Основы беспроводной технологии. Организация беспроводных сетей

Метод расширения спектра скачкообразной перестройкой частоты (FHSS – Frequency Hopping Spread Spectrum) основан на постоянной смене несущей в пределах широкого диапазона частот.

Частота несущей F1, …, FN случайным образом меняется через определенный период времени, называемый периодом отсечки (чип) , в соответствии с выбранным алгоритмом выработки псевдослучайной последовательности. На каждой частоте применяется модуляция (FSK или PSK). Передача на одной частоте ведётся в течение фиксированного интервала времени, в течение которого передаётся некоторая порция данных (Data). В начале каждого периода передачи для синхронизации приемника с передатчиком используются синхробиты, которые снижают полезную скорость передачи.

В зависимости от скорости изменения несущей различают 2 режима расширения спектра:

· медленное расширение спектра – за один период отсечки передается несколько бит;

· быстрое расширение спектра – один бит передается за несколько периодов отсечки, то есть повторяется несколько раз.

В первом случае период передачи данных меньше периода передачи чипа , во втором – больше.

Метод быстрого расширения спектра обеспечивает более надёжную передачу данных при наличии помех за счёт многократного повторения значения одного и того же бита на разных частотах, но более сложен в реализации, чем метод медленного расширения спектра.

Прямое последовательное расширение спектра

Метод прямого последовательного расширения спектра (DSSS – Direct Sequence Spread Spectrum) состоит в следующем.

Каждый «единичный» бит в передаваемых данных заменяется двоичной последовательностью из N бит, которая называется расширяющей последовательностью , а «нулевой» бит кодируется инверсным значением расширяющей последовательности. В этом случае тактовая скорость передачи увеличивается в N раз, следовательно, спектр сигнала также расширяется в N раз.

Зная выделенный для беспроводной передачи (линии связи) частотный диапазон, можно соответствующим образом выбрать скорость передачи данных и значение N , чтобы спектр сигнала заполнил весь диапазон.

Основная цель кодирования DSSS как и FHSS – повышение помехоустойчивости.

Чиповая скорость – скорость передачи результирующего кода.

Коэффициент расширения – количество битов N в расширяющей последовательности. Обычно N находится в интервале от 10 до 100. Чем больше N , тем больше спектр передаваемого сигнала.

DSSS в меньшей степени защищен от помех, чем метод быстрого расширения спектра.

Множественный доступ с кодовым разделением

Методы расширения спектра широко используются в сотовых сетях, в частности, при реализации метода доступа CDMA (Code Division Multiple Access) – множественный доступ с кодовым разделением . CDMA может использоваться совместно с FHSS, но в беспроводных сетях чаще с DSSS.

Каждый узел сети использует собственную расширяющую последовательность, которая выбирается так, чтобы принимающий узел мог выделить данные из суммарного сигнала.

Достоинство CDMA заключается в повышенной защищенности и скрытности передачи данных: не зная расширяющей последовательности, невозможно получить сигнал, а иногда и обнаружить его присутствие.

Технология WiFi. Технология WiМах. Беспроводные персональные сети. Технология Bluetooth. Технология ZigBee. Беспроводные сенсорные сети. Сравнение беспроводных технологий.

Технология WiFi

Технология беспроводных ЛВС (WLAN) определяется стеком протоколов IEEE 802.11, который описывает физический уровень и канальный уровень с двумя подуровнями: MAC и LLC.

На физическом уровне определены несколько вариантов спецификаций, которые различаются:

· используемым диапазоном частот;

· методом кодирования;

· скоростью передачи данных.

Варианты построения беспроводных ЛВС стандарта 802.11, получившего название WiFi.

IEEE 802.11 (вариант 1):

· среда передачи – ИК-излучение;

· передача в зоне прямой видимости;

· используются 3 варианта распространения излучения:

Ненаправленная антенна;

Отражение от потолка;

Фокусное направленное излучение («точка-точка»).

IEEE 802.11 (вариант 2):

· метод кодирования – FHSS: до 79 частотных диапазонов шириной

1 МГц, длительность каждого из которых составляет 400 мс (рис.3.49);

· при 2-х состояниях сигнала обеспечивается пропускная способность среды передачи в 1 Мбит/с, при 4-х – 2 Мбит/с.

IEEE 802.11 (вариант 3):

· среда передачи – микроволновый диапазон 2,4 ГГц;

· метод кодирования – DSSS c 11-битным кодом в качестве расширяющей последовательности: 10110111000.

IEEE 802.11a:

1) диапазон частот – 5 ГГц;

2) скорости передачи: 6, 9, 12, 18, 24, 36, 48, 54 Мбит/с;

3) метод кодирования – OFDM.

Недостатки:

· слишком дорогое оборудование;

· в некоторых странах частоты этого диапазона подлежат лицензированию.

IEEE 802.11b:

1) диапазон частот – 2,4 ГГц;

2) скорость передачи: до 11 Мбит/с;

3) метод кодирования – модернизированный DSSS.

