Единая система охлаждения своими руками для am3. Как сделать жидкостное охлаждение процессора

То мы решили написать специальную статью, посвященную системам водяного охлаждения компьютеров . Мы постараемся рассказать обо всех аспектах водяного охлаждения для компьютеров , в частности мы расскажем о том, что такое система водяного охлаждения, из чего она состоит и как работает . Также мы затронем такие популярные вопросы, как сборка системы водяного охлаждения, обслуживание системы водяного охлаждения и многие смежные темы.

Что такое система водяного охлаждения

Система водяного охлаждения - это система охлаждения , которая для переноса тепла использует воду в качестве теплоносителя. В отличии от систем воздушного охлаждения, которые передают тепло напрямую воздуху, система водяного охлаждения сначала передает тепло воде .

Принцип работы системы водяного охлаждения

В системе водяного охлаждения компьютера тепло , вырабатываемое процессором, передается воде через специальный теплообменник , называемый ватерблоком . Нагретая таким образом вода, в свою очередь, переноситься в следующий теплообменник - радиатор , в котором тепло из воды передается воздуху и выходит за пределы компьютера. Движение воды в системе осуществляется с помощь специального насоса , который, чаще всего, называют помпой .

Превосходство систем водяного охлаждения над воздушными объясняется тем, что вода имеет более высокие, чем у воздуха, теплоемкость (4,183 кДж·кг -1 ·K -1 у воды против 1,005 кДж·кг -1 ·K -1 у воздуха) и теплопроводность (0,6 Вт/(м·K) у воды против 0,024-0,031Вт/(м·K) у воздуха). СВО обеспечивает более быстрый и эффективный отвод тепла от охлаждаемых элементов и, соответственно, более низкие температуры на них.

Эффективность и надежность систем водяного охлаждения доказана временем и применением в большом количестве различных механизмов и устройств, нуждающихся в мощном и надежном охлаждении, например двигателях внутреннего сгорания, мощных лазерах, радиолампах, заводских станках и даже АЭС .

Зачем компьютеру водяное охлаждение

Благодаря своей высокой эффективности, используя систему водяного охлаждения можно добиться как более продуктивного охлаждения, которое положительно скажется на разгоне, периоде жизни и стабильности системы, так и более низкого уровня шума от компьютера. При желании также можно собрать систему водяного охлаждения , которая позволит работать разогнанному компьютеру при минимуме шума . По этой причине системы водяного охлаждения в первую очередь актуальны для пользователей особо мощных компьютеров, любителей мощного разгона, а также людей, которые хотят сделать свой компьютер тише , но в тоже время не хотят идти на компромиссы с его мощностью.

Довольно-таки часто можно увидеть геймеров с трех и четырех чиповыми видео подсистемами (3-Way SLI, Quad SLI, CrossFire X) , которые жалуются на высокие температуры работы (более 90 градусов ) и постоянный перегрев видеокарт, которые при этом создают очень высокий уровень шума своими системами охлаждения . Иной раз кажется, что системы охлаждения современных видеокарт проектируются без учета возможности их использования в мультичиповых конфигурациях, что приводит к плачевным последствиям, когда видеокарты устанавливаются вплотную одна к другой - холодный воздух для нормального охлаждения им просто неоткуда черпать. Не спасают и альтернативные системы воздушного охлаждения , ведь всего несколько доступных на рынке моделей обеспечивают совместимость с мультичиповыми конфигурациями. В такой ситуации именно водяное охлаждение способно решить проблему - радикально понизить температуры, улучшить стабильность и повысить надежность функционирования мощного компьютера.

Компоненты системы водяного охлаждения

Компьютерные системы водяного охлаждения состоят из определенного набора компонентов, которые можно условно разделить на обязательные и необязательные, которые устанавливаются в СВО по своему желанию.

К обязательным компонентам системы водяного охлаждения компьютера относятся:

  • ватерблок (минимум один в системе, но можно и больше)
  • радиатор
  • помпа
  • шланги
  • фитинги
  • вода

Хотя данный список и не является исчерпывающим, к необязательным можно отнести такие компоненты как:

  • резервуар
  • термодатчики
  • контролеры помпы и вентиляторов
  • сливные краны
  • индикаторы и измерители (потока, давления, расхода, температуры)
  • второстепенные ватерблоки (для силовых транзисторов, модулей памяти, жестких дисков и т.д.)
  • присадки к воде и готовые водные смеси
  • бэкплейты
  • фильтры

Для начала мы рассмотрим обязательные компоненты, без которых СВО попросту не может работать.

Ватерблок (от англ. waterblock) - это специальный теплообменник , с помощь которого тепло от греющегося элемента (процессора, видео чипа или иного элемента) передается воде . Обычно, конструкция ватерблока состоит из медного основания , а также металлической или пластиковой крышки и набора креплений, которые позволяют закрепить ватерблок на охлаждаемом элементе. Ватерблоки существуют для всех тепловыделяющих элементов компьютера, даже для тех, которым они не очень-то и нужны .

