Решить задачу линейного программирования симплекс методом. Симплексный метод решения задач линейного программирования

Один из методов решения оптимизационных задач (как правило связанных с нахождением минимума или максимума ) линейного программирования называется . Симплекс-метод включает в себя целую группу алгоритмов и способов решения задач линейного программирования. Один из таких способов, предусматривающий запись исходных данных и их пересчет в специальной таблице, носит наименование табличного симплекс-метода .

Рассмотрим алгоритм табличного симплекс-метода на примере решения производственной задачи , которая сводится к нахождению производственного плана обеспечивающего максимальную прибыль.

Исходные данные задачи на симплекс-метод

Предприятие выпускает 4 вида изделий, обрабатывая их на 3-х станках.

Нормы времени (мин./шт.) на обработку изделий на станках, заданы матрицей A:

Фонд времени работы станков (мин.) задан в матрице B:

Прибыль от продажи каждой единицы изделия (руб./шт.) задана матрицей C:

Цель производственной задачи

Составить такой план производства, при котором прибыль предприятия будет максимальной.

Решение задачи табличным симплекс-методом

(1) Обозначим X1, X2, X3, X4 планируемое количество изделий каждого вида. Тогда искомый план: (X1, X2, X3, X4 )

(2) Запишем ограничения плана в виде системы уравнений:

(3) Тогда целевая прибыль:

То есть прибыль от выполнения производственного плана должна быть максимальной.

(4) Для решения получившейся задачи на условный экстремум, заменим систему неравенств системой линейных уравнений путем ввода в нее дополнительных неотрицательных переменных (X5, X6, X7 ).

(5) Примем следующий опорный план :

X1 = 0, X2 = 0, X3 = 0, X4 = 0, X5 = 252, X6 = 144, X7 = 80

(6) Занесем данные в симплекс-таблицу :

В последнюю строку заносим коэффициенты при целевой функции и само ее значение с обратным знаком;

(7) Выбираем в последней строке наибольшее (по модулю ) отрицательное число.

Вычислим b = Н / Элементы_выбранного_столбца

Среди вычисленных значений b выбираем наименьшее .

Пересечение выбранных столбца и строки даст нам разрешающий элемент. Меняем базис на переменную соответствующую разрешающему элементу (X5 на X1 ).

  • Сам разрешающий элемент обращается в 1.
  • Для элементов разрешающей строки – a ij (*) = a ij / РЭ (то есть каждый элемент делим на значение разрешающего элемента и получаем новые данные ).
  • Для элементов разрешающего столбца – они просто обнуляются.
  • Остальные элементы таблицы пересчитываем по правилу прямоугольника.

a ij (*) = a ij – (A * B / РЭ)

Как видите, мы берем текущую пересчитываемую ячейку и ячейку с разрешающим элементом. Они образуют противоположные углы прямоугольника. Далее перемножаем значения из ячеек 2-х других углов этого прямоугольника. Это произведение (A * B ) делим на разрешающий элемент (РЭ ). И вычитаем из текущей пересчитываемой ячейки (a ij ) то, что получилось. Получаем новое значение - a ij (*) .

(9) Вновь проверяем последнюю строку (c ) на наличие отрицательных чисел . Если их нет – оптимальный план найден, переходим к последнему этапу решения задачи. Если есть – план еще не оптимален, и симплекс-таблицу вновь нужно пересчитать.

Так как у нас в последней строке снова имеются отрицательные числа, начинаем новую итерацию вычислений.

(10) Так как в последней строке нет отрицательных элементов, это означает, что нами найден оптимальный план производства! А именно: выпускать мы будем те изделия, которые перешли в колонку «Базис» - X1 и X2. Прибыль от производства каждой единицы продукции нам известна (матрица C ). Осталось перемножить найденные объемы выпуска изделий 1 и 2 с прибылью на 1 шт., получим итоговую (максимальную! ) прибыль при данном плане производства.

