Исходные коды Linux. Анатомия ядра Linux

Иногда может потребоваться собрать своё собственное ядро Linux . Причины для этого могут быть следующими:

  • вам нужно чистое ядро, без дистрибутивных патчей;
  • вы хотите наложить собственные патчи (коих очень много);
  • вы хотите собрать ядро под свою конфигурацию железа, выкинуть из него лишнее и/или заточить под определённые задачи;
  • вы хотите включить в состав ядра эксперементальный драйвер или файловую систему, которой нет в "ванильном" ядре (например ZFS или Raiser 4 );
В сборке ядра нет ничего сложного. Важно лишь понимать, для чего это делается, а также не трогать те параметры, которые вам непонятны. В этой заметке я опишу два примера сборки ядра в Debian-based дистрибутивах. В первом примере я покажу как просто собрать чистое, что называется "ванильное" ядро (такое, каким его выпускает Линус Торвальдс ), а во втором - как применить собственные патчи и провести оптимизацию ядра. Сразу напишу два предупреждения:
  • вам нужно будет пересобирать ядро при каждом его обновлении (качать "обновляющий патч", накладывать его и собирать ядро);
  • пересобранное ядро может не заработать, если в вашей системе используются какие-нибудь хаки для обеспечения работоспособности того или иного оборудования;
  • при неправильном конфигурировании ядра, особенно в случае неграмотного или бездумного наложения патчей, вы можете получить либо тормозящую до ужаса систему, либо лишиться её вовсе.
ВСЕ ДЕЙСТВИЯ ВЫ ПРОИЗВОДИТЕ НА СВОЙ СТРАХ И РИСК!

Простая сборка ядра без применения патчей.

Исходные коды ядра Linux находятся на сайте kernel.org . Там же находятся "обновляющие патчи" . Что нам нужно? Качаем с сайта тарболл (архив) с последней стабильной версией ядра (на момент написания статьи, это версия 4.3 ). Качаем любым удобным способом. Далее нам потребуются инструменты для сборки:

sudo apt install build-essential gcc kernel-package patch
sudo apt-get build-dep linux

После того как установятся все необходимые инструменты, распакуйте архив с кодом ядра в любую удобную директорию. Пусть это будет /home/user/KERNEL , где "user" - имя пользователя системы. Далее откройте терминал и перейдите туда:

cd /home/user/KERNEL

Осталось собрать ядро:

fakeroot make-kpkg -j 3 --initrd --append-to-version=-custom kernel_image kernel_headers #-j 3

Цифра 3 после j - это количество ядер вашего процессора + 1. То есть для двухядерного это 3, для 4-х ядерного это 5 и так далее.
-custom - здесь можете указать удобное имя для ядра, чтобы было легче его отличить от дистрибутивного.
kernel_image и kernel_headers - это само ядро и его заголовочные файлы соответственно. Headers необходимы для сборки драйверов и модулей ядра, а также для некоторых других целей. После выполнения этой команды, начнут появляться несколько вопросов по конфигурированию ядра. Так как мы всё оставляем по умолчанию, просто жмите Enter пока не начнётся сборка. В зависимости от мощности вашего компьютера, сборка может занять от 15-20 минут до нескольких часов. После сборки, в директории /home/user появятся два deb-пакета : ядро и заголовки. Установите их командой:

sudo dpkg -i linux-image-4.3*deb linux-headers-4.3*deb
sudo update-grub

И перезагрузитесь. В меню GRUB теперь можно будет выбрать для загрузки системы другое ядро.

Сборка ядра с применением патчей и дополнительной конфигурации.

В этот раз мы соберём оптимизированное ядро для работы со звуком и видео, а также для большей отзывчивости системы. Для этого мы применим два патча: так называемый патч для режима реального времени (PREEMPT RT ) и патч для компилятора GCC , чтобы добавить дополнительные опции для процессорных оптимизаций. Для начала, что такое патч? Патч - это текстовый файл, который создаётся программой diff , содержащий в себе изменения кода в определённых частях, которые при применении патча, заносятся в нужные места. Так как RT-патч выходит с большим запаздыванием, последняя его версия - для ядра 4.1 . Впрочем это не так важно. По той же схеме, качаем ядро 4.1 с kernel.org и распаковываем в директорию /home/user/KERNEL-CUSTOM . Теперь качаем патчи. PREEMPT_RT и GCC Patch . Из скачанных архивов, нам нужны файлы с расширением.patch, которые необходимо положить в каталог с исходным кодом ядра. То есть в /home/user/KERNEL-CUSTOM . Перед применением патчей нужно убедиться, что не будет никаких ошибок. Открываем терминал:

cd /home/user/KERNEL-CUSTOM
patch -p1 -i patch-4.1.13-rt15.patch --dry-run


Опция --dry-run позволяет симулировать применение патча, без внесения изменений в файлы. Если ошибок не обнаружено (см. скриншот) - примните патч уже без опции --dry-run . Аналогичные действия проведите и со вторым патчем. Не применяйте одновременно больше одного патча! Теперь нам нужно сконфигурировать наше ядро. На выбор нам предлагаются следующие варианты:

make config - в терминал будут поочерёдно выводиться вопросы о конфигурации той или иной подсистемы ядра. Крайне долгий и утомительный процесс. Забудем о нём:)
make oldconfig - будет задействована конфигурация работающего в данный момент ядра. Так как мы собираем своё с нуля, этот способ также бесполезен.
make defconfig - аналогично предыдущему, только значения будут по умолчанию. Такими, какими его задали разработчики ядра. Аналог первого способа сборки.
make menuconfig - псевдографический интерфейс на основе библиотеки Ncurses . На экран будет выводиться интерфейс с удобным иерархическим меню. Управления с помощью клавиш направления, пробела и клавиши TAB. Рекомендуется если вы собираете ядро в системе, не имеющей графической оболочки.
make gconfig GTK , рекомендуется в окружениях GNOME, Mate, Xfce, Cinnamon, Unity и прочих, использующих GTK.
make xconfig - графический интерфейс на основе Qt . Рекомендуется в KDE. Так как в моей системе используется KDE, я воспользуюсь этим способом. Помимо этого есть ещё пара способов, но их применения ни чем особенным не отличается. Итак, после применения патчей, запускаем make xconfig и перед нами предстаёт вот это:


Первым делом выключаем dynticks . Для этого идём в Timers subsystem и выбираем Periodic timer ticks


Теперь самое вкусное. Идём в Processors type and features , ищем пункт Processor famaly и указываем вашу серию процессора. К примеру если у вас Intel Core i5-4xxx , указывайте Hasswell (4 поколение процессора). Если вы точно не уверены, то можете выбрать пункт Native optimizations autodetected by GCC . В этом случае, при сборке, компилятор сам определит что поддерживает ваш процессор, и включит все его фичи.


