Прокачиваем умную зарядку Imax B6. Как сделать зарядное устройство Imax B6: своими руками

Представляю не совсем обычный обзор популярной зарядки - он написан не столько пользователем, сколько электроником схемотехником. Будет много технической информации и первая в инете реальная принципиальная схема устройства.

Официальная страничка производителя
www.skyrc.com/index.php?route=product/product&product_id=200
Там-же можно скачать инструкцию на английском языке и программное обеспечение

Коробка со всех сторон











Инструкция только на английском языке


Само устройство завёрнуто в мягкий пакетик


Кабели в комплекте


На экран наклеена предупреждающая бирка о том, что если что-то пошло не так - сами виноваты, нечего было без присмотра оставлять:)












Проверка оригинальности прошла нормально (даже не сомневался)






Исходная версия прошивки V1.10


Прошивка была обновлена на V1.12 - в ней добавилась возможность заряжать литий без подключения балансировки, что иногда может быть полезно, а иногда и опасно


Под Win8.1 прошить не удалось - прошивал под Wn7 с переключением языка на английский.
Под WinXP программа отказалась запускаться.

Как работать с этой зарядкой многократно написано в других обзорах (ссылки внизу) и не имеет смысла повторяться, раздувая обзор, поэтому постараюсь рассказывать только новую информацию.

Разбирается зарядка очень просто - на 8 винтиках с торцов



Маленький нестандартный вентилятор охлаждения 25х25х7мм на 15V.


Вентилятор настолько редкий, что даже в каталоге у производителя его не оказалось, видимо по спец заказу делают…

Вентилятор большего размера на это место никак не войдёт.
Температура включения вентилятора 40гр выключения 35гр, работает на выдув горячего воздуха. При нагреве, вентилятор включается сразу на полное входное напряжение и соответственно его скорость вращения определяется входным напряжением. При напряжении более 15В, вентилятор будет перегружаться и сильно шуметь.

Далее, плата откручивается от нижней крышки


И вот она, красавица:)










Собрана аккуратно, пайка качественная, флюс почти отмыт.
Токоизмерительные шунты нормальные проволочные - 0,03Ом для контроля цепи заряда и 0,1Ом для контроля разрядной цепи.

Полная разборка сопряжена с трудностями снятия индикатора - он намертво припаян к основной плате. Максимум, что возможно сделать без выпаивания - это немного отогнуть его




Дальше мешает разъём подключения вентилятора.

Плата была отмыта от флюса и термопасты (для подробного исследования)








Комплектные провода нормального качества, крокодилы припаяны

Реальную схему iMAX B6 mini найти не удалось, при этом схема простого B6 имеется.

Данная схема имеет множество ошибок, да и вид у неё такой, что глаза сломаешь, пока найдёшь, как эти кусочки между собой связываются.

Делать нечего, надо рисовать нормально читаемую принципиальную электрическую схему B6 mini…
Рисовал тщательно и очень долго, приводя её в понятный вид, потом долго думал…
Для полноразмерного просмотра щёлкните по схеме.

Работает схема вполне понятно (будет ниже), но назначение некоторых элементов разгадать так и не удалось (скорее всего это просто ошибки производителя)
- на плате распаян не подключенный керамический конденсатор


- зачем-то поставлен резистор на входе логического транзистора (который уже имеет его внутри)
- назначение диода в цепи измерения зарядного тока осталось загадкой

Спецификация применяемых компонентов:
Тайваньский контроллер под девизом «Make You Win» (чтобы выиграть)

Принцип работы похож на B6, схема оптимизирована для компактного исполнения, изменения в основном в лучшую сторону.

Для облегчения понимания работы схемы, упрощённо набросал отдельно силовую часть


Силовой преобразователь напряжения собран по классической схеме Step–Up/Down с одним общим накопительным дросселем и двумя ключами. Управление ключами организовано через контроллер при помощи ШИМ, которой и задаётся ток зарядки и разрядки.




Обратная связь зарядной цепи реализована чисто программными средствами.
Частота работы ШИМ в любом режиме около 32кГц
Напряжение на затворе полевика преобразователя Step Down в режиме зарядки при выходном напряжении 4В, активный уровень низкий.


