Управление релейным модулем ардуино. Устройство и принцип работы реле

Для коммутации различного силового оборудования и прочих устройств посредством относительно небольшого напряжения используют реле. В классическом варианте простейшее реле состоит из катушки, на которую подается управляющее напряжение, и контакта, замыкающего или размыкающего цепь объекта управления. Помимо функции управления реле также обеспечивают защиту управляющей цепи благодаря гальванической развязке, поскольку между катушкой и контактом существует зазор, не позволяющий перетекать напряжению из одной цепи в другую. Начинающие радиолюбители, которые, возможно, недавно познакомились с популярной в наше время платой Arduino, заинтересованы в использовании реле в своих проектах, но не знают с чего начать.


Поэтому данный материал показывает простоту использования Arduino и реле. В первую очередь он рассчитан на новичков, знакомящихся с Arduino и собирающих на основе этой платы.



Для создания релейной схемы нам потребуется Arduino, один резистор на 1 КОм, один резистор на 10 КОм, один транзистор BC547, одно реле на 6 В или 12 В, один диод 1N4007, и в качестве объекта управления возьмем вентилятор на 12 В. Схема устройства:



После нажатия кнопки вентилятор должен включиться и вращаться до тех пор, пока кнопка не будет нажата снова. Скетч для такого алгоритма:


int pinButton = 8; int Relay = 2; int stateRelay = LOW; int stateButton; int previous = LOW; long time = 0; long debounce = 500; void setup() { pinMode(pinButton, INPUT); pinMode(Relay, OUTPUT); } void loop() { stateButton = digitalRead(pinButton); if(stateButton == HIGH && previous == LOW && millis() - time > debounce) { if(stateRelay == HIGH){ stateRelay = LOW; } else { stateRelay = HIGH; } time = millis(); } digitalWrite(Relay, stateRelay); previous == stateButton; }

Итак, как работает наша схема? После нажатия кнопки Arduino переведет вывод 2 в высокое логическое состояние, то есть на выводе будет напряжение 5 В. Это напряжение используется для открывания транзистора, который включит реле, после чего наша нагрузка (в данном случае вентилятор) будет питаться от основного источника питания.


Вы не можете использовать 5 В порта USB для питания транзистора и нагрузки, поскольку тока будет недостаточно. Поэтому нужно использовать внешнее питание Vcc напряжением 7-12 В для питания как Arduino, так и транзисторно-релейной цепи. Нагрузка использует свой источник питания. Можно, например, в качестве нагрузки использовать лампу и питать ее от 220 В. И ни в коем случае не соединяйте питание Arduino и питание нагрузки!


Теперь немного усложним нашу программу, добавив задержку при отключении реле. Переменная stayON здесь будет использоваться для задания периода задержки в миллисекундах (по умолчанию 5 секунд). В итоге после нажатия кнопки реле включится и по прошествии 5 секунд отключится. Код:


int pinButton = 8; int Relay = 2; int stateRelay = LOW; int stateButton; int previous = LOW; long time = 0; long debounce = 500; int stayON = 5000; //задержка на 5000 мс void setup() { pinMode(pinButton, INPUT); pinMode(Relay, OUTPUT); } void loop() { stateButton = digitalRead(pinButton); if(stateButton == HIGH && previous == LOW && millis() - time > debounce) { if(stateRelay == HIGH){ digitalWrite(Relay, LOW); } else { digitalWrite(Relay, HIGH); delay(stayON); digitalWrite(Relay, LOW); } time = millis(); } previous == stateButton; }

Теперь благодаря информации, приведенной в этом примере, вы смело можете вносить реле в ваши новые проекты с Arduino.


Еще одну схему управления вентилятором с помощью Arduino можно .

С помощью Ардуино. Но как быть, если мы задумаем управлять устройствами, подключенными к бытовой сети? Напомню, что даже небольшая настольная лампа питается от источника переменного тока с напряжением 220 Вольт. Обычный полевой транзистор, который мы использовали в схеме с двигателем уже не подойдет.

Чтобы управлять мощной нагрузкой да еще и с переменным током воспользуемся реле. Это такое электромеханическое устройство, которое механическим способом замыкает цепь нагрузки с помощью электромагнита. Посмотрим на внутренности:

Принцип действия реле следующий. Подаем напряжение на электромагнитную катушку. В катушке возникает поле, которое притягивает металлическую лапку. В свою очередь, лапка механически замыкает контакты нагрузки.