IEEE 802.11g:

1) диапазон частот – 2,4 ГГц;

2) максимальная скорости передачи: до 54 Мбит/с;

3) метод кодирования – OFDM.

В сентябре 2009 года был утверждён стандарт IEEE 802.11n. Его применение позволит повысить скорость передачи данных практически вчетверо по сравнению с устройствами стандартов 802.11g. Теоретически 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с. Радиус действия беспроводных сетей IEEE 802.11 – до 100 метров.

Технология WiМах

Технология беспроводного широкополосного доступа с высокой пропускной способностью WiMax представлена группой стандартов IEEE 802.16 и первоначально была предназначена для построения протяженных (до 50 км) беспроводных сетей, относящихся к классу региональных или городских сетей.

Стандарт IEEE 802.16 или IEEE 802.16-2001 (декабрь 2001 года), являющийся первым стандартом «точка-многоточка», был ориентирован на работу в спектре от 10 до 66 ГГц и, как следствие, требовал нахождения передатчика и приёмника в области прямой видимости, что является существенным недостатком, особенно в условиях города. Согласно описанным спецификациям, сеть 802.16 могла обслуживать до 60 клиентов со скоростью канала T-1 (1,554 Мбит/с).

Позднее появились стандарты IEEE 802.16a, IEEE 802.16-2004 и IEEE 802.16е (мобильный WiMax), в которых было снято требование прямой видимости между передатчиком и приёмником.

Основные параметры перечисленных стандартов технологии WiMax.

Рассмотрим основные отличия технологии WiМах от WiFi.

1. Малая мобильность. Первоначально стандарт разрабатывался для стационарной беспроводной связи на большие расстояния и предусматривал мобильность пользователей в пределах здания. Лишь в 2005 году был разработан стандарт IEEE 802.16e, ориентированный на мобильных пользователей. В настоящее время ведётся разработка новых спецификаций 802.16f и 802.16h для сетей доступа с поддержкой работы мобильных (подвижных) клиентов при скорости их движения до 300 км/ч.

2. Использование более качественных радиоприемников и передатчиков обусловливает более высокие затраты на построение сети. 3. Большие расстояния для передачи данных требуют решения ряда специфических проблем: формирование сигналов разной мощности, использование нескольких схем модуляции, проблемы защиты информации.

4. Большое число пользователей в одной ячейке.

5. Более высокая пропускная способность , предоставляемая пользователю.

6. Высокое качество обслуживания мультимедийного трафика.

Первоначально считалось, что IEEE 802.11 мобильный аналог Ethernet , 802.16 – беспроводной стационарный аналог кабельного телевидения . Однако появление и развитие технологии WiMax (IEEE 802.16e) для поддержки мобильных пользователей делает это утверждение спорным.

2.4.2. Метод прямого расширения спектра. Основы теории мобильной и беспроводной связи

2.4.2. Метод прямого расширения спектра

Важным свойством метода прямого расширения спектра можно считать то, что ширина спектра сигнала, модулирующего опорную частоту, а значит, и радиосигнала, определяется главным образом не скоростью передачи полезной информации, а параметрами ПСП. Элементарный импульс ПСП называют чипом. Каждый информационный бит после перемножения с ПСП будет отображаться многими чипами. (Например, один информационный бит отображается 128 чипами ПСП.) Скорость в радиоканале определяется, как произведение скорости передачи на выходе канального кодера и количества чипов за интервал одного бита. Обычно скорость передачи в радиоканале измеряют в мегачипах в секунду (Мчип/с).

Сигналы с расширенным спектром являются псевдослучайными, т. е. имеют свойства, аналогичные свойствам случайного процесса или шума, хотя формируются по вполне детерминированным алгоритмам. ПСП чаще всего является бинарной с элементами 0 и 1 и обладает свойствами, схожими со свойствами случайной бинарной последовательности. Например, если на любом конечном интервале число нулей примерно равно числу единиц, то автокорреляционная функция такой последовательности близка к автокорреляционной функции случайной бинарной последовательности, в частности, имеет малые значения коэффициента корреляции между сдвинутыми друг относительно друга копиями одной и той же последовательности и т.д. Это свойство используется для распознавания ПСП.

Псевдослучайные последовательности обычно формируются с помощью логических цепочек, реализующих детерминированные алгоритмы. На рис. 2.5 приведен пример такой цепи , которая содержит регистр сдвига из последовательно соединенных элементов с двумя устойчивыми состояниями и некоторую логическую схему в цепи обратной связи.

Двоичная последовательность символов 0 и 1, хранящаяся в регистре, смещается вправо по регистру при подаче очередного тактового импульса; символ из последней ячейки регистра выдается на выход в качестве очередного символа последовательности; символы всех или некоторых ячеек регистра подаются в логическую цепь обратной связи, в которой формируется символ обратной связи, передаваемый в первую ячейку регистра.

