Спиновые матрицы паули. Матрицы Паули

Продолжаем обсуждение свойств двухуровневых систем. В конце предыдущей главы мы говорили о частице со спином l / 2 в магнитном поле. Мы описывали спиновое состояние, задавая амплитуду С 1 того, что z-компонента спинового момента количества движения равна +h/2, и амплитуду С 2 того, что она равна -h /2. В предыдущих главах мы эти базисные состояния обозначали |+> и |->. Прибегнем опять к этим обозначениям, хотя, когда это будет удобнее, мы будем менять их на |1 > и |2 >. Мы видели в последней главе, что когда частица со спином 1 / 2 и с магнитным моментом m, находится в магнитном поле В =(В x , В y , B z), то амплитуды С + (=C 1) и С - (=С 2) связаны сле­дующими дифференциальными уравнениями:

Иначе говоря, матрица-гамильтониан H ij имеет вид

конечно, уравнения (9.1) совпадают с

где i и j принимают значения + и - (или 1 и 2).

Эта система с двумя состояниями - спин электрона - на­столько важна, что очень полезно было бы найти для ее описа­ния способ поаккуратнее и поизящнее. Мы сейчас сделаем небольшое математическое отступление, чтобы показать вам, как обычно пишутся уравнения системы с двумя состояниями. Это делается так: во-первых, заметьте, что каждый член гамильто­ниана пропорционален m, и некоторой компоненте В; поэтому (чисто формально) можно написать

Здесь нет какой-либо новой физики; эти уравнения просто означают, что коэффициенты- их всего 4X3=12 - могут быть представлены так, что (9.4) совпадет с (9.2).

Посмотрим, почему это так. Начнем с B z . Раз В z встречается только в H 11 и H 22 , то все будет в порядке, если взять

Мы часто пишем матрицу H ij в виде таблички такого рода:

Для гамильтониана частицы со спином 1 / 2 в магнитном поле В -это все равно что

Точно так же и коэффициенты можно записать в виде матрицы

Расписывая коэффициенты при В х, получаем, что элементы матрицы s х должны иметь вид

Или сокращенно:

И наконец, глядя на B y , получаем

Если так определить три матрицы сигма, то уравнения (9.1) и (9.4) совпадут. Чтоб оставить место для индексов i и j , мы отме­тили, какая а стоит при какой компоненте В , поставив индексы х, у, z сверху. Обычно, однако, i и j отбрасывают (их легко себе и так вообразить), а индексы х, у и z ставят внизу. Тогда (9.4) записывается так:

Матрицы сигма так важны (ими беспрерывно пользуются),

что мы выписали их в табл. 9.1. (Тот, кто собирается работать

в квантовой физике, обязан запомнить их.) Их еще называют

спиновыми матрицами Паули - по имени физика, который

их выдумал.

Таблица 9.1 СПИНОВЫЕ МАТРИЦЫ ПАУЛИ

В таблицу мы включили еще одну матрицу 2X2, которая бывает нужна тогда, когда мы хотим рассматривать систему, о6a спиновых состояния которой имеют одинаковую энергию, или когда хотим перейти к другой нулевой энергии. В таких случаях к первому уравнению в (9.1) приходится добавлять E 0 С + , а ко второму Е 0 С - . Это можно учесть, введя новое обозначение - единичную матрицу «1», или d ij:

переписав (9.8) в виде

Обычно просто понимают без лишних оговорок, что любая константа наподобие Е 0 автоматически умножается на еди­ничную матрицу, и тогда пишут просто

Одна из причин, отчего спиновые матрицы так полезны,- это что любая матрица 2x2 может быть выражена через них. Во всякой матрице стоят четыре числа, скажем

Ее всегда можно записать в виде линейной комбинации четы­рех матриц. Например,

Это можно делать по-всякому, но, в частности, можно сказать, что М состоит из какого-то количества s х плюс какое-то коли­чество а и т. д., и написать

где «количества» a, b, g и d в общем случае могут быть комплекс­ными числами.

Раз любая матрица 2X2 может быть выражена через единич­ную матрицу и матрицу сигма, то все, что может понадобиться для любой системы с двумя состояниями, у нас уже есть. Какой бы ни была система с двумя состояниями - молекула аммиака, краситель фуксин, что угодно,- гамильтоново уравнение может быть переписано в сигмах. Хотя в физическом случае электрона в магнитном поле сигмы кажутся имеющими геометрический смысл, но их можно считать и просто полезными матрицами, пригодными к употреблению во всякой системе с двумя состоя­ниями.

Например, один из способов рассмотрения протона и ней­трона - это представлять их как одну и ту же частицу в любом из двух состояний. Мы говорим, что нуклон (протон или нейтрон) есть система с двумя состояниями, в данном случае состояниями по отношению к электрическому заряду. Если рассматривать нуклон таким образом, то состояние |1 > может представлять протон, а |2 > - нейтрон. Говорят, что у нуклона есть два состояния «изотопспина».