Напряжение на затворе полевика преобразователя Step Up в режиме зарядки при выходном напряжении 16В, активный уровень высокий

Управляющее напряжение для полевика разрядки (работающий в линейном режиме) формируется из ШИМ сигнала через фильтр НЧ, который далее усиливается операционным усилителем (ОУ).
Обратная связь цепи разряда - аппаратная на базе ОУ.
Напряжение на выходе контроллера 11(P2.6) в режиме разрядки

Балансировка работает по принципу дополнительной нагрузки элементов с наибольшим напряжением в общей цепи. Ток балансировки зависит от напряжения на аккумуляторе и составляет 80-160мА на каждый элемент.
Примечательно, что балансировка работает не только при заряде аккумуляторов, но и при разряде тоже, дополнительно нагружая элементы с максимальным напряжением.
Напряжение на каждом элементе измеряется дифференциальным усилителем на базе ОУ и подаётся через коммутатор на АЦП контроллера. На этот-же коммутатор подаётся сигнал с обоих температурных датчиков.
Напряжение считывается довольно точно.

Задающий кварцевый резонатор отсутствует, поэтому точность учёта времени заведомо невысока.
Проверка показала, что мой экземпляр за час убегает на 45 секунд - это вносит дополнительную погрешность измерения ёмкости 1,2% (завышает показания)

Некоторые особенности схемы B6 mini и отличия от B6:
- Имеется два стабилизатора напряжения +5В - линейный для питания контроллера и импульсный для питания подсветки индикатора и подключаемого к USB Wi-Fi модуля беспроводной передачи данных. Наличие питания на USB может сыграть злую шутку - если зарядку подключить к выключенному компьютеру, импульсный преобразователь 5В может выйти из строя!
- USB подключается непосредственно в контроллер без преобразователей.
- Схема контроля напряжения на балансных разъёмах стала более логичной и правильной.
- Схема заметно упростилась за счёт применения логических N-P-N транзисторов DTC114 (маркировка 64) и составных P-N-P транзисторов KST64 (маркировка 2V)

Обнаруженные конструктивные проблемы:
- Габаритные конденсаторы не закреплены герметиком, следовательно зарядку лучше сильно не трясти и не ронять.


Исправляется нейтральным герметиком или компаундом


- Дроссель преобразователя висит на своих ножках и вибрирует при постукиванию по корпусу.


Можно закрепить нейтральным герметиком или компаундом


- Плата разъёмов балансировки припаяна только с одной стороны.


При желании, можно дополнительно пропаять.


- Металлическая рамка дисплея касается обмотки дросселя.


Желательно проложить изолятор или просто отогнуть лапку крепления рамки.




- Одна диодная сборка установлена с лицевой стороны платы и следовательно через пластину не охлаждается - при выходном токе зарядки более 4А, она сильно греется. Простыми способами исправить не получится.
- Полевик цепи разряда охлаждается через очень толстую мягкую силиконовую неармированную термопрокладку (3,5мм), что приводит к его довольно сильному нагреву в режиме разряда. Надеюсь, производитель знал что делал.


Можно теоретически прикинуть. Теплопроводность такой термопрокладки в лучшем случае 3Вт/мК, что при площади теплового контакта корпуса TO-220 1,0см2 и дырчатого корпуса зарядки 0,6см2, толщине 3,5мм даёт нагрев 15ºС на каждый Ватт. Через выводы на плату отводится около 1Вт, остальные 4Вт передаёт прокладка - полевик нагреется не менее 100ºС (4*15+40). Реальная измеренная температура при максимальной мощности 5Вт оказалась аж 114ºС (измерял термрпарой в районе крепёжного отверстия полевика). Немного снизить его температуру можно, если между корпусом и платой мазнуть термопасты.

Охлаждение остальных полупроводников организовано через бутерброд: термопрокладка 1мм - алюминиевая пластина 4мм - термопрокладка 1мм - алюминиевый корпус
Корпус зарядки изолирован от схемы.

Зарядка имеет реальную защиту от переполюсовки питающего напряжения и защиту от переполюсовки подключённого аккумулятора, при этом защита от КЗ отсутствует.

Применяемые ОУ не являются прецизионными, поэтому изначально имеется заметная погрешность уставки малых токов. Например, при типичном начальном смещении ОУ LM2904 3мВ, ток разряда запросто может сместиться на 0,03А, а заряда сразу на 0,1А! Именно поэтому производителю приходится программно калибровать каждую зарядку для уменьшения погрешности уставки токов. Однако, температурный дрейф таким образом уменьшить нельзя.
Устранить этот недостаток возможно, используя прецизионные ОУ (например AD712C, AD8676 и т.д.) и более оптимально развести печатную плату, однако это приведёт к удорожанию производства. Заводская калибровка конечно в какой-то степени снижает это смещение, однако как её проводить самостоятельно - неизвестно.