К основным типам ватерблоков можно смело отнести процессорные ватерблоки, ватерблоки для видеокарт , а также ватерблоки на системный чип (северный мост ). В свою очередь, ватерблоки для видеокарт также бывают двух типов:

  • Ватерблоки, закрывающие только графический чип - так называемые «gpu only» ватерблоки
  • Ватерблоки, закрывающие все нагревающиеся элементы видеокарты (графический чип, видеопамять, регуляторы напряжения и т.д.) - так называемые фулкавер (от англ. fullcover) ватерблоки

Хотя первые ватерблоки обычно делались из довольно-таки толстой меди (1 – 1.5 см), в соответствии с современными тенденциями в ватерблокостроении, для более эффективной работы ватерблоков их основания стараются делать тонкими. Также, для увеличения поверхности теплопередачи , в современных ватерблоках обычно применяют микроканальную или микроигольчатую структуру. В тех же случаях, когда производительность не столь критична и не ведется борьба за каждый отыгранный градус, например на системном чипе, ватерблоки делают без изощренной внутренней структуры, иногда с простыми каналами или вообще плоским дном.

Радиатор . Радиатором в системах водяного охлаждения называют водно-воздушный теплообменник, который передает воздуху тепло воды, набранное в ватерблоке. Радиаторы систем водяного охлаждения подразделяются на два подтипа :

  • Пассивные, т.е. безвентиляторные
  • Активные, т.е. продуваемые вентиляторами

Безвентиляторные (пассивные) радиаторы для систем водяного охлаждения встречаются сравнительно редко (например, радиатор в СВО Zalman Reserator) из-за того, что, помимо очевидных плюсов (отсутствие шума от вентиляторов), данный тип радиаторов отличается более низкой эффективностью (по сравнению с активными радиаторами ), что характерно для всех пассивных систем охлаждения. Помимо низкой производительности, радиаторы данного типа, обычно, занимают много места и редко помещаются даже в модифицированные корпуса.

Продуваемые вентиляторами (активные) радиаторы являются более распространенными в компьютерных системах водяного охлаждения так как обладают намного более высокой эффективностью . При этом, в случае использования тихих или бесшумных вентиляторов, можно добиться, соответственно, тихой или бесшумной работы системы охлаждения - основного преимущества пассивных радиаторов. Радиаторы данного типа бывают самого разного размера, но размер большинства популярных моделей радиаторов идет кратным к размеру 120 мм или 140мм вентилятора, то есть радиатор на три 120 мм вентилятора будет обладать размером примерно в 360 мм в длинну и 120 мм в ширину - для простоты, радиаторы такого размера, обычно, называют тройными или 360 миллиметровыми.

Не смотря на то, что редко в каких компьютерных корпусах есть места для установки радиаторов водяного охлаждения большего чем 120 мм размера, для настоящего моддера установить радиатор не составит труда.

Помпа - это электрический насос, ответственный за циркуляцию воды в контуре системы водяного охлаждения компьютера, без которого СВО бы попросту не работала. Помпы применяемые в системах водяного охлаждения бывают как работающие от 220 вольт, так и от 12 вольт. Ранее, когда в продаже редко можно было встретить специализированные компоненты для СВО, энтузиасты, в основном, использовали аквариумные помпы, которые работали от 220 вольт, что создавало определенные трудности так как помпу необходимо было включать синхронно с компьютером - для этого, чаще всего, применяли реле, которое включало помпу автоматически при старте компьютера. С развитием систем водяного охлаждения стали появляться специализированные помпы , например Laing DDC, которые обладали компактными размерами и высокой производительностью , при этом питались от стандартных компьютерных 12 вольт.

Поскольку современные ватерблоки обладают довольно-таки высоким коэффициентом гидросопротивления , что является платой за высокую производительность, то с ними рекомендуется применять специализированные мощные помпы, так как с аквариумной помпой (даже мощной) современная СВО не полностью раскроет свою производительность. Особо гнаться за мощностью, применяя в одном контуре по 2 – 3 последовательно установленные помпы или используя циркуляционный насос от системы домашнего отопления, тоже не стоит так как это не приведет к росту производительности системы в целом, ведь она, в первую очередь, ограничена максимальной теплорассеивающей способностью радиатора и эффективностью ватерблока.

Шланги или трубки , как бы их не называли , также являются одним из обязательных компоненто в любой системы водяного охлаждения, ведь именно по ним вода течет от одного компонента СВО к другому. Чаще всего, в компьютерной системе водяного охлаждения применяются шланги изготовленные из ПВХ, реже из силикона. Несмотря на популярные заблуждения, размер шланга не оказывает сильного влияния на производительность СВО в целом, главное не брать слишком тонкие (внутренний диаметр, которых меньше 8 миллиметров ) шланги и все будет ОК

Фитинги - это специальные соединительные элементы, которые позволяют подключить шланги к компонентам СВО (ватерблокам, радиатору, помпе). Фитинг и вкручиваться в отверстие с резьбой на компоненте СВО , сильно вкручивать их не нужно (никаких гаечных ключей) так как уплотнение соединения чаще всего осуществляется при помощи уплотнительного кольца из резины. Современные тенденции на рынке комплектующих для СВО таковы, что подавляющее большинство компонентов поставляются без фитингов в комплекте. Делается это для того, чтобы пользователь имел возможность самостоятельно подобрать фитинги , необходимые конкретно для его системы водяного охлаждения, ведь существуют фитинги разного типа и под разный размер шлангов. Самые популярные типом фитингов можно считать компрессионные фитинги (фитинги с накидной гайкой) и фитинги типа ёлочка (штуцеры). Фитинги бывают как прямыми, так и угловыми (которые часто идут поворотными) и ставятся они в зависимости от того, как вы собираетесь размещать систему водяного охлаждения у себя в компьютере. Фитинги также различаются по типу резьбы, чаще всего, в компьютерных системах водяного охлаждения встречается резьба стандарта G1/4, но в редких случаях встречаются также резьбы стандартов G1/8 или G3/8.