Период следования тактовых импульсов определяет длительность элементарного символа (чипа) последовательности. Если логическая цепь обратной связи содержит только элементы типа "исключающее ИЛИ", которые применяются наиболее часто, данное устройство называется генератором линейной псевдослучайной последовательности (ПСП). В этом случае значение очередного символа на выходе цепи обратной связи определяется следующим рекуррентным соотношением:

где символ “+” обозначает суммирование по модулю 2, а коэффициенты и символы принимают значения 0 или 1. Логическая цепь обратной связи в этом случае представляет собой сумматор по модулю 2.

Начальное состояние ячеек регистра и структура логической цепи обратной связи полностью определяют последующее состояние ячеек регистра. Если принять некоторое состояние регистра сдвига за исходное, то через N тактов это состояние вновь повторится. Если при этом регистрировать последовательность символов на выходе ячейки с номером I , то длина этой последовательности будет равна N. На последующих N тактах эта последовательность вновь повторится и т. д.

Число N называется периодом последовательности. Значение N при фиксированной длине регистра m зависит от числа ненулевых весовых коэффициентов с и расположения соответствующих отводов в регистре. Например, из равенства (2.6) следует, что если в какой-то момент времени состояние всех ячеек регистра оказывается равным 0, то все последующие элементы последовательности на выходе регистра будут нулевыми. Существует разных ненулевых состояний регистра сдвига. Следовательно, период линейной ПСП, формируемой регистром сдвига с m ячейками, не может превышать символов. ПСП с периодом , формируемые регистром сдвига с линейной обратной связью, называются последовательностями максимальной длины или, более коротко, М -последовательностями. Длительность периода повторения ПСП может составлять десятки-сотни часов.

Устройство, функциональная схема которого представлена на рис. 2.5, можно назвать цифровым автоматом. Если формируемая им последовательность описывается уравнением (2.6), то такие автоматы принято задавать характеристическим многочленом:

где и . Значение вектора полностью определяет структуру автомата формирования ПСП: если коэффициент , то это означает, что выход ячейки с номером I к цепи обратной связи не подключен; при I -й выход подключен.

Известно достаточно большое число способов формирования псевдослучайных последовательностей, статистические свойства которых хорошо изучены. У них автокорреляционная функция имеет ярко выраженный максимум, а взаимокорреляционная функция носит случайный шумоподобный характер с малым уровнем значений. Новые способы реализации ПСП получают и в настоящее время.

Можно использовать два способа получения радиосигнала с расширенным спектром. Например, сначала перемножить исходную битовую последовательность с выхода кодера канала на сигнал ПСП, тем самым расширить спектр. Затем полученным сигналом промодулировать колебания несущей частоты. При второй модуляции можно использовать методы фазовой модуляции (BPSK, QPSK) или амплитудно-фазовой (QAM). Пример построения такого способа формирования радиосигнала с расширенным спектром приведен на функциональной схеме рис. 2.6.

Рис. 2.6. Функциональная схема формирования радиосигнала с расширенным спектром

Фильтр основной полосы в этой схеме предназначен для получения модулирующего сигнала с требуемой формой спектральной плотности мощности и требуемой полосой частот. Однако теперь на входе фильтра сигнал имеет в раз более широкий спектр, так что и радиосигнал имеет в В раз более широкий спектр, чем обычный узкополосный радиосигнал.

Аналогичный результат получится, если вначале промодулировать битовой последовательностью колебания несущей частоты методами BPSK, QPSK или QAM, а затем осуществить модуляцию полученного радиосигнала импульсами ПСП.

Прямое расширение спектра осуществляется путем перемножения информационного сигнала на сигнал ПСП , формируемый из псевдослучайной последовательности в течение всего сеанса связи. В результате модулирующий сигнал можно записать:

На рис. 2.7 показан примерный вид участка исходной битовой последовательности, сигнала ПСП и их соответствующие спектры.

Рис. 2.7. Примерный вид соотношения битовой последовательности и ПСП

Сигналы с расширенным спектром имеют интересную особенность. При первом перемножении битовой последовательности с сигналом ПСП (в передатчике) происходит расширение спектра до полосы . В приемнике входной радиосигнал с расширенным спектром поступает на первый демодулятор, на который также подается такая же ПСП, что и была использована в передатчике. В результате перемножения входного радиосигнала с сигналом ПСП на выходе первого демодулятора получается радиосигнал, спектр которого вновь сужается и становится равным по ширине спектру канальной битовой последовательности. Важно заметить, что при первом перемножении (в передатчике) битовой последовательности с сигналом ПСП происходит расширение спектра, а второе перемножение (в демодуляторе приемника) с такой же ПСП, вновь сужает спектр до исходного спектра канальных битов. Это свойство сигналов с расширенным спектром играет весьма полезную роль в уменьшении негативного влияния помех. Допустим, что в радиоканале имеется узкополосная (преднамеренная или случайная) помеха, спектр которой находится в пределах расширенного спектра сигнала. При попадании помехи совместно с сигналом на вход приемника на первом демодуляторе сигнал подвергнется второму умножению на ПСП, его спектр сузится, а помеха подвергнется первому перемножению с ПСП и его спектр расширится и его энергия окажется "размазанной" по широкой области частот (см. рис. 2.8, а). При выделении полосовым фильтром (например, на промежуточной частоте) спектра полезного сигнала в его полосу будет попадать лишь малая доля энергии помехи. Поэтому даже сравнительно сильная узкополосная помеха окажет незначительное влияние.

