Разгон оперативной памяти ddr2 через биос. Как разогнать частоту оперативной памяти компьютера

Мы продолжаем неделю разгона OCWEEK15 на Hardwareluxx. Позавчера мы опубликовали , после чего предложили . Сегодня мы поговорим о следующем компоненте, который не следует упускать из внимания: оперативной памяти. Мы вновь взяли три тестовые платформы CPU, после чего провели тесты с разными настройками памяти. Какая из платформ лучше всего выигрывает от высоких тактовых частот RAM? Не лучше ли променять высокую частоту на меньшие задержки? Какое программное обеспечение выиграет от оверклокерских планок DIMM? На все эти вопросы мы ответим в нашей статье.

Производительность игрового компьютера можно существенно увеличить путём разгона процессора, что мы уже продемонстрировали в на примере трёх процессоров: флагманской модели Core i7-5960X, но также и менее дорогих платформ Intel Core i7-4790K и AMD FX-8370e. Но есть ещё один компонент, с помощью которого можно увеличить производительность ещё выше. Современные платформы для массового рынка работают с памятью DDR3 на частотах 1.600-1.866 МГц. High-end платформа Intel X99 перешла на память DDR4, встроенный в CPU контроллер поддерживает частоту до 2.133 МГц.

На рынке модулей памяти конкуренция высока, и основные производители, такие как G.Skill, Corsair, Crucial или ADATA, акцентируют более высокие тактовые частоты и меньшие напряжения, которые должны дать существенный прирост производительности. Высокие частоты можно получить, изменяя делитель памяти или с помощью профиля XMP. Но какие преимущества мы получим на практике? Имеет ли смысл переплачивать за планки памяти для геймеров или оверклокеров?

Мы сравним производительность современных модулей памяти на разных частотах на платформах X99, Z97 и 990FX.

Инструкция

Увеличить частоту оперативной памяти можно двумя способами: изменить ее множитель или частоту системной шины. Лучше использовать второй вариант, потому что он обеспечивает плавный прирост производительности, а не резкий скачек, который может привести к порче устройства. Установите утилиту Speccy и запустите ее. Откройте меню «Оперативная память» и посмотрите частоту , с которой работают платы в данный момент.

Перезагрузите компьютер и откройте BIOS, нажав клавишу Del. Откройте меню Advanced и найдите пункт FSB/Memory Ratio. Он может называться иначе в различных моделях материнских плат. Установите для этого пункта параметр Manual вместо Auto. Теперь вы можете самостоятельно задать значения частоты и множителя. Выполните эти действия. Увеличьте частоту шины оперативной памяти на 20-50 Герц.

Вернитесь в главное окно меню BIOS и выберите пункт Save & Exit. Нажмите клавишу Enter и дождитесь перезагрузки компьютера. Теперь выполните проверку стабильности оперативной памяти . Откройте панель управления и выберите меню «Система и безопасность» (Windows Seven). Откройте подменю «Администрирование» и запустите ярлык «Проверка памяти Windows». Подтвердите выполнение перезагрузки компьютера для проверки состояния оперативной памяти .

Если тестирование показало хорошие результаты, то повторите вход в меню BIOS и вновь поднимите частоту оперативной памяти . Выполняйте описанные циклы до тех пор, пока система проверки ОЗУ не выявит ошибок. После этого можете попробовать уменьшить задержки памяти . Для этого поочередно понижайте на один пункт показатели четырех видов таймингов. Обычно они расположены в Advanced Settings.

Если во время изменения параметров работы ОЗУ произошел сбой, а компьютер перестал загружаться, то извлеките на некоторое время BOIS-батарейку из системного блока. Это позволит применить заводские настройки ПК.

Источники:

  • как поднять частоту памяти

Для полной оптимизации компьютера необходимо настроить параметры работы плат оперативной памяти . Этот процесс рекомендуют выполнять через меню BIOS, но иногда можно использовать дополнительные программы.

Инструкция

Выполните проверку производительности и стабильности установленных плат оперативной памяти . Можно использовать программу MemTest, но если у вас нет желания искать и устанавливать эту утилиту, то воспользуйтесь средствами Windows. Откройте меню «Администрирование», расположенное в панели управления компьютера. Запустите ярлык «Проверка памяти Windows».

Перезагрузите компьютер и дождитесь завершения анализа состояния плат оперативной памяти . Теперь откройте меню BIOS, нажав клавишу Delete после включения компьютера. Перейдите в меню System Configuration или Advanced Chipset Setup. Выберите способ изменения частоты планок оперативной памяти . Лучше изменять частоту шины, потому что смена множителя даст резкий скачок производительности.

Немного повысьте частоту шины оперативной памяти . Увеличьте напряжение, подаваемое на платы ОЗУ. Это поможет избежать аварийного отключения компьютера при большой нагрузке на платы оперативной памяти . Сохраните изменения параметров меню BIOS, нажав клавишу F10. Дождитесь завершения загрузки операционной системы.

Вновь выполните проверку состояния планок оперативной памяти . Особое внимание обратите на прирост производительности и наличие (отсутствие) ошибок. Если проверка показала отличные результаты, то повторите процедуру повышения частоты оперативной памяти . Обязательно периодически повышайте напряжение.

Если в определенный момент компьютер перестал загружаться, то разберите корпус системного блока и извлеките BIOS-батарейку. Установите ее в гнездо спустя 10-15 минут. Установите последнее удачное значение частоты шины оперативной памяти , чтобы избежать проблем в ее работе. Если вы решили увеличить показатель множителя, то предварительно уменьшите частоту шины.

Видео по теме

Каким бы быстрым не был ваш компьютер или ноутбук, со временем его мощности перестает хватать и он больше не может справляться с нужными вам задачами. Тогда и возникает мысль о разгоне его компонентов. Относительно приличного увеличения производительности можно добиться, разгоняя оперативную память компьютера. Только помните, что разгон приводит к уменьшению стабильности работы компьютера, поэтому его необходимо проводить с осторожностью и только при острой необходимости.

Вам понадобится

  • - Компьютер с ОС Windows;
  • - программа CPU Stability Test.

Инструкция

Итак, для того чтобы увеличить частоту оперативной памяти , зайдите в BIOS. После этого пройдите в расширенные настройки (они могут называться Advanced Chipset Settings или еще каким-то другим, подобным образом). Для изменения таймингов найдите поле, отвечающее за это (Current Latency или подобное) и поставьте минимальное значение. Например, если стоит 3, поставьте 2.

Теперь попробуйте увеличить частоту памяти . Для этого здесь же найдите пункт, отвечающий за скорость системной шины. Он может называться FSB Speed или подобным образом. Поставьте частоту шины на 1 шаг больше той, которая стоит у вас сейчас. Лучше изменять частоту на минимальную величину, не более 5 МГц.