Также является обязательным компонентом СВО Для заправки систем водяного охлаждения лучше всего использовать дистиллированную воду , то есть воду, очищенную от всех примесей методом дистилляции. Иногда на западных сайтах можно встретить упоминания о деионизированной воде - существенных отличий у нее от дистиллированной нет, разве что производят ее другим способом. Иногда, вместо воды применяют специально приготовленные смеси или воду с различными присадками - существенных отличий в этом нет, поэтому данные варианты мы рассмотрим в рубрике необязательных компонентов систем водяного охлаждения. В любом случае, заливать воду из под крана или минеральную/бутилированную воду для питья крайне не рекомендуется.

Теперь остановимся подробнее на необязательных компонентах для систем водяного охлаждения .

Необязательные компоненты - это компоненты без которых система водяного охлаждения может стабильно и без проблем работать, обычно, они никак не влияют на производительность СВО, хотя в некоторых случаях могут немного ее уменьшить . Основной смысл необязательных компонентов в том, чтобы сделать эксплуатацию системы водяного охлаждения более удобной и красивой или вызывать у пользователя чувство безопасности эксплуатации СВО. Итак, перейдем к рассмотрению необязательных компонентов:

Резервуар (расширительный бачек) не является обязательным компонентом системы водяного охлаждения , несмотря на то, что большинство систем водяного охлаждения всетаки оснащены ими. Достаточно часто для удобной заправки системы жидкостью вместо резервуара применяют фитинг-тройник (T-Line) и заливную горловину. Преимущество безрезервуарных систем в том, что в случае установки СВО в компактный корпус ее можно разместить более удобно. Преимущество систем с резервуаром в более удобной заправке системы (хотя это зависит от резервуара) и более удобном удалении пузырей воздуха из системы. Резервуары встречаются самого разного размера и формы и выбирать их необходимо по критериям удобства установки и внешнего вида.

Cливной кран - это компонент, который позволяет более удобно сливать воду из контура системы водяного охлаждения . В обычном состоянии он перекрыт, но, когда появляется необходимость слить из системы воду, то его открывают. Достаточно простой компонент, который может сильно повысить удобство пользования, а точнее обслуживания , системы водяного охлаждения.

Датчики, индикаторы и измерители. Поскольку энтузиасты, обычно, любят всякие примочки и навороты, то производители просто не могли остаться в стороне и выпустили довольно много различных контролеров, измерителей и датчиков для СВО, хотя система водяного охлаждения может совершенно спокойно (и при этом надежно) работать и без них. Среди таких компонентов встречаются электронные датчики давления и потока воды, температуры воды, контролеры, подстраивающие работу вентиляторов под температуру, механически индикаторы движения воды, контролеры помп и так далее. Тем не менее, по нашему мнению, например, датчики давления и расхода воды имеет смысл ставить только в системы, предназначенные для тестирования компонентов СВО, так как особого смысла с этой информации для обычного пользователя просто нету . Ставить по несколько термодатчиков в разные места контура СВО, надеясь увидеть большой перепад температур, тоже особого смысла нет, так как вода имеет очень высокую теплоемкость, то есть нагреваясь буквально один градус вода «впитывает» большое количество тепла, при этом в контуре СВО она движется с довольно большой скоростью, что приводит к тому, что температура воды в разных местах контура СВО в одно время довольно слабо отличается, так что впечатляющих значений вам не увидеть Да и не стоит забывать, что большинство компьютерных термодатчиков имеют погрешность в ±1 градус.

Фильтр. В некоторых системах водяного охлаждения можно встретить фильтр, подключенный в контур. Его задача состоит в том, чтобы отфильтровывать разнообразные мелкие частицы , попавшие в систему - это может быть пыль которая была в шлангах, остатки пайки в радиаторе, осадок, появившийся от использования красителя или антикоррозионной добавки.

Присадки к воде и готовые смеси. В дополнение к воде, в контуре СВО можно применять различные присадки для воды, некоторые из них защищают от коррозии, другие предотвращают развитие бактерий в системе, а третьи позволяют подкрасить воду в системе водяного охлаждения нужным вам цветом. Существуют также готовые смеси, которые содержат воду в качестве основного компонента с антикоррозионными присадками и красителем. Также бывают готовые смеси в состав которых входят присадки, повышающие производительность СВО, хотя повышение производительности от них незначительное. В продаже также можно встретить жидкости для систем водяного охлаждения, сделанные не на основе воды, а на основе специальной диэлектрической жидкости, которая не проводит электрический ток и, соответственно, не вызовет короткого замыкания при утечке на компоненты ПК. Обычная дистиллированная вода, в принципе, тоже не проводит ток, но, пролившись на запыленные компоненты ПК, может стать электропроводной. Особого смысла в диэлектрической жидкости нет так как нормально собранная и протестированная система водяного охлаждения не протекает и достаточно надежна. Также стоит заметить, что антикоррозионные присадки, иногда, в процессе своей роботы выпадают в осадок мелкой пылью, а красящие присадки могут немного прокрасить шланги и акрил в компонентах СВО, но, по нашему опыту, на это не стоит обращать внимание, так как это не критично. Главное соблюдать инструкцию к присадкам и не лить их сверх меры, так как это уже может привести к более плачевным последствиям. Применять ли в системе просто дистиллированную воду, воду с присадками или готовую смесь - особой разницы нет, а оптимальный вариант зависит от того, что вам необходимо.