К зарядке можно подключить внешний датчик температуры:
фирменный SK-600040-01


или самодельный на базе
Внутренний термодатчик расположен непосредственно около полевого транзистора разрядки.

Зарядка учитывает падение напряжения на соединительных проводах при протекании токов заряда и разряда (параметр Resistance Set). Значение параметра сохраняется даже при сбросе настроек по умолчанию. Не рекомендую бездумно менять это значение.
Соединительные провода Бананы-T + T-крокодилы имкют реальное общее сопротивление 38мОм, и оптимальное значение Resistance Set = 85

Некоторые программные глюки:
- отсутствует возможность корректировать напряжение заряда и разряда на Pb аккумуляторах
- литий в режиме стандартной зарядки заряжает аккумулятор до снижения тока 0.1А и менее независимо от уставки тока зарядки, что неверно. Конечный ток зарядки должен быть около 10% от тока уставки.

Соответствие реального и отображаемого напряжений при нулевом токе
0,0В – 0,00В
0,1В – 0,02В
0,2В – 0,12В
0,3В – 0,22В
0,4В – 0,32В
0,5В – 0,42В
0,6В – 0,52В
0,7В – 0,62В
0,8В – 0,72В
0,9В – 0,82В
1,0В – 0,92В
1,1В – 1,02В
1,2В – 1,12В
1,3В – 1,23В
1,4В – 1,33В
1,5В – 1,43В
2,0В – 1,93В
2,5В – 2,44В
3,0В – 2,94В
3,5В – 3,45В
4,0В – 3,95В
4,5В – 4,46В
5,0В – 4,96В
6,0В – 5,96В
7,0В – 6,96В
8,0В – 7,95В
9,0В – 8,94В
10,0В – 9,94В
12,0В – 11,92В
15,0В – 14,90В
20,0В – 19,90В
25,0В – 24,95В
30,0В – 29,95В
Занижение отображаемого напряжения означает, что аккумуляторы будут слегка перезаряжаться.

Соответствие установленного и реального тока заряда в режиме Pb при напряжении 3,5-4,5В
0,1А – 0,092А
0,2А – 0,202А
0,3А – 0,298А
0,4А – 0,399А
0,5А – 0,490А
0,6А – 0,614А
0,7А – 0,712А
0,8А – 0,802А
0,9А – 0,902А
1,0А – 0,997А
1,1А – 1,145А
1,2А – 1,245А
1,3А – 1,340А
1,4А – 1,430А
1,5А – 1,576А
1,6А – 1,675А
1,7А – 1,760А
1,8А – 1,860А
1,9А – 1,956А
2,0А – 2,13А
2,1А – 2,23А
2,2А – 2,33А
2,3А – 2,44А
2,4А – 2,55А
2,5А – 2,66А
3,0А – 3,23А
3,5А – 3,76А
4,0А – 4,20А
4,5А – 4,72А
5,0А – 5,27А
5,5А – 5,81А
6,0А – 6,33А
Включение вентилятора вызывает повышение тока на выходе на 0,03А из-за неоптимальной разводки общего провода.
С прогревом платы, ток заряда немного уменьшается, из-за температурного дрейфа ОУ, а также из-за участка фольги печатной платы в измерительной токовой цепи

График соответствия установленного и реального тока разряда в режиме Pb при напряжении 2-2,5В


Включение вентилятора вызывает повышение тока на выходе на 0,01А
Погрешность установки малых токов разряда очень велика - ток сильно занижен (особенно в диапазоне 0,2-0,8А). Именно поэтому отображаемая ёмкость аккумулятора при разряде зачастую превышает залитую ёмкость. Такое ощущение, что программная калибровка разрядного тока вообще не производилась. Для лития оптимальный ток разряда с минимальной погрешностью получается на токе 1,0А при этом будет завышение измеренной ёмкости на 3,5%