а – узкополосная помеха; б – широкополосная помеха

При попадании на вход приемника широкополосной помехи совместно с полезным сигналом (рис. 2.8, б) после перемножения с ПСП пропорционально сузятся спектры и сигнала, и помехи. Если они имели разные полосы и разные центральные частоты, то помеха и сигнал могут быть разделены полосовым фильтром. Такая невосприимчивость к помехам делает привлекательным использование сигналов с расширенным спектром в условиях наличия помех.

В условиях многолучевого распространения сигнала отраженные копии будут приходить на вход приемника с запозданием относительно основного сигнала. Если задержка копий будет более длительности чипа, то их можно отделить от основного сигнала. В узкополосном сигнале, модулированном битовыми импульсами, длительность битовой посылки довольно велика, и отраженные копии сигнала успевают наложиться на основной сигнал. Длительность чиповых импульсов намного меньше, поэтому отраженные сигналы могут не накладываться на основной сигнал.

Следует обратить внимание еще на одно свойство сигналов с расширенным спектром. Поскольку ширина расширенного спектра радиосигнала одного канала значительно больше ширины спектра сигнала, полученного при частотном разделении каналов (узкополосных), то при одинаковой излучаемой мощности этих радиосигналов спектральная плотность мощности сигнала с расширенным спектром оказывается намного меньше и может даже не превышать спектральную плотность мощности шума. Это обеспечивает хорошую скрытность широкополосных сигналов.

Важным для систем подвижной связи является также отсутствие необходимости решать проблему распределения частот между различными абонентами, поскольку все абоненты используют одну и ту же полосу частот. Для узкополосных методов модуляции решение задачи частотного планирования обязательно.

Важной характеристикой широкополосного сигнала является его база, смысл которой заключается в относительном увеличении полосы частот передаваемого сигнала в радиоканале по сравнению с полосой частот битового (исходного) сигнала. Величина базы сигнала: . Обычно базу сигнала определяют в децибелах: . На практике удобнее определять базу сигнала как произведение ширины спектра исходного сигнала на длительность элементарного символа ПСП (чипа): . По многим причинам удобно использовать такую длительность чипа ПСП, чтобы база сигнала с расширенным спектром была целым числом. На приемной стороне удобно использовать понятие выигрыш обработки , величина которой численно равна величине базы сигнала и означает выигрыш за счет обратного сужения спектра от расширенного к исходному: .

Перечислим коротко некоторые свойства сигналов с прямым расширением спектра, наиболее важные с точки зрения организации множественного доступа в системах связи с подвижными объектами.

· Множественный доступ. Если одновременно несколько абонентов используют канал передачи, то в канале одновременно присутствуют несколько сигналов с прямым расширением спектра. Каждый из этих сигналов занимает всю полосу канала. В приемнике сигнала конкретного абонента осуществляется обратная операция - свертывание сигнала этого абонента путем использования того же псевдослучайного сигнала, который был использован в передатчике этого абонента, Эта операция концентрирует мощность принимаемого широкополосного сигнала снова в узкой полосе частот, равной ширине спектра информационных символов. Если взаимная корреляционная функция между псевдослучайными сигналами данного абонента и других абонентов достаточно мала, то при когерентном приеме в информационную полосу приемника абонента попадет лишь незначительная доля мощности сигналов остальных абонентов. Сигнал конкретного абонента будет принят верно.

· Многолучевая интерференция. Если псевдослучайный сигнал, используемый для расширения спектра, имеет идеальную автокорреляционную функцию, значения которой вне интервала равны нулю, и если принимаемый сигнал и копия этого сигнала в другом луче сдвинуты во времени на величину, большую , то при сворачивании сигнала его копия может рассматриваться как мешающая интерференция, вносящая лишь малую долю мощности в информационную полосу.

· Узкополосная помеха. При когерентном приеме в приемнике осуществляется умножение принятого сигнала на копию псевдослучайного сигнала, используемого для расширения спектра в передатчике. Следовательно, в приемнике будет осуществляться операция расширения спектра узкополосной помехи, аналогичная той, которая выполнялась с информационным сигналом в передатчике. Следовательно, спектр узкополосной помехи в приемнике будет расширен в В раз, где В - коэффициент расширения, так что в информационную полосу частот попадет лишь малая доля мощности помехи, в В раз меньше исходной мощности помехи.

· Вероятность перехвата. Так как сигнал с прямым расширением спектра занимает всю полосу частот системы в течение всего времени передачи, то его излучаемая мощность, приходящаяся на 1 Гц полосы, будет иметь очень малые значения. Следовательно, обнаружение такого сигнала является очень трудной задачей.

Применение широкополосных сигналов имеет свои достоинства и недостатки, в целом присущие любому способу их формирования.