После изменения частоты шины сохраните в BIOS настройки, загрузите операционную систему и запустите программу для тестирования стабильности работы процессора и памяти . В этом плане хорошо себя зарекомендовала программа CPU Stability Test.

Если тестирование утилитой не выявило проблем, можете смело возвращаться в BIOS и увеличивать частоту системной шины (а вместе с ними – процессора и оперативной памяти ) еще на шаг. После этого снова сохраните настройки, загрузите операционную систему и протестируйте стабильность. Цикл нужно повторять до тех пор, пока утилита не покажет нестабильность текущей конфигурации. В этом случае рекомендуется вернуться в BIOS и откатиться по частоте на 2 шага назад.

Полезный совет

Обычно разгон оперативной памяти сводится к увеличению частоты системной шины или уменьшению таймингов до минимума. Тайминги определяют скорость отклика в тактах вашей оперативной памяти. Не все материнские платы позволяют изменять частоту системной шины с маленьким шагом (1-5 МГц), если это так, лучше откажитесь от разгона. При повышении частоты системной шины одновременно увеличивается частота процессора. Если это происходит резко без надлежащего тестирования, то есть высокий риск вывести из строя один или оба этих компонента компьютера.

Если вам требуется повысить производительность оперативной памяти, не прибегая к установке новых планок ОЗУ, то уменьшите тайминги существующих. Делать это следует крайне аккуратно, дабы не повредить устройства компьютера.

Вам понадобится

  • - Riva Tuner.

Инструкция

Сначала проведите проверку установленных планок памяти. В операционной системе Windows Seven присутствует встроенная утилита для осуществления этого процесса. Откройте панель управления и выберите меню «Система и безопасность». Теперь откройте пункт «Администрирование». Перейдите к меню «Средство проверки памяти Windows». Теперь выберите параметр «Выполнить перезагрузку и проверку памяти».

Теперь перезагрузите компьютер и откройте меню BIOS, удерживая клавишу Delete. Нажмите сочетание клавиш Ctrl и F1 для открытия меню дополнительных параметров работы компьютера. Перейдите в меню Advanced. Теперь изучите данные, расположенные ниже строки Memory Frequency. Там находится четыре пункта: CAS Latеncy, RAS Prеcharge dеlay, RАS to СAS Delаy и Аctive Prеchаrge Dеlay.

Уменьшать тайминги необходимо очень аккуратно, каждый раз изменяя только один параметр на минимальную «единицу». Начните уменьшение с первого пункта CAS Latency. Обычно его уменьшают на 0.5. Вернитесь в главное меню BIOS. Выберите пункт Save & Exit и нажмите клавишу Enter. После перезагрузки компьютера повторите процедуру входа в меню тестирования оперативной памяти.

В том случае, если программа показала улучшение показателей, продолжите уменьшать тайминги, изменив значение следующего пункта (RAS Prеcharge dеlay). Чтобы избежать постоянных перезагрузок компьютера при проверке памяти, воспользуйтесь специальными утилитами.

Установите программу memtest или Riva Tuner. При помощи этих утилит выполняйте проверку стабильности и производительности оперативной памяти. Последняя программа, кстати, обладает функцией уменьшения таймингов. Помните о том, что рекомендуют выполнять этот процесс именно через BIOS, потому что это позволит быстро восстановить заводские параметры компьютера в случае сбоя.

1. Разогнанный процессор в паре с не разогнанной памятью не даст максимальной производительности.
2. Пример приводится по разгону «обычной» DDR-памяти.
Но если у вас, например, CeleronD и память DDRII, то сам процесс остается таким же.
Изменяются лишь параметры частот и таймингов (память DDRII работает на более высоких частотах с более высокими таймингами).

Разгон по частоте

1. Заходим в BIOS, нажав и удерживая клавишу «Delete» в начальный момент загрузки системы (до экрана загрузки Windows).

2. «Advanced Chipset Features» - «DRAM Configuration» - это вкладка редактирования параметров таймингов памяти.
Далее в каждой строчке вместо AUTO ставим то число, которое справа от черточки.
«Row Cycle Time (tRC)» - 12.
«Row Refresh Cycle Time (tRFC)» - 16.
Другие таймиги должны быть выставлены для частоты 400 MHz.
«Power Bios» - «Memory Frequency» - DDR333 (166 MHz).

Если тесты не пройдены или выскакивают сообщения об ошибках памяти:

Поднимаем напряжение памяти
«Power Bios» - «Memory Voltage» - 2.9v (3.0v).

Опять прогоняем тесты.
- снижаем делитель
«Power Bios» - «Memory Frequency» - DDR266 (133 MHz) и опять тестируем в Windows, но после этого, обычно память уже работает стабильно.

Например, множитель процессора 9, разгон 2700 MHz, память выставлена, как DDR333.
Следовательно, 2700 делим на 11.
Результат - 245 MHz т.е. 490 MHz DDR.

Следует выделить еще один тип разгона: с понижением множителя (и повышением частоты шины), для того, чтобы найти наиболее оптимальную частоту памяти.

Разгон по таймингам

Иногда разгон по таймингам дает лучшие результаты, чем разгон по частоте.
Так что следует проверить и первый, и второй варианты.
Также увеличение основных таймингов ведет к приросту разгона по частоте.

«Advanced Chipset Features» - «DRAM Configuration 1T\2T Memory Timing» - «1T».
Тестируем в Windows.

Основные тайминги памяти:
CAS# Latency (CL) -> 2.5T (для более дорогой памяти можно 2.0).
RAS# To CAS# Delay (tRCD) -> 3T.
RAS# Precharge (tRP) -> 3T.
Cycle time (Tras) -> 7T.

Тайминги можно выставить и ниже приведенных значений - все зависит только от способностей вашей памяти.
А проверить это можно только тестированием в тестовых пакетах и реальных приложениях.
Для недорогой памяти (Digma/NCP/PQI) на частотах выше 400 MHz основные тайминги желательно выставить, как 3.0-4-4-8 соответственно.

Опять тестируем в Windows.
Если стабильности нет, повышаем напряжение на памяти, увеличиваем тайминги.
Так как сложно подобрать память (даже одинаковую модель), которая работала бы так же, как, например, в тестах, следует самостоятельно выбрать именно ту частоту и те тайминги, на которых была бы полная стабильность.

Бесплатно добиться от системы дополнительного быстродействия всегда приятно — именно поэтому люди занимаются разгоном. Однако в первую очередь оверклокеры разгоняют процессор и видеокарту, поскольку опыты над этими компонентами дают наибольший прирост скорости. Память обычно оставляют на десерт или не трогают вовсе. Одних останавливает тот факт, что разгонять оперативку сложно, других - что процесс этот дарует совсем незначительный бонус к производительности. Случается даже, что разгон памяти виден в бенчмарках и некоторых приложениях и абсолютно не виден в играх. Но для тех, кто в любом случае хочет выжать из своей системы все соки, «Игромания» публикует ликбез по разгону памяти.