Идём ниже и включаем параметр Full preemptible kernel (RT) . Режим жёсткого реального времени.


Листаем ниже и в пункте Timer frequency выставляем частоту системных прерываний на 1000 Гц


Полностью выключаем любое энергосбережение. Это важно! Слева ищем пункт Power management and ACPI options и снимаем галочку с ACPI. Также выключаем энергосбережение процессора

Вот и всё. При желании (и тщательном изучении документации), вы можете внести дополнительные изменения в конфигурацию (отключить лишние драйверы, задействовать дополнительные подсистемы и так далее). Теперь сохраняем конфиг через File - Save , закрываем конфигуратор и собираем ядро:

fakeroot make-kpkg -j 3 --initrd --append-to-version=-rt-custom kernel_image kernel_headers #-j 3
sudo update-grub

На моём компьютере с процессором Intel Core i3-550 (3.2 ГГц), прирост производительности был довольно ощутимый. Но самое главное - при работе в LMMS и Kdenlive , исчезли периодические заикания рассинхронизация звуковой и видеодорожек, а также подвисания при сильной нагрузке на жёсткий диск. Вывод - работает! Напоследок опишу два модифицированных ядра, которые весьма популярны в кругах линуксоидов:

PF-kernel - самый популярный набор патчей от украинца Александра Наталенко (aka post-factum) . Это набор патчей, которые не входят в основное ядро, но обеспечивают повышенную отзывчивость системы, предоставляют альтернативную подсистему гибернации, более быструю, нежели основная, а также уменьшают использование памяти с помощью техники объединения одинаковых страниц. В набор входят:

  • планировщик процессов BFS от Кона Коливаса (Con Kolivas) с дополнительными исправлениями от Альфреда Чена (Alfred Chen);
  • планировщик ввода-вывода BFQ от Паоло Валенте (Paolo Valente), Арианны Аванзини (Arianna Avanzini) и Мауро Маринони (Mauro Marinoni);
  • подсистема гибернации TuxOnIce от Найджела Каннингема (Nigel Cunningham);
  • реализация техники слияния одинаковых страниц в памяти UKSM от Най Ся (Nai Xia);
  • патч от Graysky, расширяющий список процессоров для оптимизации ядра компилятором (тот, что мы применили выше)
Репозиторий модифицированного ядра . Официальный сайт .

Zen-kernel - второй по популярности, но первый по количеству патчей набор. Zen Kernel использует комбинацию нескольких проектов, обновляет код через git-репозиторий, а также имеет несколько специфичных для Zen вещей, стремящихся удовлетворить большинство потребностей пользователей, реализовав их в одном ядре. Некоторые возможности патча: drm-next, wireless-testing, выбор планировщиков CPU (CFS/BFS), BFQ-планировщик ввода-вывода, aufs, unionfs, reiser4, tuxonice, PHC и многие другие вещи, которые замечательно подойдут для оптимизации настольных систем или ноутбуков. Всё это доступно в виде одного патча к ванильному ядру. Официальный сайт . GIT- репозиторий . Пакеты для Debian/Ubuntu .

На сегодня, пожалуй, всё. Больше информации вы можете найти в ссылках к статье. Всё описанное в статье проверено мной на многих конфигурациях.

Самым основным компонентом операционной системы Linux есть ядро. Именно ядро выступает промежуточным звеном между пользовательскими программами и оборудованием компьютера. Во всех бинарных дистрибутивах нам не нужно заботиться о сборке и настройке ядра, все уже сделали за нас разработчики дистрибутива. Но если мы хотим собрать свой дистрибутив сами или установить самую свежую версию ядра, нам придется собирать ядро вручную.

Первый вариант раньше был актуален для тех кто хотел получить максимальную производительность от своего оборудования, но сейчас, учитывая стремительное увеличение мощности компьютеров увеличение производительности при сборке ядра совсем незаметно. Сейчас сборка ядра может понадобиться пользователям не бинарных дистрибутивов, таких как Gentoo, тем, кто хочет внести некоторые изменения в ядро, получить новую самую свежую версию ядра и, конечно, же тем, кто хочет полностью разобраться в работе своей системы.

В этой инструкции мы рассмотрим как собрать ядро Linux. Первая часть расскажет как настроить ядро в автоматическом режиме. Так сказать, для тех кто не хочет разбираться как оно работает, кому нужно лишь получить на выходе готовый продукт - собранное ядро. Во второй части мы рассмотрим основные этапы ручной настройки ядра, это процесс сложный, и небыстрый, но я попытаюсь дать основу, чтобы вы могли со всем разобраться сами.

Самое первое что нужно сделать - это скачать исходники ядра. Исходники лучшие брать с сайта вашего дистрибутива, если они там есть или официального сайта ядра: kernel.org. Мы рассмотрим загрузку исходников с kernel.org.

Перед тем как скачивать исходники нам нужно определиться с версией ядра которую будем собирать. Есть две основных версии релизов - стабильные (stable) и кандидаты в релизы (rc), есть, конечно, еще стабильные с длительным периодом поддержки (longterm) но важно сейчас разобраться с первыми двумя. Стабильные это, как правило, не самые новые, но зато уже хорошо протестированные ядра с минимальным количеством багов. Тестовые - наоборот, самые новые, но могут содержать различные ошибки.