Достоинства широкополосных сигналов:

  • генерирование необходимых псевдослучайных сигналов может быть обеспечено простыми устройствами (регистрами сдвига);
  • операция расширения спектра может быть реализована простым умножением или сложением цифровых сигналов по модулю 2;
  • генератор несущего колебания является простым, так как необходимо генерировать гармоническое несущее колебание только с одной частотой;
  • может быть реализован когерентный прием сигнала с прямым расширением спектра;
  • нет необходимости обеспечивать синхронизацию между абонентами системы.

Недостатки широкополосных сигналов:

  • выравнивание и поддержание синхронизации между генерируемым в приемнике и содержащимся в принимаемом сигнале псевдослучайными кодами является трудной задачей. Синхронизация должна поддерживаться с точностью до малой доли длительности элементарного символа;
  • правильный прием информации обеспечивается только при высокой точности временной синхронизации, когда ошибка составляет малую долю длительности элементарного символа, что ограничивает возможность уменьшения длительности этого символа и, следовательно, возможность расширения полосы лишь до 10...20 МГц. Таким образом, существует ограничение на увеличение коэффициента расширения спектра;
  • мощность сигнала, принимаемого от близких к БС абонентов, намного превышает мощность сигнала далеких абонентов. Следовательно "близкий" абонент постоянно создает очень мощную помеху "далекому" абоненту, часто делая прием его сигнала невозможным. Эта проблема "близкий - далекий" может быть решена применением системы управления мощностью, излучаемой пользовательской станцией и базовой станцией в направлении пользовательской. Цель управления - обеспечить одинаковую среднюю мощность сигналов разных пользователей на входе приемника базовой станции.
d irect s equence s pread s pectrum ) - широкополосная модуляция с прямым расширением спектра, является одним из трёх основных методов расширения спектра, используемых на сегодняшний день (см. методы расширения спектра). Это метод формирования широкополосного радиосигнала , при котором исходный двоичный сигнал преобразуется в псевдослучайную последовательность, используемую для модуляции несущей. Используется в сетях стандарта IEEE 802.11 и CDMA для преднамеренного расширения спектра передаваемого импульса.

Метод прямой последовательности (DSSS) можно представить себе следующим образом. Вся используемая «широкая» полоса частот делится на некоторое число подканалов - по стандарту 802.11 этих подканалов 11. Каждый передаваемый бит информации превращается, по заранее зафиксированному алгоритму, в последовательность из 11 бит, и эти 11 бит передаются как бы одновременно и параллельно (физически сигналы передаются последовательно), используя все 11 подканалов. При приёме, полученная последовательность бит декодируется с использованием того же алгоритма, что и при её кодировке. Другая пара приёмник-передатчик может использовать другой алгоритм кодировки - декодировки, и таких различных алгоритмов может быть очень много.

Первый очевидный результат применения этого метода - защита передаваемой информации от подслушивания («чужой» DSSS-приёмник использует другой алгоритм и не сможет декодировать информацию не от своего передатчика).

При этом сильно уменьшается отношение уровня передаваемого сигнала к уровню шума, (то есть случайных или преднамеренных помех), так что передаваемый сигнал уже как бы неразличим в общем шуме. Но благодаря его 11-кратной избыточности принимающее устройство все же сумеет его распознать.

Еще одно чрезвычайно полезное свойство DSSS-устройств заключается в том, что благодаря очень низкому уровню мощности своего сигнала они практически не создают помех обычным радиоустройствам (узкополосным большой мощности), так как эти последние принимают широкополосный сигнал за шум в пределах допустимого. И наоборот - обычные устройства не мешают широкополосным, так как их сигналы большой мощности «шумят» каждый только в своем узком канале и не могут целиком заглушить весь широкополосный сигнал.

Использование широкополосных технологий дает возможность использовать один и тот же участок радиоспектра дважды - обычными узкополосными устройствами и «поверх них» - широкополосными.

Энциклопедичный YouTube

    1 / 3

    ☙◈❧ Сэнсэй-3 . ͟͟И͟͟с͟͟к͟͟о͟͟н͟͟н͟͟ы͟͟й͟͟ ͟͟Ш͟͟а͟͟м͟͟б͟͟а͟͟л͟ы͟ ☙◈❧ Анастасия Новых. аудиокниги

    2012 Crossing Over A New Beginning "FIRST EDITION"

    ☙◈❧ Эзоосмос ☙◈❧ Необычная рыбалка. Скрытая реальность. Тамга Прави. Анастасия Новых.

Технология

В каждый передаваемый информационный бит (логический 0 или 1) встраивается последовательность так называемых чипов. Если информационные биты - логические нули или единицы - при потенциальном кодировании информации можно представить в виде последовательности прямоугольных импульсов, то каждый отдельный чип - это тоже прямоугольный импульс, но его длительность в несколько раз меньше длительности информационного бита. Последовательность чипов представляет собой последовательность прямоугольных импульсов, то есть нулей и единиц, однако эти нули и единицы не являются информационными. Поскольку длительность одного чипа в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n раз больше ширины спектра первоначального сигнала. При этом и амплитуда передаваемого сигнала уменьшится в n раз.