ОТВЕТ:

X1 = 32 шт., X2 = 20 шт., X3 = 0 шт., X4 = 0 шт.

P = 48 * 32 + 33 * 20 = 2 196 руб.

Галяутдинов Р.Р.


© Копирование материала допустимо только при указании прямой гиперссылки на

Двойственный симплексный метод основан на теории двойственности (см. решение двойственной задачи) и используется для решения задач линейного программирования, свободные члены которых b i могут принимать любые значения, а система ограничений задана неравенствами смысла «≤», «≥» или равенством «=».

Назначение сервиса . Онлайн-калькулятор используется для решения задач линейного программирования P-методом в следующих формах записи: базовой форме записи симплекс-метода, в виде симплексной таблицы, модифицированным симплекс-методом.

Инструкция для решения задач двойственным симплекс-методом . Выберите количество переменных и количество строк (количество ограничений), нажмите Далее. Полученное решение сохраняется в файле Word (см. пример решения двойственным симплекс-методом).

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 2 3 4 5 6 7 8 9 10
При этом ограничения типа x i ≥ 0 не учитывайте.

Вместе с этим калькулятором также используют следующие:
Графический метод решения ЗЛП
Решение транспортной задачи
Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.
Экстремум функции двух переменных

Задачи динамического программирования
Распределить 5 однородных партий товара между тремя рынками так, чтобы получить максимальный доход от их продажи. Доход от продажи на каждом рынке G(X) зависит от количества реализованных партий товара Х и представлен в таблице.

Объем товара Х (в партиях) Доход G(X)
1 2 3
0 0 0 0
1 28 30 32
2 41 42 45
3 50 55 48
4 62 64 60
5 76 76 72

В P-методе оптимальный план получается в результате движения по псевдопланам. Псевдоплан - план, в котором условия оптимальности удовлетворяются, а среди значений базисных переменных x i имеются отрицательные числа. Алгоритм двойственного симплекс-метода включает следующие этапы:

  1. Составление псевдоплана . Систему ограничений исходной задачи приводят к системе неравенств смысла «≤».
  2. Проверка плана на оптимальность . Если в полученном опорном плане не выполняется условие оптимальности, то задача решается симплексным методом .
  3. Выбор ведущих строки и столбца . Среди отрицательных значений базисных переменных выбираются наибольшие по абсолютной величине. Строка, соответствующая этому значению, является ведущей.
  4. Расчет нового опорного плана . Новый план получается в результате пересчета симплексной таблицы методом Жордана-Гаусса . Далее переход к этапу 2.
Более подробный алгоритм двойственного симплекс-метода . Особенности двойственного симплекс-метода Используются при решении методом Гомори .

Пример . Предприятию необходимо выпустить по плану продукции А1 единиц, А2 единиц, А3 единиц. Каждый вид изделия может производиться на двух машинах.
Как распределить работу машин, чтобы общие затраты времени на выполнение плана были минимальны? Дана матрица затрат и ресурс времени каждой машины. Записать модель исследуемой операции в форме, допускающей использование P–метода.

Известно, что содержание n питательных веществ A, B и С в рационе должно быть не менее m1, m2, m3 единиц соответственно. Указанные питательные вещества содержат три вида продуктов. Содержание единиц питательных веществ в одном килограмме каждого из видов продукта приведено в таблице. определите дневной рацион, обеспечивающий получение необходимого количества питательных веществ при минимальных денежных затратах.