Литий в режиме Fast заряжает до падения тока зарядки 50% и менее в течение 1,5 минут. При этом аккумулятор реально заряжается не полностью (примерно до 95%).
Литий в режиме Charge заряжает до падения тока зарядки 0,1А и менее в течение 1,5 минут независимо от уставки тока зарядки.
LiPo заряжает до 4,20В на элемент (можно корректировать 4,18-4,25В), разряжает до 3,20В на элемент (можно корректировать 3,0-3,3В)
Li-Ion заряжает до 4,10В на элемент (можно корректировать 4,08-4,20В), разряжает до 3,10В на элемент (можно корректировать 2,9-3,2В)
Li-Fe заряжает до 3,60В на элемент (можно корректировать 3,58-3,70В), разряжает до 2,80В (можно корректировать 2,6-2,9В)

Свинец заряжает до 2,4В на элемент (без возможности корректировки) и падения тока 10% и менее в течение 10 секунд
Конечное напряжение разряда свинца 1,8В на элемент (без возможности корректировки) и без задержки

В режиме заряда NiCd и NMH напряжение зарядки подаётся без проверки подключения аккумулятора, при этом на выходе кратковременно появляется напряжение до 26В. Защита от КЗ при этом не работает - будьте осторожны!
Измеряемое входное напряжение слегка завышается - при реальных 12,00В показывает 12,18В
При входном напряжении менее 10В, на экране отображается DC IN TOO LOW (Низкое входное напряжение)
При входном напряжении более 18В, на экране отображается DC IN TOO HI (Высокое входное напряжение)

Максимальная выходная мощность зарядки сильно зависит от величины входного напряжения. Полную мощность она выдаёт только при входном напряжении 15В и более. Не зря родной БП имеет напряжение именно 15В.
График зависимости реальной выходной мощности по всему допустимому диапазону значений входных напряжений:


Максимальная мощность заряда 63Вт превышает заявленные 60Вт потому, что реальный ток превышает отображаемый на дисплее.

Альтернативные прошивки, к сожалению, пока отсутствуют.
Самостоятельная калибровка также пока недоступна.

Выводы: без сомнения, зарядка B6 mini очень интересная и несмотря на недостатки, порадовала своей работой. Потенциал этой зарядки пока ограничен желанием производителя, который не торопиться исправлять хотя-бы программные ошибки.
Надеюсь, информация из обзора была для Вас полезной.

Вот я и сделал схему и печатку зарядного устройства. В основном упирал на оформление схемы, печатка получилась так себе. Правда, качество разводки и в оригинале не блещет. Мне не очень интересная оригинальная разводка, ведь я рассматриваю переделку всей печатки.

Есть небольшие отличия от оригинала, потому что я поленился из рисовать. Я не стал рисовать USB-порт, и кварц. Долгое время уже сижу на PIC24, там кварц обычно нафиг не нужен.

Прошу помощи по прохождению нормоконтроля по ГОСТ в оформлении схемы (pdf , p-cad2006). Где есть косяки(кроме того, что нумерация компонентов не по порядку)? Уж сильно много времени убил на оформлении, буквально каждый компонент перерисовывал из своей библиотеки. Получилось красиво, но хочется ещё красивее. Для сравнения, чья-то схема IMAX B6 . Нормоконтролировать картинки в посте не надо, на картинках может быть старая версия.

Вот ещё печатка (тоже P-CAD 2006)

Переченя элементов пока так же нет, почти все номиналы на схеме.

А теперь я расскажу как работает схема. Она весьма интересная.

1. Защита от переполюсовки по питанию

Защита сделана на N-канальном MOSFET транзисторе. Такое решение позволяет обеспечить почти нулевое падение напряжения, по сравнению с защитой на диоде. Например, при токе 3А 12В диод довольно сильно грелся бы, более Ватта.
У этой схемы есть небольшой недостаток: для повышенного напряжения, более 20В, резистор R6 надо заменить на 10-вольтовый стабилитрон.

2. DC-DC преобразователь
Для работы зарядного устройства необходимо наличие регулируемого источника питания. Источника, способного из 12 В сделать как 2В, так и 25В. Вот его схема:


Управляется преобразователь тремя линиями:
1) Линия DCDC/ON_OFF - это запрет работы преобразователя. Подавая на линию 5V, выключается как VT26 (ключ для STEP-UP режима), так и VT27 (ключ для STEP-DOWN режима).
2) Линия STEPDOWN_FREQ двойного назначения: в STEP-UP режиме на этой линии должно быть 5V, иначе питание на катушку L1 не поступит, в step-down на этой линии должна быть частота. Регулируя скважность меняем выходное напряжение.
3) Линия SETDISCURR_STEPUPFREQ. В повышающем режиме на этой линии ШИМ, в понижающем - 0V
Дополнительно реализована защита от КЗ по линии аккумулятора: при превышении зарядного тока сработает VT8, и питание с преобразователя будет снято, транзистор VT26 разомкнётся. Как точно это работает, я не разобрался, можете сами поизучать схему.