Чиповые последовательности, встраиваемые в информационные биты, называют шумоподобными кодами (PN-последовательности), что подчеркивает то обстоятельство, что результирующий сигнал становится шумоподобным и его трудно отличить от естественного шума.

Используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определённым требованиям автокорреляции . Под термином автокорреляции в математике подразумевают степень подобия функции самой себе в различные моменты времени. Если подобрать такую чиповую последовательность, для которой функция автокорреляции будет иметь резко выраженный пик лишь для одного момента времени, то такой информационный сигнал возможно будет выделить на уровне шума. Для этого в приёмнике полученный сигнал умножается на ту же чиповую последовательность, то есть вычисляется автокорреляционная функция сигнала. В результате сигнал становится опять узкополосным, поэтому его фильтруют в узкой полосе частот и любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на чиповую последовательность, наоборот, становится широкополосной и обрезается фильтрами, а в узкую информационную полосу попадает лишь часть помехи, по мощности значительно меньшая, чем помеха, действующая на входе приёмника (если не используется приёмник с алгоритмом Боцмана).

Методы расширения спектра

Изначально методы расширения спектра (PC или SS – Spread-Spectrum) использовались при разработке военных систем управления и связи. Во время Второй мировой войны расширение спектра использовалось в радиолокации для борьбы с намеренными помехами. В последние годы развитие данной технологии объясняется желанием создать эффективные системы радиосвязи для обеспечения высокой помехоустойчивости при передаче узкополосных сигналов по каналам с шумами и осложнения их перехвата.

Система связи является системой с расширенным спектром в следующих случаях :

Полоса частот, которая используется при передаче, значительно шире минимально необходимой для передачи текущей информации. При этом энергия информационного сигнала расширяется на всю ширину полосы частот при низком соотношении сигнал/шум, в результате чего сигнал трудно обнаружить, перехватить или воспрепятствовать его передаче путем внесения помех. Хотя суммарная мощность сигнала может быть большой, соотношение сигнал/шум в любом диапазоне частот является малым, что делает сигнал с расширенным спектром трудно определяемым при радиосвязи и, в контексте скрытия информации стеганографическими методами, трудно различимым человеком.

Расширение спектра выполняется с помощью так называемого расширяющего (или кодового) сигнала, который не зависит от передаваемой информации. Присутствие энергии сигнала во всех частотных диапазонах делает радиосигнал с расширенным спектром стойким к внесению помех, а информацию, встроенную в контейнер методом расширения спектра, стойкой к ее устранению или извлечению из контейнера. Компрессия и другие виды атак на систему связи могут устранить энергию сигнала из некоторых участков спектра, но поскольку последняя была распространена по всему диапазону, в других полосах остается достаточное количество данных для восстановления информации. В результате, если, разумеется, не разглашать ключ, который использовался для генерации кодового сигнала, вероятность извлечения информации неавторизованными лицами существенно снижается.

Восстановление первичной информации (то есть «сужение спектра») осуществляется путем сопоставления полученного сигнала и синхронизированной копии кодового сигнала.

В радиосвязи применяют три основных способа расширения спектра:

С помощью прямой ПСП (РСПП);

С помощью скачкообразного перестраивания частот;

С помощью компрессии с использованием линейной частотной модуляции (ЛЧМ).

При расширении спектра прямой последовательностью информационный сигнал модулируется функцией, которая принимает псевдослучайные значения в установленных пределах, и умножается на временную константу – частоту (скорость) следования элементарных посылок (элементов сигнала). Данный псевдослучайный сигнал содержит составляющие на всех частотах, которые, при их расширении, модулируют энергию сигнала в широком диапазоне.

В методе расширения спектра с помощью скачкообразного перестраивания частот передатчик мгновенно изменяет одну частоту несущего сигнала на другую. Секретным ключом при этом является псевдослучайный закон изменения частот.

При компрессии с использованием ЛЧМ сигнал модулируется функцией, частота которой изменяется во времени.

Очевидно, что любой из указанных методов может быть распространен на использование в пространственной области при построении стеганографических систем.

Рассмотрим один из вариантов реализации метода РСПП, авторами которого являются Смит (J.R. Smith) и Комиски (В.О. Comiskey). Алгоритм модуляции следующий: каждый бит сообщения , представляется некоторой базисной функцией , размерностью , умноженной, в зависимости от значения бита (1 или 0), на +1 или -1:

Модулированное сообщение ,полученное при этом, попиксельно суммируется с изображением-контейнером , в качестве которого используется полутоновое изображение размером . Результатом является стеганоизображение , при .

СИСТЕМЫ С РАСШИРЕНИЕМ СПЕКТРА

Термин расширение спектра был использован в многочисленных военных и коммерческих системах связи. В системах с расширенным спектром каждый сигнал-переносчик сообщений требует значительно более широкой полосы радиочастот по сравнению с обычным модулированным сигналом. Более широкая полоса частот позволяет получить некоторые полезные свойства и характеристики, которые трудно достичь другими средствами.