Задание : Решить задачу, используя алгоритм двойственного симплекс-метода.
Приведем систему ограничений к системе неравенств смысла ≤, умножив соответствующие строки на (-1).
Определим минимальное значение целевой функции F(X) = 4x 1 + 2x 2 + x 3 при следующих условиях-ограничений.
- x 1 - x 2 ≤-10
2x 1 + x 2 - x 3 ≤8
Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных (переход к канонической форме).
В первом неравенстве смысла (≤) вводим базисную переменную x 4 . Во втором неравенстве смысла (≤) вводим базисную переменную x 5 .
-1x 1 -1x 2 + 0x 3 + 1x 4 + 0x 5 = -10
2x 1 + 1x 2 -1x 3 + 0x 4 + 1x 5 = 8
Матрица коэффициентов A = a(ij) этой системы уравнений имеет вид:

A =
-1 -1 0 1 0
2 1 -1 0 1
Решим систему уравнений относительно базисных переменных:
x 4 , x 5 ,
Полагая, что свободные переменные равны нулю, получим первый опорный план:
X1 = (0,0,0,-10,8)
Базис B x 1 x 2 x 3 x 4 x 5
x 4 -10 -1 -1 0 1 0
x 5 8 2 1 -1 0 1
F(X0) 0 -4 -2 -1 0 0

Итерация №1

План 0 в симплексной таблице является псевдопланом, поэтому определяем ведущие строку и столбец.


Ведущей будет первая строка, а переменную x 4 следует вывести из базиса.
3. Определение новой базисной переменной. Минимальное значение θ соответствует 2-му столбцу, т.е. переменную x 2 необходимо ввести в базис.

Базис B x 1 x 2 x 3 x 4 x 5
x 4 -10 -1 -1 0 1 0
x 5 8 2 1 -1 0 1
F(X0) 0 -4 -2 -1 0 0
θ 0 -4: (-1) = 4 -2: (-1) = 2 - - -

4. Пересчет симплекс-таблицы. Выполняем преобразования симплексной таблицы методом Жордано-Гаусса .
Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 5 -2 1 0 -1 1 1
F(X0) 20 -2 0 -1 -2 0

Представим расчет каждого элемента в виде таблицы:
B x 1 x 2 x 3 x 4 x 5
-10: -1 -1: -1 -1: -1 0: -1 1: -1 0: -1
8-(-10 1):-1 2-(-1 1):-1 1-(-1 1):-1 -1-(0 1):-1 0-(1 1):-1 1-(0 1):-1
0-(-10 -2):-1 -4-(-1 -2):-1 -2-(-1 -2):-1 -1-(0 -2):-1 0-(1 -2):-1 0-(0 -2):-1

Итерация №2
1. Проверка критерия оптимальности.
План 1 в симплексной таблице является псевдопланом, поэтому определяем ведущие строку и столбец.
2. Определение новой свободной переменной.
Среди отрицательных значений базисных переменных выбираем наибольший по модулю.
Ведущей будет вторая строка, а переменную x 5 следует вывести из базиса.
3. Определение новой базисной переменной. Минимальное значение θ соответствует третьему столбцу, т.е. переменную x 3 необходимо ввести в базис.
На пересечении ведущих строки и столбца находится разрешающий элемент (РЭ), равный (-1).

Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 5 -2 1 0 -1 1 1
F(X0) 20 -2 0 -1 -2 0
θ 0 - - -1: (-1) = 1 - -

4. Пересчет симплекс-таблицы. Выполняем преобразования.
Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 3 2 -1 0 1 -1 -1
F(X1) 22 -3 0 0 -3 -1
Или более подробно:
B x 1 x 2 x 3 x 4 x 5
10-(-2 0):-1 1-(1 0):-1 1-(0 0):-1 0-(-1 0):-1 -1-(1 0):-1 0-(1 0):-1
-2: -1 1: -1 0: -1 -1: -1 1: -1 1: -1
20-(-2 -1):-1 -2-(1 -1):-1 0-(0 -1):-1 -1-(-1 -1):-1 -2-(1 -1):-1 0-(1 -1):-1

В базисном столбце все элементы положительные. Переходим к основному алгоритму симплекс-метода.

Итерация №3
1. Проверка критерия оптимальности.
Среди значений индексной строки нет положительных. Поэтому эта таблица определяет оптимальный план задачи.

Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 3 2 -1 0 1 -1 -1
F(X1) 22 -3 0 0 -3 -1

Оптимальный план можно записать так: x 1 = 0, x 2 = 10, x 3 = 2
F(X) = 2 10 + 1 2 = 22

Необходимо решить задачу линейного программирования.

Целевая функция:

2x 1 +5x 2 +3x 3 +8x 4 →min

Ограничивающие условия:

3x 1 +6x 2 -4x 3 +x 4 ≤12
4x 1 -13x 2 +10x 3 +5x 4 ≥6
3x 1 +7x 2 +x 3 ≥1

Приведем систему ограничений к каноническому виду, для этого необходимо перейти от неравенств к равенствам, с добавлением дополнительных переменных.

Так как наша задача - задача минимизации, то нам необходимо преобразовать ее к задаче на поиск максимума. Для этого изменим знаки коэффициентов целевой функции на противоположные. Элементы первого неравенства записываем без изменений, добавив в него дополнительную переменную x 5 и изменив знак "≤" на "=". Т. к. второе и третье неравенства имеют знаки "≥" необходимо поменять знаки их коэффициентов на противоположные и внести в них дополнительные переменные x 6 и x 7 соответственно. В результате получем эквивалентную задачу:

3x 1 +6x 2 -4x 3 +x 4 +x 5 =12
-4x 1 +13x 2 -10x 3 -5x 4 +x 6 =-6
-3x 1 -7x 2 -x 3 +x 7 =-1

Переходим к формированию исходной симплекс таблицы. В строку F таблицы заносятся коэффициенты целевой функции с противоположным знаком.

Своб член

F
X5
X6
X7

В составленой нами таблице имеются отрицательные элементы в столбце свободных членов, находим среди них максимальный по модулю - это элемент: -6, он задает ведущую строку - X6. В этой строке так же находим максимальный по модулю отрицательный элемент: -10 он находится в столбце X3 который будет ведущим столбцом. Переменная в ведущей строке исключается из базиса, а переменная соответсвующая ведущему столцу включается в базис. Пересчитаем симплекс-таблицу:
X1 X2 X6 X4 Своб член
F 0.8 8.9 0.3 6.5 -1.8
X5 4.6 0.8 -0.4 3 14.4
X3 0.4 -1.3 -0.1 0.5 0.6
X7 -2.6 -8.3 -0.1 0.5 -0.4

В составленой нами таблице имеются отрицательные элементы в столбце свободных членов, находим среди них максимальный по модулю - это элемент: -0.4, он задает ведущую строку - X7. В этой строке так же находим максимальный по модулю отрицательный элемент: -8.3 он находится в столбце X2 который будет ведущим столбцом. Переменная в ведущей строке исключается из базиса, а переменная соответсвующая ведущему столцу включается в базис. Пересчитаем симплекс-таблицу:
X1 X7 X6 X4 Своб член
F -1.988 1.072 0.193 7.036 -2.229
X5 4.349 0.096 -0.41 3.048 14.361
X3 0.807 -0.157 -0.084 0.422 0.663
X2 0.313 -0.12 0.012 -0.06 0.048

Так как в столбце свободных членов нет отрицательных элементов, то найдено допустимое решение.В строке F имеются отрицательные элементы, это означает что полученое решение не оптимально. Определим ведущий столбец. Для этого найдем в строке F максимальный по модулю отрицательный элемент - это -1.988 Ведущей строкой будет та для которой отношение свободного члена к соответствующему элементу ведущего столбца минимально. Ведущей строкой является X2, а ведущий элемент: 0.313.

X2 X7 X6 X4 Своб член
F 6.351 0.31 0.269 6.655 -1.924
X5 -13.895 1.763 -0.577 3.882 13.694
X3 -2.578 0.152 -0.115 0.577 0.539
X1 3.195 -0.383 0.038 -0.192 0.153

Так как в строке F нет отрицательных элементов, то найдено оптимальное решение. Так как исходной задачей был поиск минимума, то оптимальным решением будет свободный член строки F, взятый с противоположным знаком. F=1.924
при значениях переменных равных: x 3 =0.539, x 1 =0.153. Переменные x 2 и x 4 не входят в базис, поэтому x 2 =0 x 4 =0.