Итак когда определились с версией заходим на kernel.org и скачиваем нужные исходники в формате tar.xz:

В этой статье будет использована самая новая на данный момент нестабильная версия 4.4.rc7.

Получить исходники ядра Linux можно также с помощью утилиты git. Сначала создадим папку для исходников:

mkdir kernel_sources

Для загрузки самой последней версии наберите:

git clone https://github.com/torvalds/linux

Распаковка исходников ядра

Теперь у нас есть сохраненные исходники. Переходим в папку с исходниками:

cd linux_sources

Или если загружали ядро linux с помощью браузера, то сначала создадим эту папку и скопируем в нее архив:

mkdir linux_sources

cp ~/Downloads/linux* ~/linux_sources

Распаковываем архив с помощью утилиты tar:

И переходим в папку с распакованным ядром, у меня это:

cd linux-4.4-rc7/

Автоматическая настройка сборки ядра Linux

Перед тем как начнется сборка ядра linux, нам придется его настроить. Как я и говорил, сначала рассмотрим автоматический вариант настройки сборки ядра. В вашей системе уже есть собранное, настроенное производителем дистрибутива, и полностью рабочее ядро. Если вы не хотите разбираться с тонкостями конфигурации ядра, можно просто извлечь уже готовые настройки старого ядра и сгенерировать на их основе настройки для нового. Нам придется лишь указать значения для новых параметров. Учитывая, что в последних версиях не было и не намечается серьезных изменений можно отвечать на все эти параметры как предлагает скрипт настройки.

Параметры используемого ядра хранятся в архиве по адресу /proc/config.gz. Распакуем конфиг и поместим его в нашу папку утилитой zcat:

В процессе его работы нужно будет ответить на несколько вопросов. Это новые параметры, которые изменились или были добавлены в новое ядро и поддержка нового оборудования, в большинстве случаев можно выбирать вариант по умолчанию. Обычно есть три варианта y - включить, n - не включать, m - включить в качестве модуля. Рекомендованный вариант написан с большой буквы, для его выбора просто нажмите Enter.

На все про-все у вас уйдет около 10-ти минут. После завершения процесса, ядро готово к сборке. Дальше мы рассмотрим настройку ядра вручную, а вы можете сразу перелистать к сборке ядра Linux.

Ручная настройка ядра Linux

Ручная настройка - сложный и трудоемкий процесс, но зато она позволяет понять как работает ваша система, какие функции используются и создать ядро с минимально нужным набором функций под свои потребности. Мы рассмотрим только главные шаги, которые нужно выполнить чтобы ядро собралось и заработало. Со всем остальным вам придется разбираться самому опираясь на документацию ядра. Благо в утилите настройки для каждого параметра есть обширная документация которая поможет вам понять какие еще настройки нужно включить.

Начнем. Для запуска меню настроек ядра linux наберите:

Откроется вот утилита с интерфейсом ncurses:

Как видите, некоторые обязательные опции уже включены, чтобы облегчить вам процесс настройки. Начнем с самых основных настроек. Чтобы включить параметр нажмите y, чтобы включить модулем - m, для перемещения используйте клавиши стрелок и Enter, возвратиться на уровень вверх можно кнопкой Exit Откройте пункт General Setup .

Здесь устанавливаем такие параметры:

Local Version - локальная версия ядра, будет увеличиваться при каждой сборке на единицу, чтобы новые ядра при установке не заменяли собой старые, устанавливаем значение 1.

Automatically append version information to the version string - добавлять версию в название файла ядра.

Kernel Compression Mode - режим сжатия образа ядра, самый эффективный lzma.

Default Hostname - имя компьютера, отображаемое в приглашении ввода

POSIX Message Queues - поддержка очередей POSTIX

Support for paging of anonymous memory - включаем поддержку swap

Control Group support - поддержка механизма распределения ресурсов между группами процессов

Kernel .config support и Enable access to .config through /proc/config.gz - включаем возможность извлечь конфигурацию ядра через /proc/config.gz

Здесь все, возвращаемся на уровень вверх и включаем Enable loadable module support, эта функция разрешает загрузку внешних модулей,дальше открываем его меню и включаем:

поддержка отключения модулей

принудительное отключение модулей

Опять возвращаемся назад и открываем Processor type and features:

Processor family (Opteron/Athlon64/Hammer/K8) - выбираем свой тип процессора.

Опять возвращаемся и переходим в раздел File systems , тут установите все нужные галочки.

Обязательно включите The Extended 3 (ext3) filesystem и The Extended 4 (ext4) filesystem - для поддержки стандартных ext3 и ext4 файловых систем

Возвращаемся и идем в Kernel hacking.

Здесь включаем Magic SysRq key - поддержка магических функций SysRq, вещь не первой необходимости, но временами полезная.

Остался еще один пункт, самый сложный, потому что вам его придется пройти самому. Device Drivers - нужно пройтись по разделам и повключать драйвера для своего оборудования. Под оборудованием я подразумеваю нестандартные жесткие диски, мышки, USB устройства, веб-камеры, Bluetooth, WIFI адаптеры, принтеры и т д.

Посмотреть какое оборудование подключено к вашей системе можно командой:

После выполнения всех действий ядро готово к сборке, но вам, скорее всего, предстоит разобраться с очень многим.

Чтобы выйти нажмите пару раз кнопку Exit .

Сборка ядра Linux

После завершения всех приготовлений может быть выполнена сборка ядра linux. Для начала процесса сборки выполните:

make && make modules

Теперь можете идти пить кофе или гулять, потому что процесс сборки длинный и займет около получаса.