Поскольку мы будем применять матрицы сигма в качестве «арифметики» квантовой механики систем с двумя состояниями, то наскоро познакомимся с соглашениями матричной алгебры. Под «суммой» двух или большего числа матриц подразумевается как раз то, что имелось в виду в уравнении (9.4).

Вообще если мы «складываем» две матрицы А и В, то «сумма» С означает, что каждый ее элемент C ij дается формулой

C ij =A ij +B ij .

Каждый элемент С есть сумма элементов А и В, стоящих на тех же самых местах.

В гл. 3, § 6, мы уже сталкивались с представлением о матрич­ном «произведении». Та же идея полезна и при обращении с мат­рицами сигма. В общем случае «произведение» двух матриц A и В (в этом именно порядке) определяется как матрица С с элементами

Это - сумма произведений элементов, взятых попарно из i -й строчки А и k -ro столбца В. Если матрицы расписаны в виде таблиц, как на фиг. 9.1, то можно указать удобную «систему» получения элементов матрицы-произведения.

Фиг. 9.1. Перемножение двух матриц.

Скажем, вы вычисляете С 23 . Вы двигаете левым указательным пальцем по второй строчке А, а правым - вниз по третьему столбцу В, перемножаете каждую пару чисел и складываете пары по мере движения. Мы попытались изобразить это на рисунке.

Для матриц 2X2 это выглядит особенно просто. Например, если s х умножается на s x , то выходит

т. е. просто единичная матрица. Или, для примера, подсчита­ем еще

Взглянув на табл. 9.1, вы видите, что это просто матрица s x , умноженная на i. (Вспомните, что умножение матрицы на число означает умножение каждого элемента матрицы на число.) Попарные произведения сигм очень важны и выглядят они довольно забавно, так что мы их выписали в табл. 9.2. Вы сами можете подсчитать их, как мы сделали это с s 2 х и s х s y .

С матрицами о связан еще один очень интересный и важный момент. Можно, если угодно, представить себе, что три матрицы s х ., s y и s z подобны трем компонентам вектора; его иногда име­нуют «вектором сигма» и обозначают а. Это на самом деле «мат­ричный вектор», или «векторная матрица». Это три разные матрицы, связанные каждая со своей осью х, у или z. С их по­мощью гамильтониан системы можно записать в красивом виде, пригодном для любой системы координат:

Таблица 9.2 ПРОИЗВЕДЕНИЯ СПИНОВЫХ МАТРИЦ

Хотя мы записали эти три матрицы в представлении, в кото­ром понятия «вверх» и «вниз» относятся к направлению z (так что s z выглядит особенно просто), но можно представить себе, как будут они выглядеть в любом другом представлении. И хотя это требует немалых выкладок, можно все же показать, что они изменяются как компоненты вектора. (Мы, впрочем, пока не будем заботиться о том, чтобы доказать это. Проверьте сами, если хотите.) Вы можете пользоваться о в различных системах координат, как если бы это был вектор.

Вы помните, что гамильтониан Н связан в квантовой механике с энергией. Он действительно в точности совпадает с энергией в том простом случае, когда состояний только одно. Даже в системе с двумя состояниями, какой является спин электрона, если записать гамильтониан в виде (9.13), он очень напоминает классическую формулу энергии магнита с магнитным моментом m в магнитном поле В. Классически это выглядит так:

где m - свойство объекта, а В - внешнее поле. Можно вообра­зить себе, что (9.14) обращается в (9.13), если классическую энергию заменяют гамильтонианом, а классическое m - мат­рицей (ms. Тогда после такой чисто формальной замены результат можно будет интерпретировать как матричное уравнение. Иногда утверждают, что каждой величине в классической физике соответствует в квантовой механике матрица. На самом деле правильнее было бы говорить, что матрица Гамильтона соот­ветствует энергии и что у каждой величины, которая может быть определена через энергию, есть соответствующая матрица. Например, магнитный момент можно определить через энергию, сказав, что энергия во внешнем поле В есть -m B . Это определяет вектор магнитного момента m. Затем мы смотрим на формулу для гамильтониана реального (квантового) объекта в магнитном поле и пытаемся угадать, какие матрицы соответ­ствуют тем или иным величинам в классической формуле. С помощью этого трюка иногда у некоторых классических вели­чин появляются их квантовые двойники.

Если хотите, попробуйте разобраться в том, как, в каком смысле классический вектор равен матрице ms; может быть, вы что-нибудь и откроете. Но не надо ломать над этим голову. Право же, не стоит: на самом-то деле они не равны. Кван­товая механика - это совсем другой тип теории, другой тип представлений о мире. Иногда случается, что всплывают неко­торые соответствия, но вряд ли они представляют собой нечто большее, нежели мнемонические средства - правила для за­поминания.