Симплексный метод − это метод упорядоченного перебора опорных планов (упорядоченность обеспечивается монотонным изменением значения целевой функции при переходе к очередному плану). При этом необходимо соблюдать принцип: каждый следующий шаг должен улучшить или, в крайнем случае, не ухудшить значение целевой функции.

Для решения ЗЛП симплекс-методом ее приводят к каноническому виду, т.е. из ограничений – неравенств надо сделать ограничения – равенства. Для этого в каждое ограничение вводится дополнительная неотрицательная балансовая переменная со знаком «+», если знак неравенства «£», и со знаком «–», ели знак неравенства «³».

В целевой функции эти дополнительные переменные входят с нулевыми коэффициентами, т.е. запись целевой функции не изменится. Каждую переменную, на которую не наложено условие неотрицательности, можно представить в виде разности двух неотрицательных переменных: .

Если ограничения задачи отображают наличие и расход ресурсов, то числовое значение дополнительной переменной в плане задачи, записанной в канонической форме, равно объему неиспользованного ресурса.

Для решения задачи симплекс-методом будем использовать укороченные симплексные таблицы системы линейных уравнений и метод модифицированного жорданова исключения .

1. Составляем первый опорный план

Задача остается прежней. Приведем стандартную форму системы неравенств (1) в каноническую форму системы уравнений путем введения дополнительных балансовых переменных x 3 , x 4 , x 5 , x 6 .

или

В экономическом смысле значения дополнительных переменных x 3 , x 4 , x 5 определяют остатки сырья после реализации продукции.

Матрица полученной системы уравнений имеет вид:

Видно, что в матрице A базисным минором 4-го порядка является определитель, составленный из единичных коэффициентов при дополнительных переменных x 3 , x 4 , x 5 , x 6 , так как он отличен от нуля и равен 1. Это означает, что векторы-столбцы при этих переменных является линейно независимыми, т.е. образуют базис , а соответствующие им переменные x 3 , x 4 , x 5 , x 6 являются базисными (основными). Переменные x 1 , x 2 будут называться свободными (неосновными).

Если свободным переменным x 1 и x 2 задавать различные значения, то, решая систему относительно базисных переменных, получим бесконечное множество частных решений. Если свободным переменным задавать только нулевые значения, то из бесконечного множества частных решений выделяют базисные решения – опорные планы.

Чтобы выяснить, могут ли переменные быть базисными, необходимо вычислить определитель, состоящий из коэффициентов при этих переменных. Если данный определитель не равен нулю, то эти переменные могут быть базисными.


Количество базисных решений и соответствующее ему число групп базисных переменных может быть не более, чем , где n –общее число переменных, r – число базисных переменных, r m n .

Для нашей задачи r = 4; n = 6. Тогда , т.е. возможны 15 групп из 4-х базисных переменных (или 15 базисных решений).

Разрешим систему уравнений относительно базисных переменных x 3 , x 4 , x 5 , x 6:

Полагая, что свободные переменные x 1 = 0, x 2 = 0, получим значения базисных переменных: x 3 = 312; x 4 = 15; x 5 = 24; x 6 = –10, т.е. базисное решение будет = (0; 0; 312; 15; 24; –10).

Данное базисное решение является недопустимым , т.к. x 6 = –10 ≤ 0, а по условию ограничений x 6 ≥ 0. Поэтому вместо переменной x 6 в качестве базисной надо взять другую переменную из числа свободных x 1 или x 2 .