Вопрос залу: что делают R114+R115+C20?

Силовые MOSFET ключи VT26 и VT27 управляются двухтактный эмиттерным повторителем: VT13-VT14 и VT17-VT18.

Частота работы преобразователя 31250кГц.

Данный преобразователь нельзя включать без минимальной нагрузки, в качестве которой выступает R128. Причём, в моей версии зарядки, он припаян напаян он поверх других элементов - ошибка разработчиков.

3. Включение аккумулятора

Ни один вывод аккумулятора не подключен на землю напрямую. Это касается как силовых цепей, так и балансировочного разъёма. Плюс аккумулятора подключен на DC-DC преобразователь, минус - к зарядному транзистору. Включив Charge transistor, а также регулируя напряжение на DC-DC, устаналивается необходимый зарядный ток.

4. Защита от дурака при переполюсовке аккумулятора


Включением заряда управляет DA4.2, и заряд идёт лишь при правильном подключении аккумулятора. Запретить же заряд может и контроллер, транзистором VT9.

5: Схема разряда


Схема разряда построена на транзисторе VT24 и двух операционниках. Для включения разряда надо открыть VT12. VT24 - разрядный транзистор. Именно он рассеивает тепло при разряде. Управляет им два операционных усилителя.
Посылая на вход двух RC-цепочек меандр,


контроллер формирует напряжение на In+ DA3.2:

DA3.2 - это схема интегратора(фильтр низких частот). Он будет увеличивать напряжение на выходе (и на затворе разрядного транзистора VT24), а значит и разрядный ток до тех пор, пока напряжение на выводах In+ и In-(красные цепи) не сравняются. На In+ подаётся опорный сигнал от контроллера, на In- сигнал со схемы обратной связи на DA3.1. Результат - ток плавно нарастает до номинального
Коричневый провод - запрет разряда. Если на нём 5 Вольт - разряд запрещён.
По синей линии можно проконтролировать фактический разрядный ток.

6. Схема балансировки и измерения напряжения на ячейках


Как, например измерить напряжение шестой ячейки? Напряжение BAL6 и BAL5 с шестой ячейки подаётся на дифференциальный усилитель DA1.1, который из 25В на шестой ячейки вычитает 21В на пятой. На выходе - 4В.
Нижние ячейки измеряются без участия дифференциального усилителя, делителем. Особо отмечу, что измеряется даже "земля"(BAL0).
Выход коммутируется мультиплексором HEF4051BT на контроллер. Без мультиплексора - никак, ног не хватит.

Балансировочная схема сделана на двух транзисторах. Применительно к шестой ячейке это VT22 и VT23. VT22 - цифровой транзистор, в нём уже встроены резисторы, и он подключается напрямую к выводу контроллера. Если микроконтроллер замечает, что какая-то ячейка перезарядилась, он остановит заряд, включит соответствующую перезаряженной ячейке схему, и через резисторы побежит ток около 200мА. Как только ячейка немного разрядилась, вновь включается заряд всей батареи аккумуляторов.

7. Цифровые цепи


Контроллер измеряет контроллером напряжения на плюсе и минусе аккумулятора. Если произойдёт переполюсовка - на экран будет выведено предупреждение.
Подсветка индикатора зачем-то запитана от транзистора, сам индикатор включен в 4-битном режиме.
Ещё из интересного - источник опорного напряжения TL431.

Ещё вопрос к залу про кварц: неужели для ATMEGA кварц обязателен?

Имеется в виду не самодельное, а готовое китайское. С одной стороны, в продаже есть немало нарозеточных адаптеров с отсеком под 4 АА или ААА элемента. А с другой - литиевые аккумуляторы всё больше и больше задействуют в гаджетах и электронных игрушках, так что нужно выбирать с прицелом на будущее. В общем после долгих размышлений остановился на универсальном программируемом ЗУ imax b6. В продаже есть оригинальные, и есть китайские копии. Чем они отличаются трудно сказать, но мой коллега купил копию и уже почти год успешно гоняет её по полной. Выбор сделан.