Бэкплейт - это специальная крепежная пластина, которая помогает разгрузить текстолит материнской платы или видеокарты от усилия, создаваемого креплениями ватерблока, соответственно, уменьшая изгиб текстолита и шанс угробить дорогостоящее железо. Хотя бэкплейт и не является обязательным компонентом, его можно довольно-таки часто встреть в СВО, некоторые модели ватерблоков идут сразу укомплектованными бэкплейтами, а к другим он доступен ввиде опционального аксессуара.

Второстепенные ватерблоки. Помимо охлаждения водой важных и сильно греющихся компонентов, некоторые энтузиасты ставят дополнительные ватерблоки на компоненты, которые либо слабо греются, либо не требуют мощного активного охлаждения, например. К компонентам, которым водяное охлаждение необходимо разве что для вида, относятся: силовые транзисторы цепей питания, оперативная память, южный мост и жесткие диски. Необязательность данных компонентов в системе водяного охлаждения заключается в том, что, даже если вы и поставите на эти компоненты водяное охлаждение, то никакой дополнительной стабильности системы, улучшения разгона или других заметных результатов вы не получите - связано это, в первую очередь, с малым тепловыделением данных элементов, а также с неэффективностью ватерблоков для этих компонентов. Из четких плюсов установки данных ватерблоком можно выделить лишь внешний вид, а из минусов - повышение гидросопротивления в контуре СВО, увеличение стоимости всей системы (при этом значительное) и, обычно, малая апгрейдопригодность данных ватерблоков.

Помимо обязательных и необязательных компонентов для систем водяного охлаждения также можно выделить категорию так называемых гибридных компонентов. Иногда, в продаже можно встретить компоненты, представляющие собой два или более компонента СВО, соединенных в одно устройство. Среди таких устройств бывают: гибриды помпы и процессорного ватерблока, радиаторы для сво со встроенными помпой и резервуаром, очень распространены помпы, совмещенные с резервуаром. Смысл таких компонентов заключается в уменьшении занимаемого места и более удобной установке. Минусом таких компонентов, обычно, является их ограниченная пригодность к апгрейду.

Отдельно стоит категория самодельных компонентов для систем водяного охлаждения. Первоначально, примерно с 2000 года, все компоненты для систем водяного охлаждения изготавливались или дорабатывались энтузиастами своими руками, ведь специализированных компонентов для СВО тогда попросту не производилось. Поэтому, если человек хотел установить себе СВО, то ему приходилось делать все своими руками. После относительной популяризации водяного охлаждения для компьютеров, компоненты для них начали производить большое количество фирм и сейчас можно без особых проблем купить как готовую систему водяного охлаждения, так и все необходимые компоненты для ее самостоятельной сборки. Так что, в принципе, можно сказать, что сейчас нет необходимости самостоятельно изготавливать компоненты СВО для того чтобы установить на свой компьютер водяное охлаждение. Единственными причинами, по которым сейчас, некоторые, энтузиасты занимаются самостоятельным изготовлением компонентов СВО являются желание сэкономить или попробовать свои силы в изготовлении таких компонентов. Тем не менее, желание сэкономить не всегда удается осуществить, ведь помимо стоимости работы и компонентов изготовляемой детали, также есть затраты времени, которые, обычно, не учитываются людьми, желающими сэкономить, но реальность такова, что времени на самостоятельное изготовление прийдется потратить уйму и результат при этом не будет гарантирован. Да и производительность и надежность у самодельных компонентов, зачастую, оказывается далеко не на самом высоком уровне, так как для изготовления комплектующих серийного уровня необходимо иметь очень прямые (золотые) руки Если решитесь на самостоятельно изготовление, к примеру, ватреблока, то учитывайте данные факты.

Внешняя или внутренняя СВО

Помимо прочих признаков, системы водяного охлаждения делятся на внешние и внутренние. Внешние системы водяного охлаждения, обычно, выполнены ввиде отдельного «ящика», т.е. модуля, который при помощи шлангов подключается к ватерблокам, установленным на комплектующих в корпусе вашего ПК. В корпусе внешней системы водяного охлаждения почти всегда располагается радиатор с вентиляторами, помпа, резервуар и, иногда, блок питания для помпы с датчиками температуры и/или потока жидкости. К внешним системам относятся, например, системы водяного охлаждения Zalman семейства Reserator. Системы, устанавливаемые ввиде отдельного модуля, удобны тем, что для пользователя нет необходимости дорабатывать корпус своего компьютера, но очень неудобны, если вы планируете перемещать свой компьютер даже на минимальные расстояния, например, в соседнюю комнату