Дальнейшее решение будем выполнять, используя укороченные симплексные таблицы, заполнив строки первой таблицы коэффициентами системы следующим образом (табл. 1):

Таблица 1

F –строка называется индексной . Она заполняется коэффициентами целевой функции, взятыми с противоположными знаками, так как уравнение функции можно представить в виде F = 0 – (– 4x 1 – 3x 2).

В столбце свободных членов b i есть отрицательный элемент b 4 = –10, т.е. решение системы является недопустимым. Чтобы получить допустимое решение (опорный план), элемент b 4 надо сделать неотрицательным.

Выбираем x 6 -строку с отрицательным свободным членом. В этой строке есть отрицательные элементы. Выбираем любой из них, например, «–1» в x 1 -столбце, и x 1 -столбец принимаем в качестве разрешающего столбца (он определит, что переменная x 1 перейдет из свободных в базисные).

Делим свободные члены b i на соответствующие элементы a is разрешающего столбца, получаем оценочные отношения Θ i = = {24, 15, 12, 10}. Из них выбираем наименьшее положительное (minΘ i =10), которое будет соответствовать разрешающей строке . Разрешающая строка определяет переменную x j , которая на следующем шаге выступает из базиса и станет свободной. Поэтому x 6 -строка является разрешающей строкой, а элемент «–1» – разрешающим элементом . Обводим его кружком. Переменные x 1 и x 6 меняются местами.

Оценочные отношения Θ i в каждой строке определяются по правилам:

1) Θ i = , если b i и a is имеют разные знаки;

2) Θ i = ∞, если b i = 0 и a is < 0;

3) Θ i = ∞, если a is = 0;

4) Θ i = 0, если b i = 0 и a is > 0;

5) Θ i = , если b i и a is имеют одинаковые знаки.

Совершаем шаг модифицированного жорданова исключения (ШМЖИ) с разрешающим элементом и составляем новую таблицу (табл. 2) по следующему правилу:

1) на месте разрешающего элемента (РЭ) устанавливается величина, ему обратная, т.е. ;

2) элементы разрешающей строки делятся на РЭ;

3) элементы разрешающего столбца делятся на РЭ и знак меняется;

4) остальные элементы находятся по правилу прямоугольника:

Из табл. 2 видно, что свободные члены в b i -столбце являются неотрицательными, следовательно, получено первоначальное допустимое решение – первый опорный план = (10; 0; 182; 5; 4; 0). При этом значение функции F () = 40. Геометрически это соответствует вершине F (10; 0) многоугольника решений (рис. 1).

Таблица 2

2. Проверяем план на оптимальность. Опорный план не оптимальный, так как в F -строке имеется отрицательный коэффициент «–4». Улучшаем план.

3. Нахождение нового опорного плана

Выбираем разрешающий элемент по правилу:

Выбираем наименьший отрицательный коэффициент в F -строке «–4», который и определяет разрешающий столбец – x 6 ; переменную x 6 переводим в базисные;

Находим отношения Θ i , среди них выбираем наименьшее положительное, которое соответствует разрешающей строке:

min Θ i = min {14, 5, 2, ∞} = 2, следовательно, x 5 -строка – разрешающая, переменную x 5 переводим в свободные (переменные x 5 и x 6 меняются местами).

На пересечении разрешающих строки и столбца стоит разрешающий элемент «2»;

Выполняем шаг ШМЖИ, строим табл. 3 по вышеприведенному правилу и получаем новый опорный план = (12; 0; 156; 3; 0; 2).

Таблица 3

4. Проверка нового опорного плана на оптимальность

Опорный план также не является оптимальным, так как в F -строке имеется отрицательный коэффициент «–1». Значение функции F () = 48, что геометрически соответствует вершине E (12; 0) многоугольника решений (рис. 1). Улучшаем план.