Многогранная

Как и в случае с другими компонентами системы, процесс разгона оперативной памяти заключается в изменении рабочих параметров устройства. Добиться максимальной производительности от ОЗУ помогают шаманские пляски с тремя основными характеристиками - частотой, напряжением и задержками (таймингами).

Что можно сказать о частоте? Чем она больше - тем лучше! Фактически ее значение показывает, сколько полезных тактов могут совершить модули памяти за секунду реального времени. Однако и здесь есть свои нюансы. Дело в том, что для памяти типа DDR, которая используется в современных компьютерах, существует две разных частоты - реальная и эффективная, причем вторая ровно в два раза выше первой. Производители модулей всегда указывают эффективную частоту своих творений, в то время как в различных диагностических утилитах, а также в BIOS материнских плат нередко отображается именно реальная частота.

В чем подвох? Название DDR - это сокращение фразы DDR SDRAM, которая расшифровывается как Double Data Rate Synchronous Dynamic Random Access Memory, то есть синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных. Ключевые слова здесь - удвоенная скорость. В отличие от простой SDRAM (предшественницы DDR), рассматриваемая память взаимодействует с шиной данных не только по фронту, но и по спаду тактового сигнала, то есть одному такту шины соответствуют два такта микросхемы памяти. Соответственно, одни разработчики программного обеспечения предпочитают считать именно такты шины (реальную частоту), в то время как другие указывают частоту работы самих чипов (эффективную частоту). Так что если во время разгона вы вдруг обнаружите, что частота памяти ровно в два раза ниже, чем должна быть, то не удивляйтесь, это нормально.

Рабочее напряжение модулей оказывает существенное влияние на их стабильность. В соответствии со стандартами, для плашек DDR2 штатным является напряжение 1,8 В, а для DDR3 - 1,5 В. Медленные модули, как правило, придерживаются этих значений, а вот оверклокерские наборы почти всегда работают с повышенными вольтажами: разогнанным чипам не хватает питания, и его приходится увеличивать. Естественно, это ведет к более интенсивному тепловыделению, но если на микросхемах памяти есть радиаторы, то небольшое увеличение напряжения не создает особых проблем. Тем не менее определенные границы лучше не пересекать, иначе модули могут выйти из строя. Для DDR2 разумным максимумом можно считать напряжение в 2,2 В, а для DDR3 - 1,65 В.

Третий ключевой параметр оперативной памяти - задержки (тайминги), и это, определенно, тема для отдельной главы.

Без спешки

Итак, задержки - или тайминги. Прежде чем объяснить, что это такое, не помешает ознакомиться с архитектурой памяти DDR.

Для хранения простейшей единицы информации (бита) в чипах DDR используется ячейка, представляющая собой сочетание транзистора и конденсатора. Подобных ячеек в каждой микросхеме памяти огромное множество. Они выстраиваются в строки и столбцы, которые в конечном счете образуют массивы, называемые банками. Поскольку чипы DDR относятся к динамическому типу памяти, их содержимое необходимо периодически обновлять (подзаряжать), иначе записанная в них информация будет утеряна.

Взаимодействием с ОЗУ занимается так называемый контроллер памяти. Получив от процессора команду на чтение или запись бита данных с логическим адресом, он определяет, в каком банке/строке/столбце располагается нужная ячейка и что с ней следует делать. Проблема заключается в том, что ячейка не может быть обработана мгновенно - должно пройти определенное время (читай: число тактов памяти), прежде чем нужная операция будет выполнена. Задержки, возникающие на определенных этапах чтения/записи битов, и именуются таймингами.

Существует большое количество таймингов, однако ключевое влияние на производительность памяти оказывают лишь некоторые из них. Конкретно - CAS Latency, RAS-to-CAS Delay, Row Precharge Time и Row Active Time. Именно таков их порядок по степени значимости, и именно в такой последовательности они располагаются в BIOS материнских плат и в описаниях к модулям памяти. Например, в технических характеристиках плашек Kingmax DDR3 2400 MHz Nano Gaming RAM есть строка «10-11-10-30» - так вот, это и есть тайминги. Первая цифра показывает значение CAS Latency, вторая - RAS-to-CAS Delay и так далее.

Чтобы понять, за что отвечают те или иные задержки, следует разобраться, как происходит считывание данных из ячеек. Для начала чип памяти должен подготовить к обработке нужную строку и столбец в банке. Для этого им отсылается соответствующая команда, после чего происходит процесс активации строки, занимающий определенное время. Количество тактов, необходимое для «пробуждения» строки, как раз и зовется RAS-to-CAS Delay.

Далее контроллер отправляет нужной последовательности ячеек (ее длина зависит от типа памяти и дополнительных настроек) команду на считывание, однако на шину данных первая порция информации поступает не сразу, а спустя несколько тактов - эта задержка именуется CAS Latency и считается ключевой для модулей памяти. После того как все необходимые данные считаны, контроллером отдается команда на закрытие и подзарядку строки.

А где же два других тайминга? Первый, Row Precharge Time, вступает в силу сразу после закрытия строки. Дело в том, что последующий доступ к этой строке становится возможным не сразу, а лишь после подзарядки, которая отнимает определенное число тактов - за этот интервал и отвечает Row Precharge Time. Ну а тайминг Row Active Time показывает период активности строки, то есть количество тактов, прошедших от момента ее активации до момента поступления команды подзарядки. Фактически эта задержка зависит от параметров RAS-to-CAS Delay, CAS Latency и длины считываемой строки, однако обычно ее значение подбирают простым сложением трех других таймингов. Это не совсем корректно, зато позволяет гарантированно избежать проблем со стабильностью работы при минимальных потерях производительности.

Запись данных в ячейки памяти осуществляется схожим образом, так что рассматривать этот процесс подробно мы не станем. Также не будем акцентировать внимание на дополнительных настройках памяти вроде длины строки и вторичных таймингов - слишком уж незначительно их влияние на общее быстродействие системы. Эти параметры будут интересны оверклокерам, идущим на рекорд, а вовсе не простым пользователям.

Многие начинающие сборщики нередко допускают следующую ошибку: стремясь вооружить системник по максимуму, они устанавливают в материнскую плату модули DDR3 с запредельной рабочей частотой (скажем, 2400 МГц) и остаются в счастливой уверенности, что память в их компьютере уже работает на заявленной скорости. Однако без дополнительных манипуляций со стороны пользователя подобные плашки будут работать в том же режиме, что и их дешевые собратья. Объясняется это тем, что базовые настройки памяти материнская плата черпает из специального чипа SPD (Serial Presence Detect), коим в обязательном порядке оснащается каждый DDR-модуль. Прописанные в SPD частоты и тайминги, как правило, далеки от максимально возможных - это сделано для того, чтобы модули могли стартовать даже в очень слабой системе. Соответственно, такую память приходится дополнительно разгонять.