Внутренние системы водяного охлаждения, в идеале, располагаются полностью внутри корпуса ПК, но, из-за того, что далеко не все компьютерные корпуса хорошо приспособлены для установки СВО, некоторые компоненты внутренней системы водяного охлаждения (чаще всего радиатор), можно часто увидеть, установленными на внешней поверхности корпуса. К плюсам внутренних СВО можно отнести то, что они очень удобны при переноски компьютера так как они не будут мешать вам и не будут требовать сливать жидкость при транспортировке. Еще одним плюсом внутренних СВО можно назвать то, что при внутренней установки СВО ни в коей мере не страдает внешний вид корпуса, причем при моддинге компьютера система водяного охлаждения может служить отличным украшением корпуса.

К минусам внутренних систем водяного охлаждения можно отнести относительную сложность их установки, по сравнению с внешними, а также необходимость модификации корпуса для установки СВО во многих случаях. Еще одним негативным моментом можно назвать то, что внутренняя СВО добавят вашему корпусу пару килограмм веса

Готовые системы или самостоятельная сборка

Системы водяного охлаждения, среди прочих признаков, также подразделяются по варианту сборки и комплектации на:

  • Готовые системы, в которых все компоненты СВО покупаются в одном наборе, с инструкцией по установке
  • Самодельные системы, которые собираются самостоятельно из отдельных компонентов

Обычно, многими энтузиастами считается, что все «системы из коробки» показывают низкую производительность, но это далеко не так - комплекты водяного охлаждения от таких известных марок, как Swiftech, Danger Dan, Koolance и Alphacool демонстрируют вполне приличную производительность и про них уж точно нельзя сказать, что они слабые, да и данные фирмы являются зарекомендовавшими себя производителями высокопроизводительных компонентов систем водяного охлаждения.

Среди плюсов готовых систем можно отметить удобство - вы покупаете сразу всё, что необходимо для установки водяного охлаждения в одном наборе, да и инструкция по сборке идет в комплекте. Кроме того, производители готовых систем водяного охлаждения, обычно, стараются предусмотреть все возможные ситуации, чтобы у пользователя, например, не возникло проблем с установкой и креплением компонентов. К минусам таких систем можно отнести то, что они не гибкие в плане конфигурации, к примеру, у производителя есть несколько вариантов готовых систем водяного охлаждения и изменить их комплектацию, чтобы подобрать комплектующие лучше подходящие именно вам, вы, обычно, не имеете возможности.

Покупая же комплектующие водяного охлаждения по отдельности вы можете подобрать именно те компоненты, которые, по вашему мнению, лучше всего подойдут вам. Помимо этого, покупая систему из отдельных компонентов, иногда, можно сэкономить, но тут уже всё зависит от вас. Из минусов такого подхода можно выделить некоторую сложность в сборке таких систем для новичков, например, нам доводилось видеть случаи, когда люди, недостаточно разбирающиеся в теме, покупали не все необходимые компоненты и/или несовместимые между собой компоненты и попадали впросак (понимали что что-то здесь не так) только когда садились за сборку СВО.

Плюсы и минусы систем водяного охлаждения

К основным плюсам водяного охлаждения компьютеров можно отнести: возможность сборки тихого и мощного ПК, расширенные возможности по разгону, улучшенная стабильность при разгоне, отличный внешний вид и долгий срок службы. Благодаря высокой эффективности водяного охлаждения, можно собрать такую СВО, которая позволила бы эксплуатировать очень мощный разогнанный игровой компьютер с несколькими видеокартами при относительно низком уровне шума, недостижимом для воздушных систем охлаждения. Опять же, благодаря своей высокой эффективности, систем водяного охлаждения позволяют достичь более высокого уровня разгона процессора или видеокарты, недостижимого с помощью воздушного охлаждения. Системы водяного охлаждения, чаще всего, имеют отличный внешний вид и отлично смотрятся в модифицированном (или не очень) компьютере.

Из минусов систем водяного охлаждения, обычно, выделают: сложность сборки, дороговизну и ненадежность. Наше мнение таково, что эти минусы имеют под собой мало реальных фактов и являются очень спорными и относительными. К примеру, сложность сборки системы водяного охлаждения однозначно нельзя назвать высокой - собрать СВО не сильно сложнее, чем собрать компьютер, да и вообще времена, когда все комплектующие необходимо было дорабатывать в обязательном порядке или делать все компоненты своими руками, давно прошли и на данный момент в сфере СВО практически все стандартизировано и доступно в продаже. Надежность, правильно собранных, систем водяного охлаждения компьютера тоже не вызывает сомнений, как не вызывает сомнения надежность автомобильной системы охлаждения или системы отопления частного дома - при правильной сборке и эксплуатации проблем быть не должно. Конечно, от брака или несчастного случая никто не застрахован, но вероятность таких событий существует не только при применении СВО, а и с самыми обычными видеокартами, жесткими дисками и прочими комплектующими. Стоимость же, по нашему мнению, также не стоит выделять как минус, так как такой «минус» тогда смело можно приписывать всей высокопроизводительной технике . Да и у каждого пользователя свое понимание про дороговизну или дешевизну. О стоимости СВО я хотел бы поговорить отдельно.