Расширение спектра представляет собой метод формирования сигнала с расширенным спектром с помощью дополнительной ступени модуляции, обеспечивающей не только расширение спектра сигнала, но и ослабление его влияния на другие сигналы. Дополнительная модуляция никак не связана с передаваемым сообщением.

Широкополосные системы находят применение благодаря следующим потенциальным преимуществам:

Повышенной помехоустойчивости;

Возможности обеспечения кодового разделения каналов для многостанционного доступа на его основе в системах, использующих технологию CDMA;

Энергетической скрытности благодаря низкому уровню спектральной плотности;

Высокой разрешающей способности при измерениях расстояния;

Защищенности связи;

Способности противостоять воздействию преднамеренных помех;

Повышенной пропускной способности и спектральной эффективности в некоторых сотовых системах персональной связи;

Постепенному снижению качества связи при увеличении числа пользователей, одновременно занимающих один и тот же ВЧ канал;

Низкой стоимости при реализации;

Наличию современной элементной базы (интегральных микросхем).

Рисунок 6.1 – Структура системы с прямым расширением спектра

В соответствии с архитектурой и используемыми видами модуляции системы с расширенным спектром могут быть разделены на следующие основные группы.

С прямым расширением спектра на основе псевдослучайных последовательностей (ПСП), включая системы МДКРК,

С перестройкой рабочей частоты (с «прыгающей» частотой), включая системы МДКРК с медленной и быстрой перестройкой рабочей частоты,

Множественного доступа с расширенным спектром и контролем несущей (CSMA),

С перестройкой временного положения сигналов («прыгающим» временем),

С линейной частотной модуляцией сигналов (chip modulation),

Со смешанными методами расширения спектра.

Прямое расширение спектра с помощью псевдослучайных последовательностей

На рисунке 6.1 приведена концептуальная схема системы с прямым расширением спектра на основе псевдослучайных последовательностей (а - передатчик сигналов с PSK и с последующим спектра, б - передатчик с расширением спектра в полосе модулирующих частот, в - приемник). В первом модуляторе осуществляется фазовая манипуляция (PSK) сигнала промежуточной частоты двоичным цифровым сигналом передаваемого сообщения d(t) в формате без возвращения к нулю (NRZ) с частотой следования символов f b = 1/Т b .



В пределах одной соты системы подвижной радиосвязи, как правило, есть несколько абонентов, одновременно пользующихся связью, причем каждый из них использует одну и ту же несущую частоту fрч и занимает одну и ту же полосу частот Врч.

Процесс формирования сигналов с расширенным спектром в системах с многостанционным доступом происходит в два этапа: модуляция и расширение спектра (или вторичная модуляция посредством ПСП). Вторичная модуляция осуществляется с помощью идеальной операции перемножения g(t)s(t). При таком перемножении формируется амплитудно-модулированный двухполосный сигнал с подавленной несущей. Первый и второй модуляторы можно поменять местами без изменения потенциальных характеристик системы.

Сигнал g(t)s(t) с расширенным спектром преобразуется вверх до нужной радиочастоты. Хотя преобразование частоты вверх и вниз является для большинства систем практически необходимым процессом, все же этот этап не является определяющим. Поэтому в дальнейшем будем считать, что сигнал g(t)s(t) передается и принимается на промежуточной частоте, исключив из рассмотрения подсистемы преобразования частот вверх и вниз.

Таким образом, на вход приемника поступает сумма М независимых сигналов с расширенным спектром, занимающих одну и ту же полосу РЧ.

Концепция систем с расширенным спектром путем программной перестройки рабочей частоты во многом схожа с концепцией систем с прямым расширением спектра. Здесь генератор двоичной ПСП управляет синтезатором частот, с помощью которого осуществляется переход («перескок») с одной частоты на другую из множества доступных частот. Таким образом, здесь эффект расширения спектра достигается за счет псевдослучайной перестройки частоты несущей, значение которой выбирается из имеющихся частот f1,...,fN, где N может достигать значений несколько тысяч и более. Если скорость перестройки сообщений (скорость смены частот) превышает скорость передачи сообщений, то имеем систему с быстрой перестройкой частоты. Если скорость перестройки меньше скорости передачи сообщений, так что в интервале перестройки передается несколько битов, то имеем систему с медленной перестройкой частоты.

Если выбран ансамбль некоррелированных сигналов ПСП, то после операции сжатия спектра сохраняется лишь модулированный полезный сигнал. Все другие сигналы, являясь некоррелированными, сохраняют широкополосность и имеют ширину спектра, превышающую граничную полосу пропускания фильтра демодулятора. На рисунке 6.2 приведены упрощенные временные и спектральные диаграммы, качественно иллюстрирующие процессы расширения и сжатия спектра сигналов. В частности, в них отсутствует сигнал несущей.