К счастью, иногда этот процесс можно существенно облегчить. Так, компания Intel уже не первый год продвигает особое расширение для чипа SPD, известное как XMP (Extreme Memory Profiles). Оно записывает в модули памяти информацию о дополнительных настройках системы, которая может быть считана материнскими платами с поддержкой этой технологии. Если материнке удастся подхватить нужный профиль XMP (он выбирается через BIOS), то она автоматически выставит заявленную в нем частоту памяти, подкорректировав ради этого другие параметры системы, - произойдет автоматический разгон. Правда, при этом крайне желательно, чтобы память была сертифицирована для той платформы, на которую она установлена, иначе профиль либо не сработает, либо сработает, но не так, как надо. Кроме того, никогда не лишне перепроверить выставленные автоматикой значения, поскольку некоторые производители памяти умудряются прописывать в профиле XMP такие настройки, от которых система может скоропостижно скончаться. В целом же технология эта очень полезна, но дружит она только с процессорами Intel.

Стоит отметить, что еще до появления XMP компании NVIDIA и Corsair продвигали аналогичную разработку, известную как EPP (Enhanced Performance Profiles), но она не прижилась.

Соковыжималка

С тем, как работает оперативная память, мы разобрались. Теперь осталось понять, как добиться от нее большей производительности, - и вот с этим дело не просто. Существует два разных способа разгона памяти. Первый подразумевает повышение частоты модулей, второй - понижение таймингов. Другими словами: можно либо увеличивать количество тактов в секунду, либо делать сами такты более продуктивными. В идеале, конечно, следует использовать оба метода одновременно, но улучшение одного параметра всегда ведет к ухудшению другого, и подобрать оптимальный баланс нелегко. Нельзя сказать заранее, что окажется полезнее вашей системе - высокочастотная память с ослабленными таймингами или модули, функционирующие на более низкой частоте, но обладающие минимальными задержками.

Если вы готовы драться за каждый лишний балл в каком-нибудь PCMark, то мы рекомендуем перепробовать несколько различных соотношений частоты и таймингов и выбрать тот, что дает наилучший результат конкретно для вашей системы. В противном случае будет разумнее сначала увеличить тайминги, потом найти частотный потолок для используемых модулей памяти, а затем попытаться вновь снизить задержки - как показывает практика, такой подход чаще оказывается выигрышным. При этом на протяжении всего пути не стоит сильно отклоняться от базового соотношения таймингов: первые три задержки должны быть примерно одинаковыми, а для четвертой желательно выставлять значение равное сумме этих таймингов или чуть ниже.

При разгоне памяти нельзя обойтись без помощи тестов, измеряющих производительность системы, - именно они позволят оценить, насколько велик прирост быстродействия вследствие ваших манипуляций и есть ли он вообще. Может показаться парадоксальным, но порою понижение таймингов или увеличение частоты оперативки может негативно сказаться на скорости работы компьютера - случаются такие сюрпризы нечасто, но отмахиваться от них не стоит. В общем, без бенчмарков никуда. Какое ПО лучше всего использовать? Мы советуем джентльменский набор из PCMark , Everest и WinRAR (встроенный тест), но вообще список диагностических утилит для памяти обширен - выбирайте то, что больше по душе. Кстати говоря, бенчмарки полезны еще и потому, что позволяют проверить память на стабильность работы. А после того, как разгон будет считаться завершенным, не помешает дополнительно помучить компьютер стресс-тестами вроде OCCT и S&M , дабы окончательно убедиться в стабильности системы.

Проводя эксперименты, не стоит забывать о повышении напряжения, причем речь идет не только о самих модулях, но и о контроллере памяти - нередко именно он мешает раскрыть весь потенциал разгоняемых плашек. Ранее на платформах Intel этот важный элемент системы располагался в северном мосту чипсета, однако с недавних пор он окончательно переселился в центральные процессоры, поэтому на современных платформах увеличение напряжения на контроллере негативно сказывается на температуре ЦП. Таким образом, иногда для эффективного разгона памяти приходится дополнительно усиливать охлаждение процессора, а не самих модулей. Предостережем: не повышайте напряжение на контроллере более чем на четверть, это может привести к печальным последствиям.

Наконец, стоит заранее определиться, каким образом будет осуществляться разгон. Можно либо воспользоваться специальной утилитой, либо изменять необходимые параметры непосредственно в BIOS. Мы настоятельно рекомендуем взять на вооружение второй вариант, поскольку ни одна программа не в состоянии раскрыть все возможности, предоставляемые системной платой. Соответственно, перед проведением опытов не помешает внимательно изучить инструкцию к материнке - это позволит понять, что именно скрывается под тем или иным пунктом в BIOS. Так уж сложилось, что каждый производитель стремится ввести в обиход свои собственные обозначения, и даже такие, казалось бы, общепринятые термины, как названия таймингов, могут варьироваться от платы к плате.

И еще: не стоит сразу впадать в панику, если на определенном этапе разгона система вдруг напрочь откажется стартовать. Как правило, это означает лишь, что материнская плата не может автоматически сбросить неприемлемые для нее настройки BIOS. Встречается данная болезнь не так часто и лечится она банальным выниманием батарейки из платы. А вот если это не поможет - тогда уже можно и паниковать.

Индивидуальный подход

Когда дело доходит непосредственно до ковыряния в многочисленных меню, становится понятно, что изменять тайминги куда проще, чем частоту памяти. Это в видеокартах все элементарно: потянул в специальной утилите ползунок вправо - получил нужную прибавку к частоте. С полноценными DDR-модулями все намного сложнее.

Основные проблемы связаны с тем, что скорость работы оперативки зависит сразу от двух параметров - опорной частоты (FSB, BCLK) и множителя. Перемножая эти значения, мы получаем итоговую частоту ОЗУ. Однако простое увеличение первого параметра почти наверняка приведет к непредвиденным результатам, ведь это неизменно скажется на производительности других компонентов системы. Можно, конечно, не трогать опорную частоту, но добиться впечатляющего разгона с помощью одних лишь модификаций множителя в большинстве случаев невозможно.

На разных платформах изменение опорной частоты приводит к разным последствиям. Кроме того, нередко ради повышения скорости работы памяти требуется изменить рабочие параметры других исполнительных блоков системы. Словом, к каждой платформе нужен свой подход, так что мы постараемся разобрать основные нюансы для каждого случая. Рассматривать все возможные конфигурации мы, разумеется, не станем - сосредоточимся на десктопных платформах, появившихся в последние несколько лет. У всех них контроллер памяти располагается в процессоре, так что можно сказать, что особенности разгона зависят от того, какой именно кусок кремния является сердцем системы. Итак, хит-парад самых актуальных на сегодняшний день процессоров...