Иначе говоря, вы запоминаете (9.14), когда учите классиче­скую физику; затем если вы запомнили соответствие m®ms, то у вас есть повод вспомнить (9.13). Разумеется, природа знает квантовую механику, классическая же является всего лишь приближением, значит, нет ничего загадочного в том, что из-за классической механики выглядывают там и сям тени квантовомеханических законов, представляющих на самом деле их подоп­леку. Восстановить реальный объект по тени прямым путем ни­как невозможно, но тень помогает нам вспомнить, как выглядел объект. Уравнение (9.13) - это истина, а уравнение (9.14) - ее тень. Мы сперва учим классическую механику и поэтому нам хочется выводить из нее квантовые формулы, но раз и навсегда установленной схемы для этого нет. Приходится каждый раз возвращаться обратно к реальному миру и открывать правильные квантовомеханические уравнения. И когда они оказываются похожими на что-то классическое, мы радуемся. Если эти предостережения покажутся вам надоедливыми, если, по-вашему, здесь изрекаются старые истины об отношении классической физики к квантовой, то прошу прощения: сработал условный рефлекс преподавателя, который привык втолковы­вать квантовую механику студентам, никогда прежде не слыхав­шим о спиновых матрицах Паули. Мне всегда казалось, что они не теряют надежды, что квантовая механика как-то сможет быть выведена как логическое следствие классической механики, той самой, которую они старательно учили в прежние годы. (Может быть, они просто хотят обойтись без изучения чего-то нового.) Но, к счастью, вы выучили классическую формулу (9.14) всего несколько месяцев тому назад, да и то с оговорками, что она не совсем правильна, так что, может быть, вы не будете столь неохотно воспринимать необходимость рассматривать квантовую формулу (9.13) в качестве первичной истины.

Конец работы -

Эта тема принадлежит разделу:

Спиновые матрицы как операторы

На сайте сайт читайте: "спиновые матрицы как операторы"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Продолжаем обсуждение свойств двухуровневых систем. В конце предыдущей главы мы говорили о частице со спином в магнитном поле. Мы описывали спиновое состояние, задавая амплитуду того, что -компонента спинового момента количества движения равна , и амплитуду того, что она равна .В предыдущих главах мы эти базисные состояния обозначали и . Прибегнем опять к этим обозначениям, хотя, когда это будет удобнее, мы будем менять их на и .

Мы видели в последней главе, что когда частица со спином и с магнитным моментом , находится в магнитном поле , то амплитуды и связаны следующими дифференциальными уравнениями:

(9.1)

Иначе говоря, матрица-гамильтониан имеет вид

(9.2)

и, конечно, уравнения (9.1) совпадают с

, (9.3)

где и принимают значения и (или 1 и 2).

Эта система с двумя состояниями - спин электрона - настолько важна, что очень полезно было бы найти для ее описания способ поаккуратнее и поизящнее. Мы сейчас сделаем небольшое математическое отступление, чтобы показать вам, как обычно пишутся уравнения системы с двумя состояниями. Это делается так: во-первых, заметьте, что каждый член гамильтониана пропорционален , и некоторой компоненте ; поэтому (чисто формально) можно написать

Здесь нет какой-либо новой физики; эти уравнения просто означают, что коэффициенты и - их всего - могут быть представлены так, что (9.4) совпадет с (9.2).

Посмотрим, почему это так. Начнем с . Раз встречается только в и , то все будет в порядке, если взять

Мы часто пишем матрицу в виде таблички такого рода:

.

Для гамильтониана частицы со спином в магнитном поле - это все равно что

.

Точно так же и коэффициенты можно записать в виде матрицы

. (9.5)

Расписывая коэффициенты при , получаем, что элементы матрицы должны иметь вид

Или сокращенно:

И наконец, глядя на , получаем

Если так определить три матрицы сигма, то уравнения (9.1) и (9.4) совпадут. Чтоб оставить место для индексов и , мы отметили, какая стоит при какой компоненте , поставив индексы сверху. Обычно, однако, и отбрасывают (их легко себе и так вообразить), а индексы и ставят внизу. Тогда (9.4) записывается так:

Матрицы сигма так важны (ими беспрерывно пользуются), что мы выписали их в табл. 9.1. (Тот, кто собирается работать в квантовой физике, обязан напомнить их.) Их еще называют спиновыми матрицами Паули - по имени физика, который их выдумал.