У реле есть два основных применения. Во-первых, мы можем подав всего 5 Вольт на катушку, замкнуть цепь очень мощной нагрузки. Например, реле, используемое в уроках для Ардуино, может включить холодильник или стиральную машину. Во-вторых, некоторые виды реле могут одновременно замкнуть и разомкнуть сразу несколько разных цепей с разным напряжением.

На этом уроке мы будем работать не с отдельным реле, а с целым релейным модулем. Помимо самого реле, модуль содержит еще и оптоэлектронную развязку с транзистором, которые защищают выводы Ардуино от скачков напряжения на катушке.

У одинарного модуля реле есть всего три контакта. Подключим их по следующей схеме.

Кстати, вход реле является инвертированным. Это означает, что высокий уровень на контакте In выключит катушку реле, а низкий уровень — включит.

Принципиальная схема

Внешний вид макета

2. Программа для Ардуино

Напишем простую программу, которая будет включать лампу на 3 секунды, а затем гасить на 1 секунду.

Const int relPin = 3; void setup() { pinMode(relPin, OUTPUT); } void loop() { digitalWrite(relPin, HIGH); delay(1000); digitalWrite(relPin, LOW); delay(3000); }

Загружаем программу на Ардуино. Теперь подключаем питание к лампе и к реле. Наконец, подаем питание на контроллер.

3. Автоматический светильник или уличный фонарь

С помощью контроллера, реле и датчика света можно сделать несложный автоматический светильник. Контроллер будет зажигать лампу в момент, когда уровень света на датчике станет меньше заданного значения.

В качестве датчика используем готовый модуль на основе . Подключим все три устройства по следующей схеме.

Принципиальная схема

Внешний вид макета

4. Программа автоматического светильника

Аналоговый вывод датчика дает значения в диапазоне от 0 до 1023. Причем, 0 — для максимального уровня света и 1023 для полной темноты.

Сначала нам нужно определиться при каком уровне света включать лампу, а при каком выключать. В нашей лаборатории при свете дня датчик показывает значение L = 120, а ночью около L = 700. Будем включать реле при L > 600, и выключать при L < 200. Вспомним как и напишем программу.

Const int photoPin = A5; const int relPin = 3; void setup() { pinMode(photoPin, INPUT); pinMode(relPin, OUTPUT); } void loop() { if(analogRead(photoPin) < 200) digitalWrite(relPin, HIGH); if(analogRead(photoPin) > 600) digitalWrite(relPin, LOW); }

Загружаем программу на Ардуино и проводим эксперимент. Лучше всего это делать ночью.

Задания

1. Музыка реле. Как известно, электромеханическое реле издает щелчок при срабатывании. Попробуйте воспользоваться этим для проигрывания какой-нибудь несложной мелодии.

2. Управление двигателем. Имея два трехконтактных реле, таких же как в этом уроке, можно собрать схему для изменения направления вращения двигателя.

Реле Ардуно позволяет подключить устройства, работающие в режимах с относительно большими токами или напряжения. Мы не можем напрямую подключить к плате Arduino мощные насосы, двигатели, даже обычную лампочку накаливания – плата не предназначена для такой нагрузки и работать не будет. Именно поэтому нам придется добавить в схему реле, который вы можете встретить в любом проекте. В этой статье мы поговорим о том, что такое реле, какие они бывают, как можно их подключить своем ардуино проекте.

Реле – это шлюз, который позволяет соединить вместе электрические цепи с совершенно разными параметрами. Обычный шлюз на реке соединяет водные каналы, расположенные на разной высоте, открывая или закрывая ворота. Реле в ардуино включает или выключает внешние устройства, определенным образом замыкая или размыкая отдельную электрическую сеть, в которую они подключены. С помощью ардуино и реле мы управляем процессом включения или выключения так же, как включаем или выключаем свет дома – подавая команду на замыкание или размыкание. Ардуино подает сигнал, само же замыкание или размыкание “мощной” цепи будет делать реле через специальные внутренние механизмы. Реле можно представить себе в виде дистанционного пульта, с помощью которого мы выполняем нужные действия с помощью относительно “слабых” сигналов.

Реле характеризуется следующими параметрами:

  • Напряжение или ток срабатывания.
  • Напряжение или ток отпускания.
  • Время срабатывания и отпускания.
  • Рабочие ток и напряжение.
  • Внутреннее сопротивление.

В зависимости от типа этих внутренних размыкающих механизмов и особенностях устройства можно выделить две основные группы реле: электромеханические реле (включение с помощью электромагнита) и твердотельные реле (включение через специальные полупроводниковые компоненты).