Intel Sandy Bridge

Новейшие процессоры Intel , представленные двухтысячной линейкой Core i3/i5/i7 , придутся по душе оверклокерам-новичкам. Матерые адепты разгона считают, что с приходом Sandy Bridge разгонять систему стало слишком скучно. Все дело в том, что в этих процессорах опорная частота (у Intel она зовется BCLK), от которой пляшут все основные исполнительные блоки, практически не поддается изменению - стоит отклонить ее на какие-то 6-7 МГц, и система начинает вести себя неадекватно. Соответственно, старые добрые приемы в случае с Sandy Bridge не работают, поэтому единственный способ разогнать оперативку (как, впрочем, и процессор) - увеличивать соответствующий множитель. Благо контроллер памяти, встроенный в новые процессоры, вышел довольно шустрым, и частота в 2133 МГц ему покоряется без проблем. Поскольку трогать BCLK настоятельно не рекомендуется, итоговая опорная частота памяти в любом случае должна быть кратна 266 МГц, то есть не любой набор DDR3 удастся завести именно на той частоте, что заявлена его производителем. Скажем, модули DDR3-2000, встретившись с новыми процессорами Intel, будут работать как DDR3-1866.

Заметим, что одного лишь процессора Sandy Bridge для эффективного разгона ОЗУ недостаточно - нужна еще и подходящая материнская плата. Все дело в том, что Intel искусственно ограничила оверклокерские возможности не только процессоров (множитель можно увеличить лишь у моделей с индексом «К»), но и чипсетов. Так, младшие наборы логики память разгонять не умеют, поэтому в системных платах на их основе даже самые скоростные модули будут работать как DDR3-1333. А вот чипсет Intel P67 Express , позиционирующийся как решение для энтузиастов, поддерживает режимы вплоть до DDR3-2133, поэтому к выбору материнской платы под Sandy Bridge стоит подходить со всей основательностью.

Как определить, подходят ваши конкретные модули для разгона или нет? Если плашки изначально не относятся к оверклокерскому классу (то есть их частота не превышает рекомендованных создателями процессоров значений), то отталкиваться стоит прежде всего от их производителя, рабочего напряжения и системы охлаждения.

Про производителя, думаем, объяснять не стоит: именитые компании используют проверенные чипы, возможности которых, как правило, не до конца исчерпаны, а вот от китайского нонейма ожидать выдающегося разгонного потенциала не стоит. Рабочее напряжение также позволяет определить, насколько микросхемы близки к пределу своих возможностей: чем меньше вольт подается на чипы по умолчанию, тем сильнее можно будет увеличить напряжение самостоятельно и тем выше будет частотный потенциал. Ну а качественные радиаторы позволяют эффективнее отводить тепло от чипов, что позволяет выжать из плашек чуть больше производительности.

Intel Bloomfield

Любимцы энтузиастов - процессоры Core i7 девятисотой серии - обладают феноменальной вычислительной мощностью, однако с их помощью очень сложно заставить память работать на запредельных частотах. Отчасти это компенсируется тем, что контроллер памяти у Bloomfield может работать в трехканальном режиме, недоступном другим рассматриваемым платформам.

При работе с Core i7-9хх возможности оверклокерских модулей, как правило, упираются в недостаточную производительность процессорного блока Uncore. Последний состоит из контроллера памяти и L3-кэша, а скорость его работы напрямую зависит от BCLK. При этом существует правило, что частота этого блока должна быть как минимум в два раза выше частоты работы памяти, то есть, например, для нормального функционирования плашек в режиме DDR3-1800 придется завести Uncore на 3600 МГц. Проблема заключается в том, что этот самый блок получился большим и горячим. Работу в нештатном режиме он не любит, и подаваемое на него напряжение необходимо существенно увеличивать (но не выставлять выше 1,4 В!). В итоге, даже если не разгонять вычислительные блоки процессора, Uncore с частотой 4000 МГц разогреет кристалл так, что не всякий кулер справится. Поэтому пересечь черту в 2000 МГц для памяти, не применяя серьезное охлаждение, крайне сложно. А поскольку разгонять память, не повышая частоту процессора, не очень разумно, можно констатировать, что среднестатистическому компьютеру на базе Bloomfield скоростная память вообще не нужна - какой-нибудь DDR3-1600 хватит с лихвой.

Любопытно, что модели семейства Core i7-9хх предоставляют в распоряжение пользователя внушительный набор множителей для памяти - они покрывают диапазон от 6х до 16х с шагом 2х. Для Uncore множитель так и вовсе можно выкручивать до 42х. Ну а поскольку штатная частота BCLK у Bloomfield равна 133 МГц, к максимально возможным для памяти значениям частоты можно подобраться, даже не трогая тактовый генератор. Впрочем, играясь и с BCLK, и с множителем, опытный оверклокер в любом случае сможет выжать из плашек еще немного бонусных мегагерц.

Intel Lynnfield

Процессоры линеек Core i7-8хх и Core i5-7хх , построенные на архитектуре Lynnfield, - это, пожалуй, лучший выбор для тех, кто хочет поставить рекорд частоты модулей памяти. Чтобы убедиться в этом, достаточно взглянуть, какие процессоры используются нынешними рекордсменами.

Секрет успеха Lynnfield в том, что для стабильной работы оперативки частота Uncore у этих кристаллов необязательно должна быть в два раза больше частоты памяти. Intel решила вообще заблокировать множитель ненавистного оверклокерами блока: для восьмисотых моделей Core i7 он зафиксирован на отметке 18х, а для семисотых - на 16х. Максимальные множители памяти для этих процессоров равны 12х и 10х соответственно. Таким образом, Uncore больше не выступает в роли бутылочного горлышка при разгоне памяти, поэтому «набор высоты» проходит легко и непринужденно.

Процессор из линейки Core i7-8хх без труда сможет выжать максимум из любого набора памяти: до 1600 МГц (133х12) можно добраться, не трогая BCLK, ну а дальше в ход идут эксперименты с опорной частотой. У семисотых Core i7 возможности чуть скромнее, но и их рядовому пользователю должно хватить с лихвой. Конечно, при значительном увеличении BCLK блок Uncore хорошенько разогреется (его рабочее напряжение придется усилить), однако к тому времени модули уже будут работать на пределе возможностей. Вообще же в таких случаях крайне желательна мощная система охлаждения процессора.

Intel Clarkdale

Бюджетные процессоры Intel со встроенной графикой, представленные семействами Core i5-6хх , Core i3 и Pentium G , плохо дружат с памятью. Увы, в целях экономии в этих моделях контроллер памяти вместе с графическим ядром вынесен на отдельный кристалл, который соединен с вычислительными ядрами шиной QPI. Использование шины плохо сказывается на производительности контроллера, так что от скоростной памяти в системе с Clarkdale особого толка не будет.