Таблица 9.1 Спиновые матрицы Паули

В таблицу мы включили еще одну матрицу 2x2, которая бывает нужна тогда, когда мы хотим рассматривать систему, оба спиновых состояния которой имеют одинаковую энергию, или когда хотим перейти к другой нулевой энергии. В таких случаях к первому уравнению в (9.1) приходится добавлять , а ко второму . Это можно учесть, введя новое обозначение - единичную матрицу «1», или :

(9.9)

и переписав (9.8) в виде

Обычно просто понижают без лишних оговорок, что любая константа наподобие автоматически умножается на единичную матрицу, и тогда пишут просто

Одна из причин, отчего спиновые матрицы так полезны,- это что любая матрица 2x2 может быть выражена через них. Во всякой матрице стоят четыре числа, скажем

Ее всегда можно записать в виде линейной комбинации четырех матриц. Например,

Это можно делать по-всякому, но, в частности, можно сказать, что состоит из какого-то количества плюс какое-то количество и т. д., и написать

где «количества» и в общем случае могут быть комплексными числами.

Раз любая матрица 2х 2 может быть выражена через единичную матрицу и матрицу сигма, то все, что может понадобиться для любой системы с двумя состояниями, у нас уже есть. Какой бы ни была система с двумя состояниями - молекула аммиака, краситель фуксин, что угодно,- гамильтоново уравнение может быть переписано в сигмах. Хотя в физическом случае электрона в магнитном иоле сигмы кажутся имеющими геометрический смысл, но их можно считать и просто полезными матрицами, пригодными к употреблению во всякой системе с двумя состояниями.

Например, один из способов рассмотрения протона и нейтрона - это представлять их как одну и ту же частицу в любом из двух состояний. Мы говорим, что нуклон (протон или нейтрон) есть система с двумя состояниями, в данном случае состояниями по отношению к электрическому заряду. Если рассматривать нуклон таким образом, то состояние может представлять протон, а - нейтрон. Говорят, что у нуклона есть два состояния «изотопспина».

Поскольку мы будем применять матрицы сигма в качестве «арифметики» квантовой механики систем с двумя состояниями, то наскоро познакомимся с соглашениями матричной алгебры. Под «суммой» двух или большего числа матриц подразумевается как раз то, что имелось в виду в уравнении (9.4).

Вообще если мы «складываем» две матрицы и , то «сумма» означает, что каждый ее элемент дается формулой

Каждый элемент есть сумма элементов и , стоящих на тех же самых местах.

В гл. 3, § 6, мы уже сталкивались с представлением о матричном «произведении». Та же идея полезна и при обращении с матрицами сигма. В общем случае «произведение» двух матриц и (в этом именно порядке) определяется как матрица с элементами

Это - сумма произведении элементов, взятых попарно на -й строчки и -го столбца . Если матрицы расписаны и виде таблиц, как на фиг. 9.1, то можно указать удобную «систему» получения элементов матрицы-произведения. Скажем, вы вычисляете . Вы двигаете левым указательным пальцем ро второй строчке , а правым - вниз по третьему столбцу , перемножаете каждую пару чисел и складываете пары по мере движения. Мы попытались изобразить это на рисунке.

Дли матриц 2x2 это выглядит особенно просто. Например, если умножается на , то выходит

.

т. е. просто единичная матрица. Или. для примера, подсчитаем еще

.

Взглянув на табл. 9.1, вы видите, что это просто матрица , умноженная на . (Вспомните, что умножение матрицы на число означает умножение каждого элемента матрицы на число.) Попарные произведения сигм очень важны и выглядят они довольно забавно, так что мы их выписали в табл. 9.2. Вы сами можете подсчитать их, как мы сделали это с , и .

С матрицами связан еще один очень интересный и важный момент. Можно, если угодно, представить себе, что три матрицы , и подобны трем компонентам вектора; его иногда именуют «вектором сигма» и обозначают . Это на самом деле «матричный вектор», или «векторная матрица». Это три разные матрицы, связанные каждая со своей осью , или . С их помощью гамильтониан системы можно записать в красивом виде, пригодном для любой системы координат:

Фигура 9.1. Перемножение двух матриц.

Таблица 9.2 Произведение спиновых матриц

Хотя мы записала эти три матрицы в представлении, в котором понятия «вверх» и «вниз») относятся к направлению (так что о, выглядит особенно просто), но можно представить себе, как будут они выглядеть в любом другом представлении. И хотя это требует немалых выкладок, можно все же показать, что онп изменяются как компоненты вектора. (Мы, впрочем, пока не будем заботиться о том, чтобы доказать это. Проверьте сами, если хотите.) Вы можете пользоваться в различных системах координат, как если бы это был вектор.

Матрицей . Тогда после такой чисто формальной замены результат можно будет интерпретировать как матричное уравнение. Иногда утверждают, что каждой величине в классической физике соответствует в квантовой механике матрица. На самом деле правильнее было бы говорить, что матрица Гамильтона соответствует энергии и что у каждой величины, которая может быть определена через энергию, есть соответствующая матрица. Например, магнитный момент можно определить через энергию, сказав, что энергия во внешнем поле есть . Это определяет вектор магнитного момента . Затем мы смотрим на формулу для гамильтониана реального (квантового) объекта в магнитном поло и пытаемся угадать, какие матрицы соответствуют тем или иным величинам в классической формуле. С помощью этого трюка иногда у некоторых классических величин появляются их квантовые двойники.

