобрать.

VD2 - HER208.

C1 - 1000 мкФ. C2 - 4700 мкФ.

VD1 - Стабилитрон 15 В. R1 - 300 кОм 0.5 Вт.

VT1 - Высоковольтный транзистор на 400 вольт. Это схема запуска, через этот транзистор ток идет только в начале работы. После появления ЭДС на обмотке L2, транзистор закрывается. Так что рассеиваемая мощность на этом транзисторе невелика.

D2 - интегральный стабилизатор напряжения (КРЕН) на 12В.

D1 - Интегральный ШИМ контроллер. Подойдет 1156ЕУ3 или его импортный аналог UC3823 .

Добавление от 27.02.2013 Иностранный производитель контроллеров Texas Instruments преподнес нам удивительно приятный сюрприз. Появились микросхемы UC3823A и UC3823B. У этих контроллеров функции выводов немного не такие, как у UC3823. В схемах для UC3823 они работать не будут. Вывод 11 теперь приобрел совсем другие функции. Чтобы в описанной схеме применить контроллеры с буквенными индексами A и B, нужно вдвое увеличить резистор R6, исключить резисторы R4 и R5, подвесить (никуда не подключать) ножку 11. Что касается российских аналогов, то нам читатели пишут, что в разных партиях микросхем разводка разная (что особенно приятно), хотя мы пока новой разводки не встречали.

L1 - дроссель 2 мГн, рассчитанный на ток 3 А. Можно намотать на сердечнике Ш16х20 четырьмя проводами 0.5 мм, сложенными вместе, 130 витков, зазор 3 мм. L2 - 8 витков провода 0.2 мм.

Выходное напряжение формируется на конденсаторе C5.

Комментарий: В параметрах дросселя была ошибка, на которую нам указали читатели. Теперь она исправлена. Кроме того, для повышения стабильности работы схемы может быть полезно ограничить максимальное время открытия силового полевого транзистора. Для этого устанавливаем подстроечный резистор между 16 ножкой микросхемы и минусовым проводом питания, а движок соединяем с ножкой 8. (Как, например, на этой схеме .) Подстраивая этот резистор, можно регулировать максимальную скважность импульсов от ШИМ-контроллера.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Здравствуйте! Можно ли обмотку l2 дополнительно использовать для питания: драйв еров ir2101 и гальванически связанного с ними контроллера инвертора трехфазного асинхронного двигателя. Питание драйверов верхних ключей бутстрепное. С уважением, Борис
Схема импульсного блока питания. Расчет на разные напряжения и токи....

Полумостовой импульсный стабилизированный преобразователь напряжения, ...
Как работает полу-мостовой стабилизатор напряжения. Где он применяется. Описание...

ШИМ, PWM контроллер. Усилитель ошибки. Частота. Инвертирующий, неинвер...
ШИМ контроллер. Синхронизация. Обратная связь. Задание частоты....

устройство для резервного, аварийного, запасного питания котла, циркул...
У меня установлен газовый отопительный турбо котел, требующий электропитания. Кр...

Режим непрерывного / прерывного (прерывистого) тока через катушку инду...
Сравнение режимов непрерывного и прерывного тока. Онлайн расчет для повышающей, ...


Понижение напряжения постоянного тока. Как работает понижающий преобразователь н...

Составной транзистор. Схемы Дарлингтона, Шиклаи. Расчет, применение...
Составной транзистор - схемы, применение, расчет параметров. Схемы Дарлингтона, ...