Особенности ЗУ imax b6

  • Управляется ЗУ микропроцессором
  • Отдельная балансировка каждой банки
  • Совместимость с Li-ion, LiPo и LiFe батареями
  • Совместимость с Ni-Cd, Pb и NiMH батареями
  • Широкий диапазон тока зарядки
  • Заряд/разряд до напряжения хранения аккумуляторов
  • Функция ограничения по времени зараяда
  • Мониторинг входного напряжения
  • Хранение до 5 наборов параметров батарей в памяти
  • Хранение даты ввода батареи в эксплуатацию и срока службы.


Технические характеристики

  • Входное напряжение: 11~18v
  • Максимальная мощность зарядки: 60W
  • Диапазон тока заряда: 0.1~6.0A
  • Диапазон тока разряда: 0.1~2.0A
  • Ni-MH/NiCd: 1~15 банок
  • Li-ion/LiPo: 1~6 банок
  • Напряжение Pb батарей: 2~20v
  • Габариты: 133x87x33мм
  • Цена: около 1500р.

Это зарядное не подойдёт тем, кто привык всунуть - нажать, и после нескольких часов снять аккумуляторы. Во-первых к нему требуется дополнительный адаптер (сетевой блок питания) на 12-18 вольт, а во-вторых у него нет отсека подключения АКБ - только два крокодила, которыми цепляем куда требуется. Поэтому для работы с обычными 1,5 В пальчиковыми батареями нужно достать блочок - кассетницу. Но это не проблема - стоят они копейки.

Хотя в комплекте идёт ещё несколько различных шнуров с разъёмами - может когда-нибудь и понадобятся.

Инструкция по использованию

Подключаем питание, тут же загорается экран с надписью SkyRc Imax-B6. Кнопки включения/выключения устройства не предусмотрено. После этого попадаем в главное меню.

Перемещаться по нему можно кнопками "Stop" и "<". В главном меню находятся: выбор программы зарядки в зависимости от типа аккумулятора, меню настроек. Вот алгоритм управления:

А так же пункты сохранения и загрузки пользовательских настроек. Выбрать пункт можно нажатием "Enter". Вот, для примера пункт меню заряда Li-Ion:

Еще одним нажатием "Enter" переходим в режим редактирования параметров. Изменяемый параметр в это время мигает. Можно изменить максимальный ток, и напряжение. То же самое и с никель-кадмиевыми.

На каждом этапе работает защита. Зарядка не начнется, если: перепутана полярность батареи, слишком низкое или слишком высокое напряжение, напряжение не соответствует типу батареи или количеству банок, и т. д.

Есть возможность задать ток разряда и заряда, а также количество данных циклов - это такая процедура восстановления подуставших АКБ. После выставления всех параметров, длительным нажатием "Enter" можно начать зарядку.

Пример обозначения на экране: NiCd — никелевый аккумулятор. 0,1 А — текущий ток заряда, 3,02 В — текущее напряжение,DHG — сокращенно от Discharging, заряд. 000:35 — время в минутах и секундах с момента начала программы, 00000 — «емкость» в миллиампер-часах «влитая» в батарею во время зарядки, или полученная из батареи при разрядке. Естественно, вторая цифра будет меньше, и на нее и надо ориентироваться при замере емкости батареи. Описание процесса на фото далее.

Более подробно читайте в прилагаемой к устройству инструкции или скачайте вот этот русскоязычный мануал .

Ещё пару слов про БП. В принципе подойдёт любой блок питания, не обязательно 5-ти амперный (если конечно вам не понадобилось заряжать что-то очень мощное). Для большинства АКБ зарядный ток редко превышает 0,5 А, так что первый попавшийся под руку блок на 12 В, 1 А оказался и последним - с ним imax b6 работает уже второй месяц.

Схема и детали

А как же без разборки? Как настоящий радиолюбитель первым делом отвинтил несколько боковых шурупов и взглянул на схему. Тут можно увидеть буззер, стандартный ЖК дисплей, несколько планарных микросхем и другую рассыпуху. Не сомневаюсь, что некоторые умельцы без проблем повторят сей девайс, но для большинства будет оправданным купить готовый, тем более 30 долларов не такие уж большие деньги - покупка деталей уже съест половину суммы.