Электромагнитные и твердотельные реле

Электромагнитное реле

Электромагнитное реле – это электрическое устройство, которое механическим путем замыкает или размыкает цепь нагрузки при помощи магнита. состоит из электромагнита, подвижного якоря и переключателя. Электромагнит – это провод, который намотан на катушку из ферромагнетика. В роли якоря выступает пластина из магнитного материала. В некоторые модели устройства могут быть встроены дополнительные электронные компоненты: резистор для более точного срабатывания реле, конденсатор для уменьшения помех, диод для устранения перенапряжений.

Работает реле благодаря электромагнитной силе, возникающей в сердечники при подаче тока по виткам катушки. В исходном состоянии пружина удерживает якорь. Когда подается управляющий сигнал, магнит начинает притягивать якорь и замыкать либо размыкать цепь. При отключении напряжения якорь возвращается в начальное положение. Источниками управляющего напряжения могут быть датчики (давления, температуры и прочие), электрические микросхемы и прочие устройства, которые подают малый ток или малое напряжение.

Электромагнитное реле применяется в схемах автоматики, при управлении различными технологическими установками, электроприводами и другими устройствами. Реле предназначено для регулирования напряжений и токов, может использоваться как запоминающее или преобразующее устройство, также может фиксировать отклонения параметров от нормальных значений.

Классификация электромагнитных реле:

  • Управляющий ток может быть как постоянным, так и переменным. В первом случае устройство может быть нейтральным или поляризованным. Для переменного тока якорь выполняется из электротехнической стали, чтобы уменьшить потери.
  • Якорное или герконовое реле. Для якорного процесс замыкания и размыкания происходит при помощи перемещения якоря, для герконового характерно отсутствие сердечника, магнитное поле воздействует на электрод с контактами.
  • Быстродействие – до 50 мс, до 150 мс и от 1 с.
  • Зщитное покрытие – герметизированное, зачехленное и открытое.

По сравнению с полупроводниковыми устройствами электромагнитное реле обладает преимуществами – оно стоит недорого, коммутация большой нагрузки при небольшом размере устройства, малое выделение тепла на катушке. Из недостатков можно выделить медленное срабатывание, помехи и сложность коммутации индуктивных нагрузок.

Твердотельные реле

Твердотельные реле считаются хорошей альтернативой электромагнитным, они представляет собой модульное полупроводниковое устройство, которое производится по гибридной технологии. В составе реле имеются транзисторы, симисторы или тиристоры. По сравнению с электромагнитными устройствами твердотельные реле обладают рядом преимуществ:

  • Долгий срок эксплуатации.
  • Быстродействие.
  • Малые размеры.
  • Отсутствуют посторонние шумы, акустические помехи, дребезги контактов.
  • Низкое потребление энергии.
  • Качественная изоляция.
  • Стойкость к вибрации и ударам.
  • Нет дугового разряда, что позволяет работать во взрывоопасных местах.

Работают по следующему принципу: подается управляющий сигнал на светодиод, происходит гальваническая развязка управляющей и коммутируемой цепей, затем сигнал переходит на фотодиодную матрицу. Напряжение регулирует силовым ключом.

Твердотельные реле также имеют несколько недостатков. Во-первых, при коммутации происходит нагрев устройства. Повышение температуры устройства приводит к ограничению регулируемого тока – при температурах, превышающих 60 градусов, уменьшается величина тока, максимальная рабочая температура 80 градусов.

Твердотельные реле классифицируются по следующим признакам:

  • Тип нагрузки – однофазные и трехфазные.
  • Способ управления – коммутация происходит за счет постоянного напряжения, переменного или ручного управления.
  • Метод коммутации: контроль перехода через ноль (применяется для слабоиндуктивных, емкостных и резистивных нагрузок), случайное включение (индуктивные и резистивные нагрузки, которым необходимо мгновенное срабатывание) и фазовое управление (изменение выходного напряжения, регулировка мощности, управление лампами накаливания).

Реле в проектах Ардуино

Наиболее распространенное реле для платы Ардуино выполняется в виде модуля, например, SONGLE SRD-05VDC. Устройство управляется напряжением 5 В, может коммутировать до 10 А 30 В DC и 10 А 250 В AC.

Схема изображена на рисунке. Реле состоит из двух не связанных между собой цепей – управляющая цепь А1 и А2 и управляемая 1, 2 и 3.

Между А1 и А2 имеется металлический сердечник. Если пустить по нему электрический ток, к нему притянется якорь (2). 1, 3 – неподвижные контакты. При отсутствии тока якорь будет около контакта 3.

Подключение реле к Ардуино

Рассмотрим одноканальный модуль реле. Он имеет всего 3 контакта, подключаются они к Ардуино Uno следующим образом: GND – GND, VCC – +5V, In – 3. Вход реле – инвертирован, так что высокий уровень на In выключает катушку, а низкий – включает.