Если хотите, попробуйте разобраться в том, как, в каком смысле классический вектор равен матрице : может быть, вы что-нибудь и откроете. Но не надо ломать над этим голову. Право же не стоит: на самом-то деле они не равны. Квантовая механика - это совсем другой тип теории, другой тип представлений о мире. Иногда случается, что всплывают некоторые соответствия, но вряд ли они представляют собой нечто большее, нежели мнемонические средства - правила для запоминания.

Иначе говоря, вы запоминаете (9.14), когда учите классическую физику; затем если вы запомнили соответствие , то у вас есть повод вспомнить (9.13). Разумеется, природа знает квантовую механику, классическая же является всего лишь приближением, значит, нет ничего загадочного в том, что из-за классической механики выглядывают там и сям тени квантовомеханических законов, представляющих на самом деле их подоплеку. Восстановить реальный объект по тени прямым путем никак невозможно, но тень помогает нам вспомнить, как выглядел объект. Уравнение (9.13) - это истина, а уравнение (9.14) - ее топь. Мы сперва учим классическую механику и поэтому нам хочется выводить из нее квантовые формулы, но раз и навсегда установленной схемы для этого нет. Приходится каждый раз возвращаться обратно к реальному миру и открывать правильные квантовомеханические уравнения. И когда они оказываются похожими на что-то классическое, мы радуемся.

Если эти предостережения покажутся вам надоедливыми, если, по-вашему, здесь изрекаются старые истины об отношении классической физики к квантовой, то прошу прощения: сработал условный рефлекс преподавателя, который привык втолковывать квантовую механику студентам, никогда прежде не слыхавшим о спиновых матрицах Паули. Мне всегда казалось, что они не теряют надежды, что квантовая механика как-то сможет быть выведена как логическое следствие классической механики, той самой, которую они старательно учили в прежние годы. (Может быть, они просто хотят обойтись без изучения чего-то нового.) Но, к счастью, вы выучили классическую формулу (9.14) всего несколько месяцев тому назад, да и то с оговорками, что она не совсем правильна, так что, может быть, вы не будете столь неохотно воспринимать необходимость рассматривать квантовую формулу (9.13) в качестве первичной истины.

Продолжаем обсуждение свойств двухуровневых систем. В конце предыдущей главы мы говорили о частице со спином 1 / 2 в магнитном поле. Мы описывали спиновое состояние, задавая амплитуду С 1 того, что z-компонента спинового момента количества движения равна + h/2, и амплитуду С 2 того, что она равна —h/2. В предыдущих главах мы эти базисные состояния обозначали | +> и | ->. Прибегнем опять к этим обозначениям, хотя, когда это будет удобнее, мы будем менять их на | 1> и | 2>.

Мы видели в последней главе, что когда частица со спином 1 / 2 и с магнитным моментом μ находится в магнитном поле В=(B х, B y , B z), то амплитуды С + (=С 1) и С_ (= С 2) связаны следующими дифференциальными уравнениями:

Иначе говоря, матрица-гамильтониан H ¡j имеет вид

где i и j принимают значения + и — (или 1 и 2).

Эта система с двумя состояниями — спин электрона — настолько важна, что очень полезно было бы найти для ее описания способ поаккуратнее и поизящнее. Мы сейчас сделаем небольшое математическое отступление, чтобы показать вам, как обычно пишутся уравнения системы с двумя состояниями. Это делается так: во-первых, заметьте, что каждый член гамильтониана пропорционален μ и некоторой компоненте В; поэтому (чисто формально) можно написать

Здесь нет какой-либо новой физики; эти уравнения просто означают, что коэффициенты σ x ¡j , σ y ¡j и σ z ¡j — их всего 4Х 3 = 12 — могут быть представлены так, что (9.4) совпадет с (9.2).

Посмотрим, почему это так. Начнем с B z . Раз B z встречается только в H 11 и Н. 22 , то все будет в порядке, если взять

Мы часто пишем матрицу Н ¡j в виде таблички такого рода:

Для гамильтониана частицы со спином 1 / 2 в магнитном поле В —это все равно что

Точно так же и коэффициенты σ z ¡j можно записать в виде матрицы

Расписывая коэффициенты при В х, получаем, что элементы матрицы σ х должны иметь вид

И наконец, глядя на В , получаем

Если так определить три матрицы сигма, то уравнения (9.1) и (9.4) совпадут. Чтоб оставить место для индексов i и j, мы отметили, какая σ стоит при какой компоненте В, поставив индексы х, y, z сверху. Обычно, однако, i и j отбрасывают (их легко себе и так вообразить), а индексы х, у и z ставят внизу. Тогда (9.4) записывается так:

Матрицы сигма так важны (ими беспрерывно пользуются), что мы выписали их в табл. 9.1. (Тот, кто соиирается работать в квантовой физике, обязан запомнить их.) Их еще называют спиновыми матрицами Паули — по имени физика, который их выдумал.