Установка нового ядра

Когда ядро и модули будут собраны новое ядро можно устанавливать. Можно вручную скопировать файл ядра в папку загрузчика:

cp arch/x86_64/boot/bzImage /boot/vmlinuz

А можно просто выполнить установочный скрипт, сразу установив заодно и модули:

sudo make install && sudo make modules_install

После установки не забудьте обновить конфигурацию загрузчика Grub:

grub-mkconfig -o /boot/grub/grub.cfg

И перезагружаем компьютер чтобы увидеть новое ядро в работе:

Выводы

Вот и все. В этой статье мы подробно рассмотрели как собрать ядро Linux из исходников. Это будет полезно всем желающим лучшие понять свою систему, и тем, кто хочет получить самую новую версию ядра в своей системе. Если остались вопросы, задавайте комментарии!

В данном пошаговом руководстве вы узнаете, как правильно собрать и установить ядро ветвей >2.6 в семействе ОС Ubuntu.

Шаг 1. Получение исходного кода ядра

Исходники ядра Ubuntu можно получить двумя способами :

    Установив архив из репозитория, с автоматическим наложением последних официальных патчей. При этом скачается пакет размером ~150 Мб в текущую папку. Чтобы получить исходники ядра, версия которого установлена на компьютере выполните команду: apt-get source linux-image-`uname -r`

    Или вместо `uname -r` можно указать конкретную версию из имеющихся в репозитории.

Список имеющихся в репозитории версий можно увидеть набрав команду: «apt-get source linux-image-» и, не нажимая Enter , нажать два раза клавишу Tab .

Не забудьте включить общий доступ к исходникам в репозитории (Параметры системы → Программы и обновления → Программное обеспечение Ubuntu → Исходный код). Из консоли это сделать можно раскомментировав строки начинающиеся с deb-src в файле /etc/apt/sources.list, а затем выполнить обновление командой: «sudo apt-get update».

    Самая свежая версия ядра доступна по git . Размер скачиваемого пакета ~500-800 Мб. git clone git://kernel.ubuntu.com/ubuntu/ubuntu-.git

    Где - имя релиза, например:

    Git clone git://kernel.ubuntu.com/ubuntu/ubuntu-xenial.git

Другие ядра

Также существуют ядра, работоспособность которых в Ubuntu не гарантируется. Например, известна проблема с рядом популярных системных приложений (в частности драйвера NVidia, VirtualBox), которые при своей установке компилируются под установленное ядро. Поэтому для их установки на ядро, нестандартное для данной версии Ubuntu (например, Ubuntu 16.04 идёт с ядром 4.4.0), может потребоваться их отдельная компиляция вручную или специальные патчи, а последние версии ядер с kernel.org приложение может вообще не поддерживать.

    Архив с базовой версий без патчей, т.е. например «4.8.0», «4.8.10»: sudo apt-get install linux-source

Распакуйте полученный архив, используя команды:

Cd ~/ tar -xjf linux-2.6.x.y.tar.bz2

Или в случае с linux-source:

Cd /usr/src tar -xjf linux-source-2.6.x.y.tar.bz2

Шаг 2. Получение необходимых для сборки пакетов

Данный шаг необходимо выполнить, только если ядро собирается на компьютере в первый раз

Выполните следующие команды для установки основных пакетов:

Sudo apt-get update sudo apt-get build-dep linux sudo apt-get install kernel-package

    config - традиционный способ конфигурирования. Программа выводит параметры конфигурации по одному, предлагая вам установить для каждого из них свое значение. Не рекоммендуется для неопытных пользователей.

    oldconfig - файл конфигурации создаётся автоматически, основываясь на текущей конфигурации ядра. Рекомендуется для начинающих.

    defconfig - файл конфигурации создаётся автоматически, основываясь на значениях по-умолчанию.

    menuconfig - псевдографический интерфейс ручной конфигурации, не требует последовательного ввода значений параметров. Рекомендуется для использования в терминале.

    xconfig - графический (X) интерфейс ручной конфигурации, не требует последовательного ввода значений параметров.

    gconfig - графический (GTK+) интерфейс ручной конфигурации, не требует последовательного ввода значений параметров. Рекомендуется для использования в среде GNOME.

    localmodconfig - файл конфигурации, создающийся автоматически, в который включается только то, что нужно данному конкретному устройству. При вызове данной команды большая часть ядра будет замодулирована

В случае, если вы хотите использовать config , oldconfig , defconfig , localmodconfig или localyesconfig , вам больше не нужны никакие дополнительные пакеты. В случае же с оставшимися тремя вариантами необходимо установить также дополнительные пакеты.

menuconfig выполните следующую команду:

Sudo apt-get install libncurses5-dev

Для установки пакетов, необходимых для использования gconfig выполните следующую команду:

Sudo apt-get install libgtk2.0-dev libglib2.0-dev libglade2-dev

Для установки пакетов, необходимых для использования xconfig выполните следующую команду:

До Ubuntu 12.04: sudo apt-get install qt3-dev-tools libqt3-mt-dev

Sudo apt-get install libqt4-dev

Шаг 3. Применение патчей

Данный шаг не является обязательным.

Официальные патчи уже наложены на исходники, если ядро получалось описанной выше командой:

Apt-get source linux-image-`uname -r`

Если вы никогда до этого не применяли патчей к исходному коду, то выполните следующую команду:

Sudo apt-get install patch

Эта команда установит программу patch, необходимую для, как можно догадаться, применения патчей. Теперь скачайте файл патча в папку, куда вы распаковали ядро. Это может быть либо архивный файл (напр. Bzip2 или Gzip), либо несжатый patch-файл.

На данный момент подразумевается, что вы уже сохранили файл в ту папку, куда ранее распаковали ядро, и установили программу patch.
Если скачанный вами файл был в формате Gzip (*.gz), тогда выполните следующую команду для распаковки содержимого архива:

Gunzip patch-2.6.x.y.gz

Если скачанный вами файл был в формате Bzip2 (*.bz2), тогда выполните следующую команду для распаковки содержимого архива:

Bunzip2 patch-2.6.x.y.bz2

где 2.6.x.y - версия патча ядра. Соответствующие команды распакуют файл патча в папку с исходным кодом ядра. Прежде чем применить патч, необходимо удостовериться, что он заработает без ошибкок. Для этого выполните команду:

Patch -p1 -i patch-2.6.x.y --dry-run

где 2.6.x.y - версия патча ядра. Эта команда сымитирует применение патча, не изменяя сами файлы.