5. Нахождение нового опорного плана

x 2 -столбец – разрешающий, так как в F -строке наименьший отрицательный коэффициент «–1» находится в x 2 -столбце (Δ 2 = –1). Находим наименьшее Θ i : min Θ i = min {≈ 9, 6, ∞, 24} = 6, следовательно, x 4 -строка – разрешающая. Разрешающий элемент «1/2». Меняем местами переменные x 2 и x 4 . Выполняем шаг ШМЖИ, строим табл. 4, получаем новый опорный план = (9; 6; 51; 0; 0; 5).

6. Проверка опорного плана на оптимальность

В F -строке все коэффициенты неотрицательны, следовательно, опорный план является оптимальным. Геометрически соответствует точке D (9;6) (см. рис. 1). Оптимальный план дает максимальное значение целевой функции у.е.

+
- x 1 + x 2 - S 1 = 1
x 1 3 x 2 + S 2 = 15
- 2 x 1 + x 2 + S 3 = 4



Переменная называется базисной для данного уравнения, если она входит в данное уравнение с коэффициентом один и не входит в оставшиеся уравнения (при условии, что в правой части уравнения стоит положительное число).
Если в каждом уравнении присутствует базисная переменная, тогда говорят, что в системе присутствует базис.
Переменные, которые не являются базисными, называются свободными. (см. систему ниже)

Идея симплекс метода заключается в том, чтобы переходить от одного базиса к другому, получая значение функции, как минимум, не меньше имеющегося (каждому базису соответствует единственное значение функции).
Очевидно, количество всевозможных базисов для любой задачи число конечное (и не очень большое).
Следовательно, рано или поздно, ответ будет получен.

Как осуществляется переход от одного базиса к другому?
Запись решения удобнее вести в виде таблиц. Каждая строка эквивалентна уравнению системы. Выделенная строка состоит из коэффициентов функции (сравните сами). Это позволяет не переписывать переменные каждый раз, что существенно экономит время.
B выделенной строке выбираем наибольший положительный коэффициент. Это необходимо для того, чтобы получить значение функции, как минимум, не меньше имеющегося.
Выбран столбец.
Для положительных коэффициентов выбранного столбца считаем отношение Θ и выбираем наименьшее значение. Это необходимо для того, чтобы после преобразования столбец свободных членов остался положительным.
Выбрана строка.
Следовательно, определен элемент, который будет базисным. Далее считаем.


+
- x 1 + x 2 - S 1 + R 1 = 1
x 1 3 x 2 + S 2 = 15
- 2 x 1 + x 2 + S 3 = 4

x 1 = 0 x 2 = 0 S 1 = 0
S 2 = 15 S 3 = 4 R 1 = 1
=> W = 1

Шаг №1
x 1 x 2 S 1 S 2 S 3 R 1 св. член Θ
-1 1 -1 0 0 1 1 1: 1 = 1
1 3 0 1 0 0 15 15: 3 = 5
-2 1 0 0 1 0 4 4: 1 = 4
1 -1 1 0 0 0 W - 1
-1 1 -1 0 0 1 1
4 0 3 1 0 -3 12
-1 0 1 0 1 -1 3
0 0 0 0 0 1 W - 0


+
- x 1 + x 2 - S 1 = 1
4 x 1 3 S 1 + S 2 = 12
- x 1 + S 1 + S 3 = 3



Шаг №1
x 1 x 2 S 1 S 2 S 3 св. член Θ
-1 1 -1 0 0 1
4 0 3 1 0 12 12: 4 = 3
-1 0 1 0 1 3
4 0 1 0 0 F - 1
-1 1 -1 0 0 1
1 0 3/4 1/4 0 3
-1 0 1 0 1 3
4 0 1 0 0 F - 1
0 1 -1/4 1/4 0 4
1 0 3/4 1/4 0 3
0 0 7/4 1/4 1 6
0 0 -2 -1 0 F - 13

S 1 = 0 S 2 = 0
x 1 = 3 x 2 = 4 S 3 = 6
=> F - 13 = 0 => F = 13
Среди коэффициентов выделенной строки нет положительных. Следовательно, найдено наибольшее значение функции F.