Светодиоды нужны для индикации – при загорании красного LED1 подается напряжение на реле, при загорании зеленого LED2 происходит замыкание. Когда включается микроконтроллер, транзистор закрыт. Для его открытия на базу нужен минус, подается при помощи функции digitalWrite(pin, LOW);. Транзистор открывается, протекает ток через цепь, реле срабатывает. Чтобы его выключить, на базу подается плюс при помощи digitalWrite(pin, HIGH);.

В статье описывается такое электронное устройство как реле, кратко объясняются принципы его работы, а также рассматривается подключение модуля с реле постоянного тока к Arduino на примере управления светодиодами.

Нам понадобится:

  • Ардуино UNO (или совместимая плата);
  • персональный компьютер с Arduino IDE или иной средой разработки ;
  • модуль с реле (например, такой);
  • 4 резистора по 220 Ом (рекомендую приобрести набор резисторов с номиналами от 10 Ом до 1 МОм);
  • 4 светодиода (к примеру, вот из такого набора);
  • соединительные провода (вот такие).

1 Принцип действия и виды реле

Реле - это электромеханическое устройство для замыкания и размыкания электрической цепи. В классическом варианте реле содержит электромагнит, который управляет размыканием или замыканием контактов. Если в нормальном положении контакты реле разомкнуты, а при подаче управляющего напряжения замыкаются, такое реле называется замыкающим. Если в нормальном состоянии контакты реле сомкнуты, а при подаче управляющего напряжения размыкаются, такой тип реле называется размыкающим.

Кроме того, существует множество других видов реле: переключающие, одноканальные, многоканальные, реле постоянного или переменного тока, и другие.

2 Схема подключения модуля реле SRD-05VDC-SL-C

Будем использовать модуль с двумя одинаковыми реле типа SRD-05VDC-SL-C или аналогичный .

Модуль имеет 4 разъёма: силовые разъёмы K1 и K2, управляющий разъём и разъём для подачи внешнего питания (с джампером).

Реле типа SRD-05VDC-SL-C имеет три контакта для подключения нагрузки: два крайних неподвижных, а средний - переключающийся. Именно средний контакт является своего рода «ключом», который коммутирует цепи тем или иным образом. На модуле есть подсказка, какой именно контакт реле является нормально замкнутым: маркировка "K1" и "K2" соединяет средний контакт с крайним левым (на фото). Подача управляющего напряжения на вход IN1 или IN2 (слаботочный управляющий разъём) заставит реле скоммутировать средний контакт контактной группы K1 или K2 с правым (силовой разъём). Ток, достаточный для переключения реле - около 20 мА, цифровые выводы Arduino могут выдавать до 40 мА.


Разъём для подачи внешнего питания используется для того, чтобы обеспечить гальваническую развязку платы Arduino и модуля реле. По умолчанию, на разъёме между штырьками JD-VCC и VCC имеется перемычка. Когда она установлена, модуль использует для питания напряжение, поданное на вывод VCC управляющего разъёма, а плата Arduino не имеет гальванической развязки с модулем. Если нужно обеспечить гальваническую развязку модуля и Arduino, необходимо подавать питание на модуль через разъём внешнего питания. Для этого убирается перемычка, и дополнительное питание подаётся на контакты JD-VCC и GND. При этом питание на вывод VCC управляющего разъёма также подаётся (от +5 В Arduino).

Кстати, реле может коммутировать не только слаботочную нагрузку, как в нашем примере. С помощью реле можно замыкать и размыкать достаточно большие нагрузки. Какие именно – нужно смотреть в техническом описании к конкретному реле. Например, данное реле SRD-05VDC-SL-C может коммутировать сети с током до 10 А и напряжением до 250 В переменного тока или до 30 В постоянного тока. То есть его можно использовать, например, для управления освещением квартиры.

Откуда получило своё название реле

От фамилии британского учёного лорда Рэлея - 28.6%

От процедуры смены уставших почтовых лошадей - 57.1%

От названия физической величины измерения яркости - 0%


В данном примере нам не нужна гальваническая развязка Arduino и модуля реле, поэтому будем питать модуль напрямую от платы Arduino, а джампер оставим на своём месте. Соберём схему, как показано на рисунке. Используемые резисторы - 220 Ом, светодиоды любые.


3 Скетч управления реле с помощью Arduino

Будем поочерёдно зажигать пару светодиодов одного цвета, и каждую секунду переключаться на пару другого цвета. Напишем вот такой скетч.