Разгон памяти, работающей в тандеме с обозначенными процессорами, осуществляется самым обычным образом: увеличиваем множитель, подкручиваем частоту BCLK (по умолчанию она равна 133 МГц). Никаких подводных камней нет, разве что при сильном разгоне придется понизить множитель QPI и увеличить напряжение, подаваемое на L3-кэш (пресловутый Uncore). Старшие Clarkdale, как правило, могут завести оверклокерскую память на частотах около 2000 МГц, что не так уж и плохо. Другое дело, что прирост быстродействия системы от увеличения скорости работы плашек будет совсем уж мизерным. Что касается максимального множителя для памяти, то он зависит от конкретной модели процессора: для «пентиумов» он равен 8х, а у Core i5-6хх и Core i3 - 10х. Кроме того, существует еще Core i5-655K , созданный специально для разгона, - он поддерживает множитель 16х, но лишь немногие материнские платы знают о его возможностях.

AMD Phenom II/Athlon II

В последние годы каждая новая процессорная архитектура от Intel привносит какие-то новые особенности, связанные с разгоном. С AMD все иначе - алгоритм раскочегаривания этих кристаллов уже давно практически не претерпевает изменений. Вероятно, что вместе с выходом процессоров Llano , оснащенных встроенным графическим ядром, этой стабильности придет конец, ну а пока что мы рассмотрим, каким образом разгоняется память, работающая в тандеме с нынешними решениями AMD - Phenom II и Athlon II .

В качестве опорной частоты для памяти в данном случае выступает частота системной шины (HT Clock по терминологии AMD), которая по умолчанию равна 200 МГц. Изменение этого параметра сказывается на режиме работы процессора, контроллера памяти (этот блок обычно обозначается как CPU NB) и шины HyperTransport Link. По этой причине в поисках частотного потолка вашего ОЗУ следует понизить множители для процессора и HT Link, а вот контроллер памяти, напротив, глушить не стоит. Его частота должна быть по крайней мере в три раза выше, чем реальная частота памяти (и, соответственно, в полтора раза выше, чем частота эффективная), иначе стабильность системы не гарантируется. Вместе с тем чем быстрее работает контроллер, то тем больше шансов выдавить из модулей памяти лишние мегагерцы или понизить их тайминги. Можно даже слегка задрать напряжение CPU NB, чтобы достичь лучшего результата, но сильно увлекаться не стоит.

Следует отметить, что на платформах AMD память разгоняется хуже, чем на платформах Intel и, как правило, отметку в 2000 МГц оверклокерам покорить не удается. Таким образом, покупать для такой системы сверхбыстрые планки DDR3 нет особого смысла. Учтите, что режимы работы до DDR3-1600 МГц включительно можно активировать изменением множителя, однако при дальнейшем разгоне в любом случае придется мучить тактовый генератор.

* * *

Как видно, изменять опорную частоту при более-менее серьезном разгоне памяти приходится практически всегда (а если бы на свете не существовало Sandy Bridge, это высказывание было бы еще более категоричным). Да, порою серьезных частот можно достичь посредством одних лишь множителей, однако шаг между доступными для активации значениями частоты в этом случае оказывается слишком велик, поэтому для более точного нахождения частотного потолка все равно приходится шаманить с тактовым генератором. Ну а это, как известно, приводит к изменению частоты процессора.

Мораль такова: если уж заниматься разгоном памяти серьезно, то параллельно стоит разгонять и процессор. В самом деле, зачем выжимать все соки из плашек и одновременно пытаться сдерживать рабочую частоту процессора, если даже незначительный разгон ЦП даст куда больший эффект, чем все опыты над памятью? Таким образом, прежде чем браться за разгон памяти, будет неплохо узнать, какие частоты способен покорить ваш процессор. Ну а после придется искать баланс между скоростью работы кристалла и частотой/таймингами оперативки, ведь обычно выставить максимально привлекательные значения обоих компонентов разом не получается.

Сложно? Что ж, никто не мешает вам просто слегка подкрутить тайминги или увеличить множитель памяти, а после наслаждаться свалившимся из ниоткуда быстродействием, не углубляясь в дальнейший разгон компьютера. Не хотите раскрывать весь потенциал системы - не надо. Ну а господам энтузиастам мы желаем удачи в этом нелегком, но интересном деле.

Привет, GT! Все мы любим новое железо - приятно работать за быстрым компьютером, а не смотреть на всякие прогрессбары и прочие песочные часики. Если с процессорами и видеокартами всё более-менее понятно: вот новое поколение, получите ваши 10-20-30-50% производительности, то с оперативкой всё не так просто.

Где прогресс в модулях памяти, почему цена на гигабайт почти не падает и чем порадовать свой компьютер - в нашем железном ликбезе.

DDR4

Стандарт памяти DDR4 имеет ряд преимуществ перед DDR3: большие максимальные частоты (то есть пропускная способность), меньшее напряжение (и тепловыделение), и, само собой, удвоенная ёмкость на один модуль.

Комитет инженерной стандартизации полупроводниковой продукции при Electronic Industries Alliance (более известный как JEDEC) трудится над тем, чтобы ваша оперативная память Kingston подходила к материнской плате ASUS или Gigabyte, и по этим правилам играют все. По части электрики, физики и разъёмов всё жёстко (оно и понятно, нужно обеспечить физическую совместимость), а вот в отношении рабочих частот, объёмов модулей и задержек в работе правила допускают некоторую волатильность: хотите сделать лучше - делайте, главное, чтобы на стандартных настройках у пользователей не было проблем.

Именно так получились в своё время модули DDR3 с частотой выше, чем 1600 МГц, и DDR4 с частотами выше 3200 МГц: они превышают базовые спецификации, и могут работать как на «стандартных» параметрах, совместимых со всеми материнскими платами, так и с экстремальными профилями (X.M.P.), протестированными на заводе и зашитыми в BIOS памяти.

Прогресс

Основные улучшения в этой сфере ведутся сразу в нескольких направлениях. Во-первых, производители непосредственно микросхем памяти (Hynix, Samsung, Micron и Toshiba) постоянно улучшают внутреннюю архитектуру чипов в пределах одного техпроцесса. От ревизии к ревизии внутреннюю топологию доводят до совершенства, обеспечивая равномерность нагрева и надёжность работы.

Во-вторых, память потихоньку переходит на новый техпроцесс. К сожалению, здесь нельзя проводить улучшения также быстро, как делают (делали последние лет 10) производители видеокарт или центральных процессоров: грубое уменьшение размеров рабочих частей, то есть транзисторов, потребует соответствующего снижения рабочих напряжений, которые ограничены стандартом JEDEC и встроенными в CPU контроллерами памяти.