В таблицу мы включили еще одну матрицу 2x2, которая бывает нужна тогда, когда мы хотим рассматривать систему, оба спиновых состояния которой имеют одинаковую энергию, или когда хотим перейти к другой нулевой энергии. В таких случаях к первому уравнению в (9.1) приходится добавлять Е 0 С + , а ко второму Е 0 С _. Это можно учесть, введя новое обозначение — единичную матрицу «1», или δ ¡j:

Обычно просто понимают без лишних оговорок, что любая константа наподобие Е 0 автоматически умножается на единичную матрицу, и тогда пишут просто

Одна из причин, отчего спиновые матрицы так полезны,— это что любая матрица 2x2 может быть выражена через них. Во всякой матрице стоят четыре числа, скажем

Ее всегда можно записать в виде линейной комбинации четырех матриц. Например,

Это можно делать по-всякому, но, в частности, можно сказать, что М состоит из какого-то количества σ х плюс какое-то количество σ y и т, д., и написать

где «количества» α, β, γ и δ в общем случае могут быть комплексными числами.

Раз любая матрица 2x2 может быть выражена через единичную матрицу и матрицу сигма, то все, что может понадобиться для любой системы с двумя состояниями, у нас уже есть. Какой бы ни была система с двумя состояниями — молекула аммиака, краситель фуксии, что угодно,— гамильтоново уравнение может быть переписано в сигмах. Хотя в физическом случае электрона в магнитном поле сигмы кажутся имеющими геометрический смысл, но их можно считать и просто полезными матрицами, пригодными к употреблению во всякой системе с двумя состояниями.

Например, один из способов рассмотрения протона и нейтрона — это представлять их как одну и ту же частицу в любом из двух состояний. Мы говорим, что нуклон (протон или нейтрон) есть система с двумя состояниями, в данном случае состояниями по отношению к электрическому заряду. Если рассматривать нуклон таким образом, то состояние |1> может представлять протон, а |2> —нейтрон. Говорят, что у нуклона есть два состояния «изотопснина».

Поскольку мы будем применять матрицы сигма в качестве «арифметики» квантовой механики систем с двумя состояниями, то наскоро познакомимся с соглашениями матричной алгебры. Под «суммой» двух или большего числа матриц подразумевается как раз то, что имелось в виду в уравнении (9.4). Вообще если мы «складываем» две матрицы А и В, то «сумма» С означает, что каждый ее элемент С ¡j дается формулой

Каждый элемент С есть сумма элементов А и В, стоящих на тех же самых местах.

В гл. 3, § 6, мы уже сталкивались с представлением о матричном «произведении». Та же идея полезна и при обращении с матрицами сигма. В общем случае «произведение» двух матриц А и В (в этом именно порядке) определяется как матрица С с элементами

Это — сумма произведений элементов, взятых попарно из ¡-й строчки А и k-го столбца В. Если матрицы расписаны в виде таблиц, как на фиг. 9.1, то можно указать удобную «систему» получения элементов матрицы-произведения. Скажем, вы вычисляете С 23 . Вы двигаете левым указательным пальцем по второй строчке А, а правым — вниз по третьему столбцу В, перемножаете каждую пару чисел и складываете пары по мере движения. Мы попытались изобразить это на рисунке.

Для матриц 2x2 ото выглядит особенно просто. Например, если σ х умножается на σ х, то выходит

т. е. просто единичная матрица. Или. для примера, подсчитаем еще

Взглянув на табл. 9.1, вы видите, что это просто матрица σ x , умноженная на i . (Вспомните, что умножение матрицы на число означает умножение каждого элемента матрицы на число.) Попарные произведения сигм очень важны и выглядят они довольно забавно, так что мы их выписали в табл. 9.2. Вы сами можете подсчитать их, как мы сделали это с σ x 2 и σ x σ y .

С матрицами σ связан еще один очень интересный и важный момент. Можно, если угодно, представить себе, что три матрицы σ х, σ у и σ z подобны трем компонентам вектора; его иногда именуют «вектором сигма» и обозначают σ. Это на самом деле «матричный вектор», или «векторная матрица». Это три разные матрицы, связанные каждая со своей осью х, у или z. С их помощью гамильтониан системы можно записать в красивом виде, пригодном для любой системы координат:

Хотя мы записали эти три матрицы в представлении, в котором понятия «вверх» и «вниз» относятся к направлению z (так что σ z выглядит особенно просто), но можно представить себе, как будут они выглядеть в любом другом представлении. И хотя это требует немалых выкладок, можно все же показать, что они изменяются как компоненты вектора. (Мы, впрочем, пока не будем заботиться о том, чтобы доказать это. Проверьте сами, если хотите.) Вы можете пользоваться σ в различных системах координат, как если бы это был вектор.