Если при её выполнении не возникнет ошибок, то изменения можно смело внедрять в сами файлы. Для этого выполните команду:

Patch -p1 -i patch-2.6.x.y

где 2.6.x.y - версия патча ядра. Если не было никаких ошибок, значит к исходному коду был успешно применён патч.

Внимание! Перед тем, как применять патч, проведите следующие действия: 1. Скачайте с http://www.kernel.org патч той же версии, что и ваших исходников. 2. Выполните следующую команду: patch -p1 -R

где 2.6.x.y - версия патча и ваших исходников

Шаг 4. Конфигурация будущей сборки ядра

Перейдите в папку, куда вы распаковали ядро, выполнив команду

Cd ~/linux-2.6.x.y

где 2.6.x.y - версия загруженного вами ядра.

На данный момент вы уже должны были определиться с методом конфигурации ядра (если нет, то ознакомьтесь с ними в разделе «Получение необходимых для сборки пакетов». В зависимости от этого, выполните следующую команду для запуска выбранного вами способа конфигурации:

    config - традиционный способ конфигурирования. Программа выводит параметры конфигурации по одному, предлагая вам установить для каждого из них свое значение. Вызывается командой make config

    oldconfig - файл конфигурации создаётся автоматически, основываясь на текущей конфигурации ядра. Рекомендуется для начинающих. Вызывается командой make oldconfig

    defconfig - файл конфигурации создаётся автоматически, основываясь на значениях по-умолчанию для данной конкретной архитектуры. Вызывается командой make defconfig

    menuconfig - псевдографический интерфейс ручной конфигурации, не требует последовательного ввода значений параметров. Рекомендуется для использования в терминале. Вызов: make menuconfig

    gconfig и xconfig - графические конфигураторы для ручной настройки. Вызов: make gconfig

    Make xconfig

    соответственно

    localmodconfig и localyesconfig - автоматические конфигураторы. Конфиг создается на основе вызванных в данных момент модулей и запущенного ядра. Разница между этими двумя конфигураторами в количестве модулей. В первом случае их будет не менее 50% ядра, а во-втором не больше 2 модулей. Вызов: make localmodconfig

    Make localyesconfig

    соответственно

После вызова соответствующая программа конфигурации будет запущена. Произведите необходимые настройки в соответствии с вашими потребностями, сохраните файл конфигурации и переходите к следующему шагу.

Шаг 5. Сборка ядра

Итак, приготовления завершены. Теперь можно запустить процесс сборки ядра. Чтобы это сделать, выполните команду:

Fakeroot make-kpkg -j 5 --initrd --append-to-version=-custom kernel_image kernel_headers #-j <количество ядер процессора>+1

Сборка ядра может занимать от 20 минут до нескольких часов в зависимости от конфигурации ядра и технических параметров компьютера. Сборка при многодерном процессоре может быть в несколько раз быстрее

Шаг 6. Установка образов и заголовков ядра

Когда сборка ядра подошла к концу, в вашей домашней папке появятся два deb-пакета. Их и необходимо установить. Для этого выполните команды:

Cd ~/ sudo dpkg -i linux-image-2.6.x.y-custom_2.6.x.y-custom-10.00.Custom_arc.deb sudo dpkg -i linux-headers-2.6.x.y-custom_2.6.x.y-custom-10.00.Custom_arc.deb

где 2.6.x.y - версия собранного ядра, arc - архитектура процессора (i386 - 32-бит, amd64 - 64-бит).
Если вы не знаете точного названия пакета, выведите список файлов в домашнем каталоге командой

и найдите эти самые два пакета.

Шаг 7. Генерация начального RAM-диска

Для корректной работы Ubuntu требует наличия образа начального RAM-диска. Чтобы его создать, выполните команду:

Sudo update-initramfs -c -k 2.6.x.y-custom

где 2.6.x.y - версия собранного ядра.

Шаг 8. Обновление конфигурации загрузчика GRUB

Для того, чтобы новая версия ядра была доступна для выбора при загрузке компьютера, выполните следующую команду:

Sudo update-grub

Файл menu.lst (для GRUB версии 1) или grub.cfg (для GRUB версии 2) обновится в соответствии с наличием установленных операционных систем и образов ядер.

Шаг 9. Проверка ядра

Сборка и установка ядра успешно выполнены! Теперь перезагрузите компьютер и попробуйте загрузить систему с новым ядром. Чтобы удостовериться, что система запущена с новым ядром, выполните команду

Uname -r

Она выведет на экран используемую версию ядра.

Если всё сделано правильно, то вы можете удалить архивы с исходным кодом и весь каталог linux-2.6.x.y в вашей домашней папке. Это освободит около 5 ГБ на вашем жёстком диске (размер освобождаемого пространства зависит от параметров сборки).

На этом процесс сборки и установки завершён, поздравляю!

Я часто слышу, как люди обращаются к ядру Linux как к образцу ядра Linux, и я не могу найти ответы на любые поисковые системы о том, почему он называется изображением.

Когда я думаю об изображении, я могу только думать о двух вещах либо о копии диска, либо о фотографии. Конечно, черт возьми, это не фотоизображение, так почему это называется изображением?

5 Solutions collect form web for “Почему ядро ​​Linux называется «образ»?”

Процесс загрузки Unix имел (имел) только ограниченные возможности интеллектуальной загрузки программы (перемещение, загрузка библиотек и т. Д.). Поэтому исходная программа была точным изображением, сохраненным на диске, тем, что нужно было загрузить в память и «вызвать», чтобы получить ядро.

Только намного позже были добавлены такие вещи, как (де-комп), и хотя теперь более мощные загрузчики уже установлены, имя изображения застряло.

Изображение слова также имеет определение «Файл, содержащий всю информацию, необходимую для создания живой рабочей копии».