Зарядный день

Сразу же после покупки устроил такой себе день зарядки - пособирал все аккумуляторы, коих накопилось пару десятков, и назначив по 3-5 разрядно-зарядных циклов стал их восстанавливать. В конце цикла раздаётся мелодичный звуковой сигнал, и на экране показывается примерная ёмкость АКБ. Имеет смысл переписать её маркером на корпуса аккумуляторных батарей, чтоб в будущем знать, чего от них можно получить.

Да, плохие банки оно даже не возьмётся заряжать - смело выкидываем их. В общем прикольная и удобная штука, после которой пользоваться обычными ЗУ уже не захочется! Всем пока, материал подготовлен специально для сайта Радиосхемы .

Обсудить статью ЗАРЯДНОЕ УСТРОЙСТВО IMAX B6

Если занимаетесь электроникой, возможно у вас есть умная зарядка Imax B6 (mini). В комплект не входят балансировочные разъемы и бокс для установки аккумуляторов. Конечно, умельцы начинают их делать своими руками из подручных материалов или готовых купленных запчастей. У кого-то это получается лучше, а у кого-то — нет. В этом посте подробно расскажу, покажу, как сделать.

Для изготовления мне потребовалось:

1. Бокс 2×18650;

2. Бокс 4×18650;


3. Балансировочные разъемы 2s 3s 4S 5S 6s;

4. Провода AWG18;

5. Щупы бананы;

6. Винтовые клеммные колодки 2EDG-5.08-4P + 2EDGV-5.08-4P — 2шт.;

7. Фольгированный стеклотекстолит.

И так, надо изготовить печатную плату

Сделано в программе Sprint Layout, . Скачать печатной платы, формат lay6

После травления платы, все собираем и припаиваем.

Ниже на фото разъем подключен на 5 пять банок. Шестой отсек держателя использовать не будем, так как заряжаем 5 АКБ.

Схема подключения к балансировочному разъему Imax B6

Не имеет значения какое у вас зарядное, оригинал — не оригинал, все они имеют пять сокетов для балансировки литиевых аккумуляторов до 6 штук. Для подключения к балансировочному сокету, соедините все банки последовательно, затем 1-й провод (красный) разъема идет на плюс сборки, а последний провод на минус сборки, соединения между банками идут на промежуточные провода разъема. На (+ ) первой банки и ( ) последней, необходимо припаять щупы бананы. Ниже приведена схема подключения максимального количества аккумуляторов.

На данном примере видим максимальное подключение аккумуляторов, 6 штук. Для подключения пяти, четырех … делаем аналогично, не забываем соблюдать полярность.

В IMAX B6: схема и печатная плата

Вот я и сделал схему и печатку зарядного устройства. В основном упирал на оформление схемы, печатка получилась так себе. Правда, качество разводки и в оригинале не блещет. Мне не очень интересная оригинальная разводка, ведь я рассматриваю переделку всей печатки.

Есть небольшие отличия от оригинала, потому что я поленился из рисовать. Я не стал рисовать USB-порт, и кварц. Долгое время уже сижу на PIC24, там кварц обычно нафиг не нужен.

Прошу помощи по прохождению нормоконтроля по ГОСТ в оформлении схемы (pdf , p-cad2006). Где есть косяки(кроме того, что нумерация компонентов не по порядку)? Уж сильно много времени убил на оформлении, буквально каждый компонент перерисовывал из своей библиотеки. Получилось красиво, но хочется ещё красивее. Для сравнения, чья-то схема IMAX B6 . Нормоконтролировать картинки в посте не надо, на картинках может быть старая версия.

Вот ещё печатка (тоже P-CAD 2006)

Переченя элементов пока так же нет, почти все номиналы на схеме.

А теперь я расскажу как работает схема. Она весьма интересная.

1. Защита от переполюсовки по питанию

Защита сделана на N-канальном MOSFET транзисторе. Такое решение позволяет обеспечить почти нулевое падение напряжения, по сравнению с защитой на диоде. Например, при токе 3А 12В диод довольно сильно грелся бы, более Ватта.
У этой схемы есть небольшой недостаток: для повышенного напряжения, более 20В, резистор R6 надо заменить на 10-вольтовый стабилитрон.