Вы помните, что гамильтониан H связан в квантовой механике с энергией. Он действительно в точности совпадает с энергией в том простом случае, когда состояний только одно. Даже в системе с двумя состояниями, какой является спин электрона, если записать гамильтониан в виде (9.13), он очень напоминает классическую формулу энергии магнита с магнитным моментом,и в магнитном поле В. Классически это выглядит так:

где μ — свойство объекта, а В — внешнее поле. Можно вообразить себе, что (9.14) обращается в (9.13), если классическую энергию заменяют гамильтонианом, а классическое μ — матрицей μσ. Тогда после такой чисто формальной замены результат можно будет интерпретировать как матричное уравнение. Иногда утверждают, что каждой величине в классической физике соответствует в квантовой механике матрица. На самом деле правильнее было бы говорить, что матрица Гамильтона соответствует энергии и что у каждой величины, которая может быть определена через энергию, есть соответствующая матрица. Например, магнитный момент можно определить через энергию, сказав, что энергия но внешнем поле В есть —μ·В. Это определяет вектор магнитного момента μ. Затем мы смотрим на формулу для гамильтониана реального (квантового) объекта в магнитном поле и пытаемся угадать, какие матрицы соответствуют тем или иным величинам в классической формуле. С помощью этого трюка иногда у некоторых классических величин появляются их квантовые двойники.

Если хотите, попробуйте разобраться в том, как, в каком смысле классический вектор равен матрице μσ: может быть, вы что-нибудь и откроете. Но не надо ломать над этим голову. Право же, не стоит: на самом-то деле они не равны. Квантовая механика — это совсем другой тип теории, другой тип представлений о мире. Иногда случается, что всплывают некоторые соответствия, но вряд ли они представляют собой нечто большее, нежели мнемонические средства -- правила для запоминания.

Иначе говоря, вы запоминаете (9.14), когда учите классическую физику; затем если вы запомнили соответствие μ →μσ, то у вас есть повод вспомнить (9.13). Разумеется, природа знает квантовую механику, классическая же является всего лишь приближением, значит, нет ничего загадочного в том, что из-за классической механики выглядывают там и сям тени квантовомеханичееких законов, представляющих на самом деле их подоплеку. Восстановить реальный объект по тени прямым путем никак невозможно, но тень помогает нам вспомнить, как выглядел объект. Уравнение (9.13) — это истина, а уравнение (9.14) — ее тень. Мы сперва учим классическую механику и поэтому нам хочется выводить из нее квантовые формулы, но раз и навсегда установленной схемы для этого нет. Приходится каждый раз возвращаться обратно к реальному миру и открывать правильные квантовомеханические уравнения. И когда они оказываются похожими на что-то классическое, мы радуемся.

Если эти предостережения покажутся вам надоедливыми, если, по-вашему, здесь изрекаются старые истины об отношении классической физики к квантовой, то прошу прощения: сработал условный рефлекс преподавателя, который привык втолковывать квантовую механику студентам, никогда прежде не слыхавшим о спиновых матрицах Паули. Мне всегда казалось, что они не теряют надежды, что квантовая механика как-то сможет быть выведена как логическое следствие классической механики, той самой, которую они старательно учили в прежние годы. (Может быть, они просто хотят обойтись без изучения чего-то нового.) Но, к счастью, вы выучили классическую формулу (9.14) всего несколько месяцев тому назад, да и то с оговорками, что она не совсем правильна, так что, может быть, вы не будете столь неохотно воспринимать необходимость рассматривать квантовую формулу (9.13) в качестве первичной истины.

Рассмотрим электрон со спином . Тогда матрицы, которые будут представлять спиновые моменты имеют размерность

.

Рассмотрим представление (или- представление). Рассмотрим в этом представлении матрицу
Это оператор в матричном представлении.

Мы помним, что в матричном представлении ядро оператора имело вид

Тогда для нашего представления имеем:

Аналогично матрицы

,

,

.

ине диагональные матрицы, тогда эти величины содновременно не измеримы. По главной диагонали стоят собственные значения.

Вводятся матрицы
. Это матрицы Паули.

,

,

.

Легко показать, что

Или на языке операторов

А коммутаторы:

,

.

Тогда так как
, то получим

При
:

При
получаем

.

§ 40. Принцип тождественности

Этот принцип в квантовой механике определенным образом связан с принципом Гайзенберга.

Если рассмотрим ансамбль одинаковых частиц, то идентификация этих частиц невозможна.

Одинаковые частицы обладают всеми одинаковыми внутренними свойствами (m,e,s, …). Мы не можем в квантовой механике ввести траекторию, тогда не можем различить одинаковые частицы.