Это не означает, что «образ» – это всего лишь 1: 1 копия диска. Поскольку фотография представляет собой реальность точно так же, как и при съемке, изображение исполняемой программы (или ядра) представляет собой программу в состоянии, где она может загружаться (или распаковываться) в системной памяти точно так, как она есть, а затем дается контроль над ним. Затем эта программа может запускаться из этого состояния согласованным образом. Таким образом, образ ядра Linux представляет собой изображение (изображение состояния) ядра Linux, которое может запускаться само по себе, предоставляя ему контроль.

В настоящее время загрузчик загружает такое изображение из файловой системы жесткого диска (необходим драйвер), заменяет собой его, и поэтому дает ему контроль. Процесс загрузки компьютера выполняется несколько раз до тех пор, пока операционная система не начнет работать. Это называется цепной нагрузкой. Или, если меньшая программа (цепочка) загружает более сложную, она называется начальной загрузкой.

BIOS загружает загрузчик, который также является изображением, например, boot.img в случае grub . Этот boot.img не является файлом (если установлен grub); это имя для части, которая находится в главной загрузочной записи (MBR). Если вы выгрузите файл в файл, это будет образ в виде файла, который не будет записан на жесткий диск, но написанный в файле. Это также представление (изображение) самого раннего состояния, в котором grub может загрузить остальную часть себя. grub затем имеет свой механизм, как полностью загружать себя, загружая другие изображения. Это представлено различными этапами в grub . После этого загрузчик загружает образ ядра, заменяя себя извлеченным содержимым этого файла.

Древняя история. термин «изображение» происходит от старого термина «Digital Equipment Corporation» для вывода компилятора-> линкера. файл – это изображение, созданное путем интерпретации кода и т. д. через компоновщик для создания исполняемого «изображения» вашего дизайна.

В математике ядро ​​является прообразом подмножества образа некоторого отображения, были ли подмножество равно единичному элементу в codomain. Я уверен, что эти имена вытекают из математических понятий, поскольку они значительно связаны в разных областях математики. Учитывая, что Unix был получен в академической среде, возможно, что использование этого ядра и образа этих слов одинаково.

Если у вас есть набор, который представляет собой некоторый уровень информации о «полной» ОС, если эта информация также образует группу, то вы можете определить гомоморфизм группы на этом множестве или в основном сопоставить с другими наборами, имеющими разные размеры, тогда исходный набор, если они «уважают» структуру оригинального набора, которая сделала его группой. Вы можете видеть, что может оказаться в стороне, чтобы сопоставить набор с меньшим набором или подмножеством некоторого набора, где подмножество меньше.

Изображение. Образ группового гомоморфизма и общих функций и отображений – это всего лишь подмножество некоторого множества, элементы которого фактически сопоставляются. Функция не может отображаться для каждого элемента, и эти элементы не будут включены в изображение.

Ядро – в основном просто элементы из исходного набора, которые сопоставляются изображению, но только отображают элемент идентичности изображения. В основном элементы, которые отображают 0, как вещь в изображении.

Если изображение меньше по размеру, тогда исходное множество, то мы можем видеть, что несколько элементов должны отображаться на один элемент. Так, например, может быть несколько элементов из ядра, которые сопоставляются с изображением, и мы уже знаем, что все они должны отображаться в 0.

Мы можем видеть, что если мы выберем исходное множество как конечные последовательности двоичных или 1 и 0, а кодомен (набор, сопоставленный к), также являемся последовательностями двоичного, то мы можем построить такие вещи тогда и только тогда, когда подходящая групповая структура можно определить (это немного глубже и не связано с вопросом).

Поэтому мы с полной уверенностью видим, что «ядро» и «образ» ОС полностью определены и имеют математическое значение. Независимо от, возможно, других видов использования терминов.

История и архитектурная организация

Поскольку цель данной статьи - познакомить вас с ядром Linux и дать обзор его архитектуры и основных компонентов, давайте начнем с краткого обзора истории ядра Linux, затем рассмотрим архитектуру ядра Linux "с высоты птичьего полета", и, наконец, обсудим его основные подсистемы. Ядро Linux насчитывает свыше шести миллионов строк, поэтому данное введение не может быть исчерпывающим. Для получения более подробной информации пользуйтесь ссылками на дополнительные ресурсы.

Краткий обзор истории Linux

Хотя Linux, по всей видимости, является самой популярной операционной системой с открытым исходным кодом, на самом деле ее история в сравнении с другими операционными системами относительно коротка. На заре компьютерной эры программисты разрабатывали свои программы для "голой" аппаратуры, используя языки, понятные для этой аппаратуры. В отсутствие операционной системы использовать всю большую и дорогую вычислительную машину в каждый конкретный момент времени могло только одно приложение (и один пользователь). Первые операционные системы были разработаны в 1950-е годы, чтобы облегчить жизнь разработчиков. В качестве примера можно назвать General Motors Operating System (GMOS), разработанную для IBM 701, и FORTRAN Monitor System (FMS), созданную North American Aviation для IBM 709.

В 1960-е годы в Массачусетском Технологическом институте (MIT) и в ряде компаний была разработана экспериментальная операционная система Multics (Multiplexed Information and Computing Service) для машины GE-645. Один из разработчиков этой ОС, компания AT&T, отошла от Multics и в 1970 году разработала свою собственную систему Unics. Вместе с этой ОС поставлялся язык C. При этом C был разработан и написан так, чтобы обеспечить переносимость разработки операционной системы.

Двадцать лет спустя Эндрю Танненбаум (Andrew Tanenbaum) создал микроядерную версию UNIX® под названием MINIX (minimal UNIX), которая могла работать на небольших персональных компьютерах. Эта операционная система с открытым исходным кодом вдохновила Линуса Торвальдса (Linus Torvalds) на разработку первой версии Linux в начале 1990-х (см. Рис. 1).