Стоимость системы водяного охлаждения

Стоимость, как фактор, является, наверное наиболее часто упоминаемым «минусом», который приписывают всем системам водяного охлаждения ПК . При этом все забывают, что стоимость системы водяного охлаждения сильно зависит от того, на каких компонентах ее собрать: можно собирать СВО, чтобы общая стоимость была подешевле не в ущерб производительности, а можно - выбирать комплектующие по максимальной цене При этом итоговая стоимость похожих по эффективности СВО будет отличатся в разы.

Стоимость системы водяного охлаждения также зависит от того, на какой компьютер ее будут ставить, ведь чем мощнее компьютер, тем, в принципе, и дороже будет СВО для него, так как для мощного компьютера и СВО нужна более мощная. По нашему мнению, стоимость СВО является вполне оправданной на фоне других комплектующих, ведь система водяного охлаждения по факту и является отдельным компонентом, причем, по нашему мнению, обязательным для по-настоящему мощных ПК. Еще одним фактором, который необходимо учитывать при оценки стоимости СВО, является ее долговечность так как, правильно подобранные, компоненты СВО могут служить не один год подряд, переживая многочисленные апгрейды всего остального железа - не многие компоненты ПК могут похвастаться такой живучестью (разве что корпус или, взятый с избытком, БП), соответственно трата относительно большой суммы на СВО плавно распределяется по времени и не выглядит расточительной.

Если же вам очень хочется установить себе СВО, а с финансами напряг и в ближайшее время улучшений не намечается, то никто не отменял самодельные компоненты

Водяное охлаждение в моддинге

Помимо высокой эффективности, системы водяного охлаждения для ПК отлично выглядят, что объясняет популярность использования систем водяного охлаждения в множестве моддинг проектов. Благодаря возможности применять цветные или флуоресцентные шланги и/или жидкости, возможности подсветить светодиодами водоблоки, подобрать комплектующие, которые будут подходить вам по цветовой гамме и стилю, систему водяного охлаждения можно отлично вписать в практически любой моддинг проект, и/или сделать ее основной фишкой вашего моддинг проекта. Использование СВО в моддинг проекте , при правильной установке, позволяет улучшить обзор некоторых комплектующих, обычно скрытых большими воздушными системами охлада.

About sTs

Люблю самоделки. Стремлюсь к здоровому, гармоничному образу жизни. В людях ценю открытость и честность. Своим хочу донести до молодёжи ценность созидательных качеств в человеке. Пусть каждый обретет новые знакомства и получит массу знаний и опыта , которые сделают из него целостную личность ! Подробнее о себе рассказываю в блоге .

Как правильно организовать охлаждение в игровом компьютере

Применение даже самых эффективных кулеров может оказаться бесполезным, если в компьютерном корпусе плохо продумана система вентиляции воздуха. Следовательно, правильная установка вентиляторов и комплектующих является обязательным требованием при сборке системного блока. Исследуем этот вопрос на примере одного производительного игрового ПК

⇣ Содержание

Эта статья является продолжением серии ознакомительных материалов по сборке системных блоков. Если помните, в прошлом году вышла пошаговая инструкция « », в которой подробно описаны все основные моменты по созданию и проверке ПК. Однако, как это часто бывает, при сборке системного блока важную роль играют нюансы. В частности, правильная установка вентиляторов в корпусе увеличит эффективность работы всех систем охлаждения, а также уменьшит нагрев основных компонентов компьютера. Именно этот вопрос и рассмотрен в статье далее.

Предупреждаю сразу, что эксперимент проводился на базе одной типовой сборки с использованием материнской платы ATX и корпуса форм-фактора Midi-Tower. Представленный в статье вариант считается наиболее распространенным, хотя все мы прекрасно знаем, что компьютеры бывают разными, а потому системы с одинаковым уровнем быстродействия могут быть собраны десятками (если не сотнями) различных способов. Именно поэтому приведенные результаты актуальны исключительно для рассмотренной конфигурации. Судите сами: компьютерные корпусы даже в рамках одного форм-фактора имеют разные объем и количество посадочных мест под установку вентиляторов, а видеокарты даже с использованием одного и того же GPU собраны на печатных платах разной длины и оснащены кулерами с разным числом теплотрубок и вентиляторов. И все же определенные выводы наш небольшой эксперимент сделать вполне позволит.

Важной «деталью» системного блока стал центральный процессор Core i7-8700K. Подробный обзор этого шестиядерника находится , поэтому не буду лишний раз повторяться. Отмечу только, что охлаждение флагмана для платформы LGA1151-v2 является непростой задачей даже для самых эффективных кулеров и систем жидкостного охлаждения.

В систему было установлено 16 Гбайт оперативной памяти стандарта DDR4-2666. Операционная система Windows 10 была записана на твердотельный накопитель Western Digital WDS100T1B0A. С обзором этого SSD вы можете познакомиться .