2. DC-DC преобразователь
Для работы зарядного устройства необходимо наличие регулируемого источника питания. Источника, способного из 12 В сделать как 2В, так и 25В. Вот его схема:


Управляется преобразователь тремя линиями:
1) Линия DCDC/ON_OFF - это запрет работы преобразователя. Подавая на линию 5V, выключается как VT26 (ключ для STEP-UP режима), так и VT27 (ключ для STEP-DOWN режима).
2) Линия STEPDOWN_FREQ двойного назначения: в STEP-UP режиме на этой линии должно быть 5V, иначе питание на катушку L1 не поступит, в step-down на этой линии должна быть частота. Регулируя скважность меняем выходное напряжение.
3) Линия SETDISCURR_STEPUPFREQ. В повышающем режиме на этой линии ШИМ, в понижающем - 0V
Дополнительно реализована защита от КЗ по линии аккумулятора: при превышении зарядного тока сработает VT8, и питание с преобразователя будет снято, транзистор VT26 разомкнётся. Как точно это работает, я не разобрался, можете сами поизучать схему.

Вопрос залу: что делают R114+R115+C20?

Силовые MOSFET ключи VT26 и VT27 управляются двухтактный эмиттерным повторителем: VT13-VT14 и VT17-VT18.

Частота работы преобразователя 31250кГц.

Данный преобразователь нельзя включать без минимальной нагрузки, в качестве которой выступает R128. Причём, в моей версии зарядки, он припаян напаян он поверх других элементов - ошибка разработчиков.

3. Включение аккумулятора

Ни один вывод аккумулятора не подключен на землю напрямую. Это касается как силовых цепей, так и балансировочного разъёма. Плюс аккумулятора подключен на DC-DC преобразователь, минус - к зарядному транзистору. Включив Charge transistor, а также регулируя напряжение на DC-DC, устаналивается необходимый зарядный ток.

4. Защита от дурака при переполюсовке аккумулятора


Включением заряда управляет DA4.2, и заряд идёт лишь при правильном подключении аккумулятора. Запретить же заряд может и контроллер, транзистором VT9.

5: Схема разряда


Схема разряда построена на транзисторе VT24 и двух операционниках. Для включения разряда надо открыть VT12. VT24 - разрядный транзистор. Именно он рассеивает тепло при разряде. Управляет им два операционных усилителя.
Посылая на вход двух RC-цепочек меандр,


контроллер формирует напряжение на In+ DA3.2:

DA3.2 - это схема интегратора(фильтр низких частот). Он будет увеличивать напряжение на выходе (и на затворе разрядного транзистора VT24), а значит и разрядный ток до тех пор, пока напряжение на выводах In+ и In-(красные цепи) не сравняются. На In+ подаётся опорный сигнал от контроллера, на In- сигнал со схемы обратной связи на DA3.1. Результат - ток плавно нарастает до номинального
Коричневый провод - запрет разряда. Если на нём 5 Вольт - разряд запрещён.
По синей линии можно проконтролировать фактический разрядный ток.

6. Схема балансировки и измерения напряжения на ячейках


Как, например измерить напряжение шестой ячейки? Напряжение BAL6 и BAL5 с шестой ячейки подаётся на дифференциальный усилитель DA1.1, который из 25В на шестой ячейки вычитает 21В на пятой. На выходе - 4В.
Нижние ячейки измеряются без участия дифференциального усилителя, делителем. Особо отмечу, что измеряется даже "земля"(BAL0).
Выход коммутируется мультиплексором HEF4051BT на контроллер. Без мультиплексора - никак, ног не хватит.

Балансировочная схема сделана на двух транзисторах. Применительно к шестой ячейке это VT22 и VT23. VT22 - цифровой транзистор, в нём уже встроены резисторы, и он подключается напрямую к выводу контроллера. Если микроконтроллер замечает, что какая-то ячейка перезарядилась, он остановит заряд, включит соответствующую перезаряженной ячейке схему, и через резисторы побежит ток около 200мА. Как только ячейка немного разрядилась, вновь включается заряд всей батареи аккумуляторов.

7. Цифровые цепи


Контроллер измеряет контроллером напряжения на плюсе и минусе аккумулятора. Если произойдёт переполюсовка - на экран будет выведено предупреждение.
Подсветка индикатора зачем-то запитана от транзистора, сам индикатор включен в 4-битном режиме.
Ещё из интересного - источник опорного напряжения TL431.

Ещё вопрос к залу про кварц: неужели для ATMEGA кварц обязателен?