Рис. 1. Краткая история основных выпусков ядра Linux

Linux быстро превратился из инициативы энтузиаста-одиночки во всемирный проект, в котором участвуют тысячи разработчиков. Одним из важнейших решений в судьбе Linux стало принятие лицензии GNU General Public License (GPL). GPL защитила ядро Linux от коммерческой эксплуатации и одновременно открыла путь к использованию разработок сообщества пользователей проекта GNU, основанного Ричардом Столлменом (Richard Stallman), объемы кода которого значительно превосходят даже объем ядра Linux. Это позволило использовать в Linux такие полезные приложения, как комплекс компиляторов GNU Compiler Collection (GCC) и различные командные оболочки.

Введение в ядро Linux

Перейдем к общему обзору архитектуры операционной системы GNU/Linux. Операционную систему можно условно разделить на два уровня, как показано на Рис. 2.

Рис. 2. Фундаментальная архитектура операционной системы GNU/Linux

На верхнем уровне находится пользовательское пространство (пространство приложений). Здесь исполняются приложения пользователя. Под пользовательским пространством располагается пространство ядра. Здесь функционирует ядро Linux.

Имеется также библиотека GNU C (glibc). Она предоставляет интерфейс системных вызовов, который обеспечивает связь с ядром и дает механизм для перехода от приложения, работающего в пространстве пользователя, к ядру. Это важно, поскольку ядро и пользовательское приложение располагаются в разных защищенных адресных пространствах. При этом, в то время как каждый процесс в пространстве пользователя имеет свое собственное виртуальное адресное пространство, ядро занимает одно общее адресное пространство. Более подробную информацию можно найти в литературе, ссылки на которую приведены в разделе " ".

Ядро Linux можно, в свою очередь, разделить на три больших уровня. Наверху располагается интерфейс системных вызовов, который реализует базовые функции, например, чтение и запись. Ниже интерфейса системных вызовов располагается код ядра, точнее говоря, архитектурно-независимый код ядра. Этот код является общим для всех процессорных архитектур, поддерживаемых Linux. Еще ниже располагается архитектурно-зависимый код, образующий т.н. BSP (Board Support Package - пакет поддержки аппаратной платформы). Этот код зависит от процессора и платформы для конкретной архитектуры.

Свойства ядра Linux

Обсуждая архитектуру большой и сложной системы, можно рассматривать ее со многих разных точек зрения. Одна из целей архитектурного анализа может состоять в том, чтобы лучше понять исходный код системы. Именно этим мы здесь и займемся.

В ядре Linux реализован целый ряд важных архитектурных элементов. И на самом общем, и на более детальных уровнях ядро можно подразделить на множество различных подсистем. С другой стороны, Linux можно рассматривать как монолитное целое, поскольку все базовые сервисы собраны в ядре системы. Такой подход отличается от архитектуры с микроядром, когда ядро предоставляет только самые общие сервисы, такие как обмен информацией. ввод/вывод, управление памятью и процессами, а более конкретные сервисы реализуются в модулях, подключаемых к уровню микроядра. Каждая из этих точек зрения имеет свои достоинства, но я здесь не буду вдаваться в это обсуждение.

С течением времени ядро Linux стало более эффективным с точки зрения использования памяти и процессорных ресурсов и приобрело исключительную стабильность. Однако самый интересный аспект Linux, учитывая размер и сложность этой системы - это ее переносимость. Linux можно откомпилировать для огромного количества разных процессоров и платформ, имеющих разные архитектурные ограничения и потребности. Например, Linux может работать на процессоре как с блоком управления памятью (MMU), так и без MMU. Поддержка процессоров без MMU реализована в версии ядра uClinux. Более подробную информацию см. в разделе " ".

Основные подсистемы ядра Linux

Давайте рассмотрим некоторые основные компоненты ядра Linux, следуя структуре, изображенной на рис. 3.

Рис. 3. Один из возможных взглядов на архитектуру ядра Linux

Интерфейс системных вызовов

SCI - это тонкий уровень, предоставляющий средства для вызова функций ядра из пространства пользователя. Как уже говорилось, этот интерфейс может быть архитектурно зависимым, даже в пределах одного процессорного семейства. SCI фактически представляет собой службу мультиплексирования и демультиплексирования вызова функций. Реализация SCI находится в./linux/kernel, а архитектурно-зависимая часть - в./linux/arch. Более подробные сведения об этом компоненте можно найти в разделе .

Управление процессами

Управление процессами сконцентрировано на исполнении процессов. В ядре эти процессы называются потоками (threads); они соответствуют отдельным виртуализованным объектам процессора (код потока, данные, стек, процессорные регистры). В пространстве пользователя обычно используется термин процесс , хотя в реализации Linux эти две концепции (процессы и потоки) не различают. Ядро предоставляет интерфейс программирования приложений (API) через SCI для создания нового процесса (порождения копии, запуска на исполнение, вызова функций Portable Operating System Interface ), остановки процесса (kill, exit), взаимодействия и синхронизации между процессами (сигналы или механизмы POSIX).

Еще одна задача управления процессами - совместное использование процессора активными потоками. В ядре реализован новаторский алгоритм планировщика, время работы которого не зависит от числа потоков, претендующих на ресурсы процессора. Название этого планировщика - O(1) - подчеркивает, что на диспетчеризацию одного потока затрачивается столько же времени, как и на множество потоков. Планировщик O(1) также поддерживает симметричные многопроцессорные конфигурации (SMP). Исходные коды системы управления процессами находятся в./linux/kernel, а коды архитектурно-зависимой части - в./linux/arch). Более подробную информацию об этом алгоритме см. в разделе .

Управление памятью

Другой важный ресурс, которым управляет ядро - это память. Для повышения эффективности, учитывая механизм работы аппаратных средств с виртуальной памятью, память организуется в виде т.н. страниц (в большинстве архитектур размером 4 КБ). В Linux имеются средства для управления имеющейся памятью, а также аппаратными механизмами для установления соответствия между физической и виртуальной памятью.