MSI GeForce GTX 1080 Ti GAMING X TRIO

Видеокарта MSI GeForce GTX 1080 Ti GAMING X TRIO, как видно из названия, оснащена кулером TRI-FROZR с тремя вентиляторами TORX 2.0. По данным производителя, эти крыльчатки создают на 22 % более мощный воздушный поток, оставаясь при этом практически бесшумными. Низкая громкость, как говорится на официальном сайте MSI, обеспечивается в том числе и за счет использования двухрядных подшипников. Отмечу, что радиатор системы охлаждения , а его ребра выполнены в виде волн. По данным производителя, такая конструкция увеличивает общую площадь рассеивания на 10 %. Радиатор соприкасается в том числе и с элементами подсистемы питания. Чипы памяти MSI GeForce GTX 1080 Ti GAMING X TRIO дополнительно охлаждаются специальной пластиной.

Вентиляторы ускорителя начинают вращаться только в тот момент, когда температура чипа достигает 60 градусов Цельсия. На открытом стенде максимальная температура GPU составила всего 67 градусов Цельсия. При этом вентиляторы системы охлаждения раскручивались максимум на 47 % — это примерно 1250 оборотов в минуту. Реальная частота GPU в режиме по умолчанию стабильно держалась на уровне 1962 МГц. Как видите, MSI GeForce GTX 1080 Ti GAMING X TRIO имеет приличный фабричный разгон.

Адаптер оснащен массивным бекплейтом, увеличивающим жесткость конструкции. Задняя сторона видеокарты имеет L-образную полосу со встроенной светодиодной подсветкой Mystic Light. Пользователь при помощи одноименного приложения может отдельно настроить три зоны свечения. К тому же вентиляторы обрамлены двумя рядами симметричных огней в форме драконьих когтей.

Согласно техническим характеристикам, MSI GeForce GTX 1080 Ti GAMING X TRIO имеет три режима работы: Silent Mode — 1480 (1582) МГц по ядру и 11016 МГц по памяти; Gaming Mode — 1544 (1657) по ядру и 11016 МГц по памяти; OC Mode — 1569 (1683) МГц по ядру и 11124 МГц по памяти. По умолчанию у видеокарты активирован игровой режим.

С уровнем производительности референсной GeForce GTX 1080 Ti вы можете познакомиться . А еще на нашем сайте выходил MSI GeForce GTX 1080 Ti Lightning Z. Этот графический адаптер тоже оснащен системой охлаждения TRI-FROZR.

В основе сборки лежит материнская плата MSI Z370 GAMING M5 форм-фактора ATX. Это слегка видоизмененная версия платы MSI Z270 GAMING M5, которой вышел на нашем сайте прошлой весной. Устройство отлично подойдет для разгоняемых K-процессоров Coffee Lake, так как конвертер питания с цифровым управлением Digitall Power состоит из пяти двойных фаз, реализованных по схеме 4+1. Четыре канала отвечают непосредственно за работу CPU, еще один — за встроенную графику.

Все компоненты цепей питания соответствуют стандарту Military Class 6 — это касается как дросселей с титановым сердечником, так и конденсаторов Dark CAP с не менее чем десятилетним сроком службы, а также энергоэффективных катушек Dark Choke. А еще слоты DIMM для установки оперативной памяти и PEG-порты для установки видеокарт облачены в металлизированный корпус Steel Armor, а также имеют дополнительные точки пайки на обратной стороне платы. Для ОЗУ применена дополнительная изоляция дорожек, а каждый канал памяти разведен в своем слое текстолита, что, по заявлению производителя, позволяет добиться более «чистого» сигнала и увеличить стабильность разгона модулей DDR4.

Из полезного отмечу наличие сразу двух разъемов формата M.2, которые поддерживают установку накопителей PCI Express и SATA 6 Гбит/с. В верхний порт можно установить SSD длиной до 110 мм, в нижний — до 80 мм. Второй порт дополнительно оснащен металлическим радиатором M.2 Shield, который контактирует с накопителем при помощи термопрокладки.

За проводное соединение в MSI Z370 GAMING M5 отвечает гигабитный контроллер Killer E2500, а за звук — чип Realtek 1220. Звуковой тракт Audio Boost 4 получил конденсаторы Chemi-Con, спаренный усилитель для наушников с сопротивлением до 600 Ом, фронтальный выделенный аудиовыход и позолоченные аудиоразъемы. Все компоненты звуковой зоны изолированы от остальных элементов платы токонепроводящей полосой с подсветкой.

Подсветка материнской платы Mystic Light поддерживает 16,8 млн цветов и работает в 17 режимах. К материнской плате можно подключить RGB-ленту, соответствующий 4-пиновый разъем распаян в нижней части платы. Кстати, в комплекте с устройством идет 800-мм удлинитель со сплиттером для подключения дополнительной светодиодной ленты.

Плата оснащена шестью 4-контактными разъемами для подключения вентиляторов. Общее количество подобрано оптимально, расположение — тоже. Порт PUMP_FAN, распаянный рядом с DIMM, поддерживает подключение крыльчаток или помпы с током силой до 2 А. Расположение опять же весьма удачное, так как к этому коннектору просто подключить помпу и от необслуживаемой СЖО, и от кастомной системы, собранной вручную. Система ловко управляет в том числе «карлсонами» с 3-контактным коннектором. Частота регулируется как по количеству оборотов в минуту, так и по напряжению. Есть возможность полной остановки вентиляторов.