Const int relay1 = 2; // пин управления 1-ым реле const int relay2 = 3; // пин управления 2-ым реле const int led1 = 4; // коммутируемый вывод - питание 1-го светодиода const int led2 = 5; // коммутируемый вывод - питание 2-го светодиода void setup() { pinMode(relay1, OUTPUT); pinMode(relay2, OUTPUT); pinMode(led1, OUTPUT); pinMode(led2, OUTPUT); // установим оба реле в исходное положение: digitalWrite(relay1, HIGH); digitalWrite(relay2, HIGH); // подадим питание на светодиоды: digitalWrite(led1, HIGH); digitalWrite(led2, HIGH); } void loop() { // переключим оба реле: digitalWrite(relay1, LOW); digitalWrite(relay2, LOW); delay(1000); // переключим оба реле обратно: digitalWrite(relay1, HIGH); digitalWrite(relay2, HIGH); delay(1000); }

Теперь загрузим скетч в память Arduino. Вот как это всё выглядит у меня. Реле громко пощёлкивают раз в секунду, а светодиоды весело моргают.


Кстати, существуют другие типы коммутирующих устройств, например, оптроны. Эти устройства не имеют механических частей, что существенно повышает их износоустойчивость и скорость срабатывания. Кроме того, они имеют меньший размер и меньшее энергопотребление.

Скачать техническое описание (datasheet) реле SRD-05VDC-SL-C

В этом опыте, мы будем управлять реле, точнее сказать не мы, а ардуино, и для этого попробуем воспользоваться полученными знаниями из предыдущих 12 уроков. Реле это электрически управляемый, механический переключатель. Внутри этого простенького на первый взгляд, пластмассового корпуса, находится мощный электромагнит, и когда он получает заряд энергии, происходит срабатывание, в результате чего якорь притягивается к электро магниту, контактная группа замыкает или размыкает цепь питания нагрузки. В этой схеме вы узнаете, как управлять реле, придав Arduino еще больше способностей!

На тот случай, если у вас в наборе идет не просто реле, а именно модуль, т.е уже собранная схема на печатной плате, Вам не нужно собирать схему (см. ниже), а нужно правильно подключить модуль к плате Arduino.

Реле и Электронный модуль Реле для Arduino на 5V.

VCC — питание +5 Вольт

GND — общий (земля) — минус.

IN1 — управление

NO — нормально разомкнутый (Normally Open)

NC — нормально замкнутый (Normally Closed)

COM — обший (Common)

К контактам NC и NO подключаются светодиоды, общий COM подключается к + питания (+5V), GND к земле (-), VCC к +5 Вольт, IN1 (управление, обозначение может быть другим) к порту ардуино Pin 2.

Когда реле выключено, общий контакт «COM» (common) будет подключен к нормально замкнутому контакту «NC» (Normally Closed). Когда же реле сработает «общий» контакт COM соединится с «нормально разомкнутым» контактом «NO» (Normally Open).

Выше, вы видите саму принципиальную схему к уроку 13, думаю сложностей возникнуть не должно, при правильном соединении, т.е соблюдая указания маркировки и «полюсность», все должно получиться.

Для этого опыта вам понадобится:

1. Arduino UNO — 1 шт.

2. Реле или «Электронный модуль Реле» — 1 шт.

3. Транзистор 2N222A — 1 шт.

4. Диод 1N4148 — 1 шт.

5. Резистор 330 Ом.

6. Светодиоды различных цветов — 2 шт.

7. Соединительные провода.

Cхема электрических соединений макетной платы и Arduino. Уроку 13. Arduino и Реле

Скачать код к опыту 13. Скетч и подробное описание (Обязательно прочтите весь скетч!):

Набор для экспериментов ArduinoKit
Код программы для опыта №13:

Вид созданного урока на макетной схеме:

Arduino и Реле. Урок 13

В результате проделанного опыта Вы должны увидеть…

Вы должны услышать щелчки переключающегося реле, а также увидеть два светодиода по переменно загорающимися с секундным интервалом. Если этого нет, — проверьте правильно ли вы собрали схему, и загружен ли код в Arduino.

Возможные трудности:

Светодиоды не светятся
Дважды проверьте правильность установки светодиодов, — длинный вывод является плюсовым контактом..

Не слышны щелчки реле
Проверьте правильность подключение реле и транзистора.

Срабатывает через раз
Проверьте надежность подключение реле, у реле, если это не электронный модуль очень короткие выводы, попробуйте слегка придавить его в макетную плату.

Всем удачи! Ждём ваши комментарии к ARDUINO УРОК 13 — ARDUINO УПРАВЛЯЕТ РЕЛЕ.