Рисунок 6.2 - Диаграммы при расширении спектра

В системах с расширенным спектром путем перестройки рабочей частоты последняя сохраняется постоянной в течение каждого интервала перестройки, но изменяется скачком от интервала к интервалу. Частоты передачи формируются цифровым синтезатором частот, управляемым кодом («словами»), поступающим в последовательном либо параллельном виде и содержащим m двоичных символов (битов) Каждому m-битовому слову или его части соответствует одна из M = 2m частот. Хотя для осуществления перестройки частот имеется M = 2m, m = 2, 3, частот, но не все из них обязательно используются в конкретной системе. Системы с расширением спектра путем программной перестройки рабочей частоты подразделяются на системы с медленной, с быстрой и со средней скоростью перестройки.

В системах с медленной перестройкой скорость перестройки fh, меньше скорости передачи сообщений fb. Таким образом в интервале перестройки, прежде, чем осуществится переход на другую частоту, могут быть переданы два бита сообщения или более (в некоторых системах свыше 1000). В системах со средней скоростью перестройки скорость перестройки равна скорости передачи. Наибольшее распространение получили системы с быстрой и медленной перестройкой рабочей частоты.

Для синхронизации приемников при приеме сигналов с расширенным спектром может потребоваться три устройства синхронизации:

Фазовой синхронизации несущей (восстановления несущей);

Символьной синхронизации (восстановления тактовой частоты);

Временной синхронизации генераторов, формирующих кодовые или псевдослучайные последовательности.

Временная синхронизация обеспечивается в два этапа, в течение которых выполняются:

Поиск (первоначальная, грубая синхронизация);

Слежение (точная синхронизация).

На рисунке 6.3 изображены структурные схемы передающей и приемной частей системы с перестройкой частоты.

Рисунок 6.3 - Система с программной перестройкой частоты

В стандарте GSM применяется спектрально-эффективная гауссова частотная манипуляция с минимальным частотным сдвигом (GMSK). Манипуляция называется гауссовой потому, что последовательность ин­формационных битов до модулятора проходит через фильтр нижних час­тот (ФНЧ) с характеристикой Гаусса, что дает значительное уменьшение полосы частот излучаемого радиосигнала. Формирование GMSK радио­сигнала осуществляется таким образом, что на интервале одного инфор­мационного бита фаза несущей изменяется на 90°. Это наименее воз­можное изменение фазы, распознаваемое при данном типе модуляции. Непрерывное изменение фазы синусоидального сигнала дает в результате частотную модуляцию с дискретным изменением частоты. Применение фильтра Гаусса позволяет при дискретном изменении частоты получить «гладкие переходы». В стандарте GSM применяется GMSK-модуляция с величиной нормированной полосы ВТ = 0,3, где В - ширина полосы фильтра по уровню -3 дБ, Т - длительность 1 бита цифрового сообщения. Функциональная схема модулятора показана на рисунке 6.4.

Рисунок 6.4 - Функциональная схема модулятора

Основой формирователя GMSK-сигнала является квадратурный (1/Q) модулятор. Схема состоит из двух умножителей и одного сумматора. За­дача этой схемы заключается в том, чтобы обеспечить непрерывную точ­ную фазовую модуляцию. Один умножитель изменяет амплитуду синусоидального, а второй – косинусоидального колебания. Входной сигнал до умножителя разбивается на две квадратурные составляющие. Разложение происходит в двух обозначенных «sin» и «cos» блоках.

Диаграммы, иллюстрирующие формирование GMSK-сигнала, пока­заны на рисунке 4.9.

Модуляцию GMSK отличают следующие свойства, предпочтитель­ные для мобильной связи:

Постоянную по уровню огибающую, что позволяет использовать эффективные передающие устройства с усилителями мощности в режиме класса С;

Компактный спектр на выходе усилителя мощности передающего устройства, что обеспечивает низкий уровень внеполосного излу­чения;

Хорошие характеристики помехоустойчивости канала связи.

Рисунок 6.5 - Формирование GMSK-сигнала

Обработка речи. Обработка речи в стандарте GSM осуществляется с целью обеспече­ния высокого качества передаваемых сообщений и реализации дополни­тельных сервисных возможностей. Обработка речи осуществляется в рамках принятой системы преры­вистой передачи речи(Discontinuous Transmission - DTX), которая обес­печивает включение передатчика, когда пользователь начинает разговор, и отключает его в паузах и в конце разговора. DTX управляется детек­тором активности речи (Voice Activity Detector - VAD), который обес­печивает обнаружение и выделение интервалов передачи речи с шумом и шума без речи даже в тех случаях, когда уровень шума соизмерим с уровнем речи. В состав системы прерывистой передачи речи входит так­же устройство формирования комфортного шума, который включается и прослушивается в паузах речи, когда передатчик отключен. Экспери­ментально доказано, что отключение фонового шума на выходе прием­ника в паузах при отключении передатчика раздражает абонента и сни­жает разборчивость речи, поэтому применение комфортного шума в пау­зах считается необходимым.. DTX-процесс в приемнике предполагает интерполяцию фрагментов речи, потерянных из-за ошибок в канале.