Например, в электронном газе не отдельные частицы, а целый ансамбль. В такой системе – тождественные частицы.

В ансамбле одинаковых частиц реализуются состояния, инвариантные относительно их перестановок.

Т. к. частицы идентифицировать невозможно, то мы не можем различить состояния, которые вызваны перестановкой частиц.

§ 41. Оператор перестановки и его свойства

Введем обозначениеоператор, который осуществляет перестановкуa-ой иb-ой частицы из ансамбля одинаковых частиц.

Оператор для таких систем из одинаковых частиц обладает симметрией.

Так как частицы одинаковые, то они имеют одинаковую энергию взаимодействия, т. е. она инвариантна относительно перестановки.

Т. е. можно записать

(50.1)

Так как оператор явным образом от времени не зависит, то из (50.1) следует, что он является интегралом движения. Его собственные значения сохраняются.

Найдем собственные значения оператора .

Запишем задачу на собственные функции и собственные значения:

(50.2)

При повторном действии оператора , получим:

С учетом (50.2):

Тогда из (50.3)

,
.

Получаем частицы с симметричными и антисимметричными волновыми функциями: бозоны и фермионы.

Кроме того, оператор - это интеграл движения. Тогда его собственные значения сохраняются во времени. Т. е. свойства волновых функций, связанных с действием этого оператора тоже сохраняются.

Функции отвечающие собственному значению +1 называются симметричными, описывают симметричные состояния.

Аналогично

Это антисимметричная функция.

Свойства симметричности и антисимметричности называются интегралами движения, т. е. сохраняются. Ансамбль не может переходить из одного состояния в другое (т. е. из симметричного в антисимметричное и наоборот).

Симметричные функции описывают состояние систем с целым спином, т. е. ансамбль бозонов.

Антисимметричные функции – ансамбль фермионов.

,

,

,
.

Мы будем рассматривать стационарные состояния, т. е.

,

.

Стационарные функции удовлетворяют стационарному уравнению Шредингера

,

так как операторы икоммутируют, то

.

Если всего N частиц, то можно осуществитьN ! перестановок, тогда имеемN ! возможных функций
.

Так как все
удовлетворяют уравнению Шредингера при одной и той же энергии , то мы получили вырождение. Оно носит фиктивный характер. Для того чтобы избавиться от этого вырождения проведем симметризацию функций.

Свойства матриц Паули

А. Все матрицы Паули, как матрицы операторов физических величин являются эрмитовыми.

Б. Для всех матриц Паули выполнено условие , где 1 – единичная матрица. Это можно проверить непосредственно. Это утверждение есть следствие того факта, что квадрат проекции спина частицы со спином ½ в любом состоянии имеет определенное значение (т.к. есть две возможности для проекции спина +1/2 и –1/2, а квадраты обоих этих чисел – ¼).

В.

Г. Любая матрица (2 2) может быть представлена в виде: . Это связано с тем, что единичная матрица и три матрицы Паули () образуют полный набор матриц (2 ), так как пространство таких матриц четырехмерно – матрица определяется заданием четырех чисел, поэтому любые четыре линейно независимые матрицы будут образовывать базис в пространстве таких матриц).

Д. . В частности, , т.е. они антикоммутируют. Алгебра (так называют правила умножения матриц) очень простая - при перестановке матриц просто меняется знак их произведения.

Е. Поскольку матрицы Паули связаны с операторами проекции спина 7на координатные оси для них выполнены обычные коммутационные соотношения для операторов проекций момента на координатные оси

Рассмотрим теперь такой вопрос. Пусть частица находится в состоянии

(10)

Какие значения может принимать в этом состоянии проекция спина на ось и с какими вероятностями? Для ответа на этот вопрос необходимо найти собственные функции оператора и разложить по ним функцию (10).

Решаем уравнение (11)

Система однородных алгебраических уравнений (12) имеет ненулевые решения в том случае, когда определитель этой системы равен нулю

Отсюда находим возможные значения проекций спина на ось (которые, как это и должно быть, равны возможным значениям проекции спина на ось ):

(14)

Подставляя теперь собственные значения (14) в систему уравнений (12), находим собственные функции

(15)

(множители возникли из условия нормировки).

Разложим теперь функцию (10) по собственным функциям (15). Это разложение имеет следующий вид

(16)

Отсюда согласно постулатам квантовой механики находим вероятности различных значений проекции спина на ось в состоянии (10):

(17)

Из формул (17), в частности, следует, что если частица находится в состоянии с определенной проекцией спина на ось ( или ), то вероятности различных значений проекции спина на ось одинаковы, что находится в соответствии с общим результатом, полученным ранее для собственных состояний операторов момента импульса в квантовой механике. В заключение отметим, что из формул (17) для вероятностей следует, что среднее значений проекции спина на ось равно