Однако управление памятью - это значительно больше, чем просто управление буферами по 4 КБ. Linux предоставляет абстракции над этими 4 КБ буферами, например, механизм распределения slab allocator. Этот механизм управления базируется на 4 КБ буферах, но затем размещает структуры внутри них, следя за тем, какие страницы полны, какие частично заполнены и какие пусты. Это позволяет динамически расширять и сокращать схему в зависимости от потребностей вышележащей системы.

В условиях наличия большого числа пользователей памяти возможны ситуации, когда вся имеющаяся память будет исчерпана. В связи с этим страницы можно удалять из памяти и переносить на диск. Этот процесс обмена страниц между оперативной памятью и жестким диском называется подкачкой . Исходные коды управления памятью находятся в./linux/mm.

Виртуальная файловая система

Еще один интересный аспект ядра Linux - виртуальная файловая система (VFS), которая предоставляет общую абстракцию интерфейса к файловым системам. VFS предоставляет уровень коммутации между SCI и файловыми системами, поддерживаемыми ядром (см. Рис. 4).

Рис. 4. VFS предоставляет коммутационную матрицу между пользователями и файловыми системами

На верхнем уровне VFS располагается единая API-абстракция таких функций, как открытие, закрытие, чтение и запись файлов. На нижнем уровне VFS находятся абстракции файловых систем, которые определяют, как реализуются функции верхнего уровня. Они представляют собой подключаемые модули для конкретных файловых систем (которых существует более 50). Исходные коды файловых систем находятся в./linux/fs.

Ниже уровня файловой системы находится кэш буферов, предоставляющий общий набор функций к уровню файловой системы (независимый от конкретной файловой системы). Этот уровень кэширования оптимизирует доступ к физическим устройствам за счет краткосрочного хранения данных (или упреждающего чтения, обеспечивающего готовность данных к тому моменту, когда они понадобятся). Ниже кэша буферов находятся драйверы устройств, реализующие интерфейсы для конкретных физических устройств.

Сетевой стек

Сетевой стек по своей конструкции имеет многоуровневую архитектуру, повторяющую структуру самих протоколов. Вы помните, что протокол Internet Protocol (IP) - это базовый протокол сетевого уровня, располагающийся ниже транспортного протокола Transmission Control Protocol, TCP). Выше TCP находится уровень сокетов, вызываемый через SCI.

Уровень сокетов представляет собой стандартный API к сетевой подсистеме. Он предоставляет пользовательский интерфейс к различным сетевым протоколам. Уровень сокетов реализует стандартизованный способ управления соединениями и передачи данных между конечными точками, от доступа к "чистым" кадрам данных и блокам данных протокола IP (PDU) и до протоколов TCP и User Datagram Protocol (UDP). Исходные коды сетевой подсистемы ядра находятся в каталоге./linux/net.

Драйверы устройств

Подавляющее большинство исходного кода ядра Linux приходится на драйверы устройств, обеспечивающие возможность работы с конкретными аппаратными устройствами. В дереве исходных кодов Linux имеется подкаталог драйверов, в котором, в свою очередь, имеются подкаталоги для различных типов поддерживаемых устройств, таких как Bluetooth, I2C, последовательные порты и т.д. Исходные коды драйверов устройств находятся в./linux/drivers.

Архитектурно-зависимый код

Хотя основная часть Linux независима от архитектуры, на которой работает операционная система, в некоторых элементах для обеспечения нормальной работы и повышения эффективности необходимо учитывать архитектуру. В подкаталоге./linux/arch находится архитектурно-зависимая часть исходного кода ядра, разделенная на ряд подкаталогов, соответствующих конкретным архитектурам. Все эти каталоги в совокупности образуют BSP. В случае обычного настольного ПК используется каталог i386. Подкаталог для каждой архитектуры содержит ряд вложенных подкаталогов, относящихся к конкретным аспектам ядра, таким как загрузка, ядро, управление памятью и т.д. Исходные коды архитектурно-зависимой части находятся в./linux/arch.

Помимо переносимости и эффективности, ядро Linux обладает целым рядом других интересных функций, которые не были освещены в вышеприведенном рассмотрении.

Linux, как широко используемая на практике операционная система с открытым исходным кодом, является отличной испытательной площадкой для новых протоколов и их усовершенствований. Linux поддерживает большое количество сетевых протоколов, включая традиционный TCP/IP и его высокоскоростные расширения (для сетей быстрее Gigabit Ethernet и 10 GbE). Linux также поддерживает такие протоколы, как Stream Control Transmission Protocol (SCTP), реализующий множество дополнительных функций, отсутствующих в TCP (применяется в качестве альтернативного протокола транспортного уровня).

Следует отметить, что ядро Linux является динамическим (поддерживает добавление и удаление программных компонентов без остановки системы). Эти компоненты называются динамически загружаемыми модулями ядра. Их можно вводить в систему при необходимости, как во время загрузки (если найдено конкретное устройство, для которого требуется такой модуль), так и в любое время по желанию пользователя.

Еще одно недавнее усовершенствование Linux - возможность ее использования в качестве операционной системы для других операционных систем (т.н. гипервизора). Недавно в ядро было внесено усовершенствование, получившее название Kernel-based Virtual Machine (KVM, виртуальная машина на базе ядра). В результате этой модификации в пространстве пользователя был реализован новый интерфейс, позволяющий исполнять поверх ядра с поддержкой KVM другие операционные системы. В таком режиме можно не только исполнять другие экземпляры Linux, но и виртуализовать Microsoft® Windows®. Единственное ограничение состоит в том, что используемый процессор должен поддерживать новые инструкции виртуализации. Более подробную информацию см. в разделе .

Дальнейшее изучение

В этой статье мы лишь в самых общих чертах рассказали об архитектуре ядра Linux и его особенностях и возможностях. Подробную информацию о содержимом ядра можно найти в каталоге с документацией, который имеется в любом дистрибутиве Linux. Обязательно ознакомьтесь с разделом в конце данной статьи, где имеются ссылки на более подробную информацию по многим обсуждаемым здесь темам.