Поэтому единственное, что остаётся - не только «поджимать» производственные нормы, но ещё и параллельно увеличивать скорость работы каждой микросхемы, что потребует соответствующего повышения напряжения. В итоге и частоты растут, и объёмы одного модуля.

Примеров такого развития много. В 2009-2010 году нормальным был выбор между 2/4 гигабайтами DDR3 1066 МГц и DDR3 1333 МГц на один модуль (обе были выполнены по 90-нм техпроцессу). Сегодня же умирающий стандарт готов предложить вам 1600, 1866, 2000 и даже 2133 МГц рабочих частот на модулях в 4, 8 и 16 ГБ, правда внутри уже 32, 30 и даже 28 нм.

К сожалению, подобный апгрейд стоит немалых денег (в первую очередь на исследования, закупку оборудования и отладку производственного процесса), так что ждать радикального уменьшения цены 1 ГБ оперативки до выхода DDR5 не придётся: ну а там нас ждёт очередное удвоение полезных характеристик при той же цене производства.

Цена улучшений, разгон и поиски баланса

Растущий объём и скорость работы напрямую влияет на ещё один параметр оперативной памяти - задержки (они же тайминги). Работа микросхем на высоких частотах до сих пор не желает нарушать законы физики, и на различные операции (поиск информации на микросхеме, чтение, запись, обновление ячейки) требуются определённые временные интервалы. Уменьшение техпроцесса даёт свои плоды, и тайминги растут медленнее, чем рабочие частоты, но здесь необходимо соблюдать баланс между скоростью линейного чтения и скоростью отклика.

Например, память может работать на профилях 2133 МГц и 2400 МГц с одинаковым набором таймингов (15-15-15-29) - в таком случае разгон оправдан: при большей частоте задержки в несколько тактов только уменьшатся, и вы получите не только увеличение линейной скорости чтения, но и скорости отклика. А вот если следующий порог (2666 МГц) требует увеличения задержек на 1-2, а то и 3 единицы, стоит задуматься. Проведём простые вычисления.

Делим рабочую частоту на первый тайминг (CAS). Чем выше соотношение - тем лучше:

2133 / 15 = 142,2
2400 / 15 = 160
2666 / 16 = 166,625
2666 / 17 = 156,823

Полученное значение - знаменатель в дроби 1 секунда / Х * 1 000 000. То есть чем выше число, тем ниже будет задержка между получением информации от контроллера памяти и отправкой данных назад.

Как видно из расчётов, наибольший прирост - апгрейд с 2133 до 2400 МГц при тех же таймингах. Увеличение задержки на 1 такт, необходимое для стабильной работы на частоте 2666 МГц всё ещё даёт преимущества (но уже не такие серьёзные), а если ваша память работает на повышенной частоте только с увеличением тайминга на 2 единицы - производительность даже немного снизится относительно 2400 МГц.

Верно и обратное: если модули совершенно не хотят увеличивать частоты (то есть вы нащупали предел для конкретно вашего комплекта памяти) - можно попытаться отыграть немного «бесплатной» производительности, снизив задержки.

На самом деле факторов несколько больше, но даже эти простые расчёты помогу не напортачить с разгоном памяти: нет смысла выжимать максимальную скорость из модулей, если результаты станут хуже, чем на средних показателях.

Практическое применение разгона памяти

В плане софта от подобных манипуляций в первую очередь выигрывают задачи, постоянно эксплуатирующие память не в режиме потокового чтения, а дёргающие случайные данные. То есть игры, фотошоп и всякие программистские задачи.

Аппаратно же системы со встроенной в процессор графикой (и лишённые собственной видеопамяти) получают значительный прирост производительности как при снижении задержек, так и при увеличении рабочих частот: простенький контроллер и невысокая пропускная способность очень часто становится бутылочным горлышком интегрированных GPU. Так что если ваши любимые «Цистерны» еле-еле ползают на встроенной графике старенького компа - вы знаете, что можно попробовать предпринять для улучшения ситуации.

Мэйнстрим

Как не странно, больше всего от подобных улучшений выигрывают среднестатистические пользователи. Нет, безусловно, оверклокеры, профессионалы и игроки с полным кошельком получают свои 0.5% производительности, применяя экстремальные модули с запредельными частотами, но их доля на рынке мала.

Что под капотом?

Белые алюминиевые радиаторы снять достаточно просто. Шаг нулевой: заземляемся об батарею или ещё какой металлический контакт с землёй и даём стечь статике - мы же не хотим дать нелепой случайности убить модуль памяти?

Шаг первый: прогреваем модуль памяти феном или активными нагрузками на чтение-запись (во втором случае вам надо быстренько выключить ПК, обесточить его и снять оперативку, пока она ещё горячая).

Шаг второй: находим сторону без наклейки и аккуратно подцепляем радиатор чем-нибудь в центре и по краям. Использовать печатную плату как основание для рычага можно, но с осторожностью. Внимательно выбираем точку опоры, стараемся избегать давления на на хрупкие элементы. Действовать лучше по принципу «медленно, но верно».

Шаг третий: открываем радиатор и разъединяем замки. Вот они, драгоценные чипы. Распаяны с одной стороны. Производитель - Micron, модель чипов 6XA77 D9SRJ.

8 штук по 1 Гб каждый, заводской профиль - 2400 МГц @ CL16.


Правда, дома снимать теплораспределители не стоит - сорвёте пломбу и плакала ваша пожизненная 1 гарантия. Да и родные радиаторы отлично справляются с возложенными на них функциями.

Попробуем измерить эффект от разгона оперативки на примере комплекта HyperX Fury HX426C16FW2K4/32. Расшифровка названия даёт нам следующую информацию: HX4 - DDR4, 26 - заводская частота 2666 МГц, C16 - задержки CL16. Далее идёт код цвета радиаторов (в нашем случае - белый), и описание комплекта K4/32 - набор из 4 модулей суммарным объёмом 32 ГБ. То есть уже сейчас видно, что оперативка незначительно разогнана ещё при производстве: вместо штатных 2400 прошит профиль 2666 МГц с теми же таймингами.

Помимо эстетического удовольствия от созерцания четырёх «Белоснежек» в корпусе вашего ПК этот набор готов предложить весомых 32 гига памяти и нацелен на пользователей обычных процессоров, не особо балующихся разгоном CPU. Современные Intel’ы без буквы K на конце окончательно лишились всех возможных способов получения бесплатной производительности, и практически не получают никаких бонусов от памяти с частотой выше 2400 МГц.

В качестве тестовых стендов мы взяли два компьютера. Один на базе Intel Core i7-6800K и материнской плате ASUS X99 (он представляет платформу для энтузиастов с четырёхканальным контроллером памяти), второй с Core i5-7600 внутри (этот будет отдуваться за мэйнстримовое железо со встроенной графикой и отсутствующим разгоном). На первом проверим разгонный потенциал памяти, а на втором будем измерять реальную производительность в играх и рабочем софте.

Разгонный потенциал

Со стандартными профилями JEDEC и заводским X.M.P. память имеет следующие режимы работы:
DDR4-2666 CL15-17-17 @1.2V
DDR4-2400 CL14-16-16 @1.2V
DDR4-2133 CL12-14-14 @1.2V

Легко заметить, что настройки таймингов под 2400 МГц делают память не такой отзывчивой, как профили 2133 и 2666 МГц.
2133 / 12 = 177.75
2400 / 14 = 171.428
2666 / 15 = 177.7(3)

Попытки завести память на частоте 2900 МГц с повышением задержек до 16-17-18, 17-18-18, 17-19-19 и даже с подъёмом напряжения до 1.3 Вольта ничего не дали. Без серьёзных нагрузок компьютер работает, но фотошоп, архиватор или бенчмарк плюются ошибками или сваливают систему в BSOD. Похоже, что частотный потенциал модулей выбран до конца, и единственное, что нам остаётся - уменьшать задержки.

Лучший результат, который удалось достичь с тестовым комплектом из 4 модулей - 2666 МГц при таймингах CL13-14-13. Это существенно увеличит скорость доступа к случайным данным (2666 / 13 = 205.07) и должно показать неплохое улучшение результатов в игровом бенчмарке. В двухканальном режиме память разгоняется лучше: специалисты из oclab ухитрились довести комплект из двух 16 Гб модулей до частоты 3000 МГц @ CL14-15-15-28 с подъёмом напряжения до 1.4 Вольта - отличный результат.

Натурные испытания

Для нашего i5 со встроенной графикой в качестве бенчмарка мы выбрали GTA V. Игра не молодая, использует API DirectX 11, который давно известен и отлично вылизан в драйверах Intel, любит потреблять оперативную память и нагружает систему сразу по всем фронтам: GPU, CPU, Ram, чтение с диска. Классика. Вместе с этим GTA V использует т.н. «отложенный рендеринг», благодаря которому время расчёта кадра меньше зависит от сложности сцены, то есть методика испытания будет чище, а результаты - нагляднее.

За средний FPS возьмём значения, укладывающиеся в нормальное течение игры: пролёт самолёта, езда в городе, уничтожение супостатов имеют равномерный профиль нагрузки. По таким сценам (отбросив 1% лучших и худших результатов из массива данных) и получим средне-игровой FPS.

Просадки определим по сценам со взрывами и сложными эффектами (водопад под мостом, закатные пейзажи) аналогичным образом.

Подлагивания и неприятные фризы при резкой смене окружения (переключение от одного тестируемого случая к другому) случаются даже на монструозной GTX 1080Ti, постараемся их отметить, но в результаты не возьмём: в игре оно не встречается, и это, скорее, косяк самого бенчмарка.

Конфигурация демо-стенда

CPU: Intel Core i5-7500 (4c4t @ 3.8 ГГц)
GPU: Intel HD530
RAM: 32 GB HyperX Fury White (2133 МГц CL12, 2666 МГц CL15 и 2666 МГц CL13)
MB: ASUS B250M
SSD: Kingston A400 240 GB

Для начала выставим стандартные частоты X.M.P.-профиля: 2666 МГц с таймингами 15-17-17. Встроенный бенчмарк GTA V выдаёт идентичный FPS и одинаковые просадки на минимальных и средних настройках в разрешении 720p: в большинстве сцен счётчик колеблется в районе 30–32, а в тяжёлых сценах и при смене одной локации на другую FPS проседает.

Причина очевидна - мощностей GPU достаточно, а вот блоки растеризации просто не успевают собрать и отрисовать большее число кадров в секунду. На «высоких» настройках графики результаты стремительно ухудшаются: игра начинает упираться непосредственно в скромные вычислительные возможности интегрированной графики.

2133 МГц CL12

Собственной памяти у GPU нет, и он вынужден постоянно дёргать системную. Пропускная способность DDR4 в двухканальном режиме на частоте 2133 МГц составит 64 бит (8 байт) × 2 133 000 000 МГц × 2 канала - порядка 34 Гб/с, с небольшими (до 10%) накладными потерями.

Для сравнения, пропускная способность подсистемы памяти у самой скромной дискретной карточки NVIDIA GTX 1030 - 48 Гб/с, а GTX 1050 Ti (которая легко выдаёт в GTA V 60 FPS на максимальных настройках в FullHD) - уже 112 Гб/с.


На заднем плане виден тот самый водопад под мостом, просаживающий FPS во внутриигровом бенчмарке.

Результаты бенчмарка просели до 28 FPS в среднем, а лаги при смене локаций и взрывах их ненапряжных просадок превратились в неприятные микрофризы.

2666 МГц CL13

Снижение таймингов значительно сократило время ожидания ответа от памяти, а стандартные результаты с данной частотой у нас уже есть: можно будет сравнить три бенчмарка и получить наглядную картину. Пропускная способность для 2666 МГц уже 21.3 Гб/с ×2 канала ~ 40 Гб/с, сравнимо с младшей NVIDIA.

Максимальный FPS практически не вырос (0.1 не показатель и находится на грани погрешности измерений) - здесь мы всё ещё упираемся в скромные возможности ROP’ов, а вот все просадки стали менее заметны. В сценах с водопадом из-за высокой вычислительной нагрузки результат не изменился, во всех остальных - то есть на прогрузках, взрывах и прочих радостях, замедлявших работу видеоядра вырос в среднем на 10-15%. Вместо 25–27 кадров в нагруженных событиями эпизодах - уверенные 28–29. В целом игра стала ощущаться значительно комфортнее.

TL;DR и результаты

Нельзя оценивать скорость работы оперативной памяти по одной только частоте. У DDR4 достаточно большие тактовые задержки, и при прочих равных стоит выбирать память не только удовлетворяющую потребности вашего железа по рабочей частоте и объёму, но и уделять внимание этому параметру.

Проведённые тесты показали, что компьютеры на базе Intel Core i-серии со встроенной графикой получают заметный прирост производительности при использовании высокоскоростной памяти с низкими задержками. Видеоядро не имеет собственных ресурсов для хранения и обработки данных и пользуется системными отлично отвечает (до определённого предела) на рост частоты и снижение таймингов, так как от скорости доступа к памяти напрямую зависит время отрисовки кадра со множеством объектов.

Самое важное! Линейка Fury выпускается в нескольких цветах: белом, красном и чёрном - можно подобрать не только быструю память, но и подходящую по стилю к остальным комплектующим, как делают специалисты из