Наконец, отмечу еще две очень полезные «фишки» MSI Z370 GAMING M5. Первая — это наличие индикатора POST-сигналов. Вторая — блок светодиодов EZ Debug LED, расположенный рядом с разъемом PUMP_FAN. Он наглядно демонстрирует, на каком этапе происходит загрузка системы: на стадии инициализации процессора, оперативной памяти, видеокарты или накопителя.

Выбор на Thermaltake Core X31 пал неслучайно. Перед вами Tower-корпус, который соответствует всем современным тенденциям. Блок питания устанавливается снизу и изолируется металлической шторкой. Присутствует корзина для установки трех накопителей форм-факторов 2,5’’ и 3,5’’, однако HDD и SSD можно закрепить на заградительной стенке. Есть корзина для двух 5,25-дюймовых устройств. Без них в корпус можно установить девять 120-мм или 140-мм вентиляторов. Как видите, Thermaltake Core X31 позволяет полностью кастомизировать систему. Например, на базе этого корпуса вполне реально собрать ПК с двумя 360-мм радиаторами СЖО.

Устройство оказалось очень просторным. За шасси полно места для прокладки кабелей. Даже при небрежной сборке боковая крышка легко закроется. Пространство под железо позволяет использовать процессорные кулеры высотой до 180 мм, видеокарты длиной до 420 мм и блоки питания длиной до 220 мм.

Днище и передняя панель оснащены пылесборными фильтрами. Верхняя крышка снабжена сетчатым ковриком, который тоже ограничивает попадание пыли внутрь и облегчает установку корпусных вентиляторов и систем водяного охлаждения.

Давно уже прошли те времена когда водяное охлаждение компьютера было что то из ряда вон выходящее. С которым справлялись лишь умелые руки фанатов компьютерных игр и оверклокеров. Сегодня при наличии определенной суммы денег и желания, любой может установить систему жидкостного охлаждения в свой компьютер. Благо что уже стали выпускать комплекты готового решения, одну из них рассмотрим в этой статье.

Конечно установка водяного охлаждения требует определенных навыков и аккуратности. Если вы можете умело справляться с инструментом и имеете терпение то можно смело приступать. Для начала нужно спроектировать (нарисовать на бумаге) принцип размещения компонентов охлаждения в корпусе, убедиться что хватает места. Либо купить уже изначально корпус уже предназначенный для установки водяного охлаждения.

Подбор компонентов охлаждения

Это самый главный пункт на котором стоит остановиться поподробней. От выбора компонентовохлаждения будет зависеть насколько эффективным будет охлаждение. Если у вас есть возможность купить корпус уже предназначенный для установки водяного охлаждения то это сильно облегчает задачу. Иначе продумайте расположение компонентов. Приведу пример Full Tower корпуса в который уже можно устанавливать систему жидкостного охлаждения.

Водоблоки

Водоблоки предназначены для передачи тепла от греющихся элементов к охлаждающейся жидкости. Главные источники тепла это центральный процессор и процессор на видео карте .

Как известно из курса физики вода имеет более высокий коэффициент теплопроводности, что дает нам более эффективную теплоотдачу по сравнению с воздушным охлаждением.

Фото блока жидкостногоохлаждения для видео карты.

Водоблок процессора

Перед покупкой водоблока для центрального процессора убедитесь что крепление водоблока подходит под крепление вашего разъема процессора, так же обратите внимание на качество полировки рабочей поверхности водоблока(той части в которой водоблок соприкасается с греющейся части процессора). Так же следует особенно внимательно подойти к выбору термопасты , лучше остановиться на выборе качественной термопасты с хорошей теплопроводностью.

Радиатор

Радиатор играет роль охладителя хладогента (воды). Охлаждение нагретой воды происходит за счет прохождения воды через тоненькие трубки с прикрепленными к ним тоненькими пластинами. Иногда на радиатор устанавливают большие (140 мм) вентиляторы для прогона воздуха через радиатор тем самым дополнительно охлаждая хладогент. Наилучшим местом крепления в корпусе это верх так как тепло поднимется вверх.

На фото изображен радиатор с возможностью закрепления трех вентиляторов.

Резервуар жидкостного охлаждения.

Резервуар является самой простой деталью водяного охлаждения, он должен иметь достаточные размеры для того что бы было пространство для повышения и уменьшения уровня воды. Плюс выход воздуха из системы должен быть бесприпятственным для уменьшения уровня шума системы. Ну и конечно у резервуара должно быть специальное отверстие для заполнения охлаждающей жидкостью.

На картинке резервуар с LED подсветкой.

Следующее что вам понадобится это шланги и соединительные фитинги. Если у вас стандартная система жидкостного охлаждения то тут все просто, есть два стандарта в размерах это 1/2 и 3/8 в английской мере измерения. Следите что бы диаметры совпали. Вы будете также нуждаться в хладагенте, чтобы поместить в Вашу систему. Хотя это обычно упоминается как “водное охлаждение,” самые современные системы охлаждения используют своего рода хладагент с антикоррозийными и антипроводящими свойствами. Эта жидкость доступна от любого дистрибьютора охлаждающей жидкости.

Установка всей системы

Перед началом установки нарисуйте схему что и как будет установлено и как подключено соединительными шлангами. Проследите возможность установки других компонентов такие как дополнительные жесткие диски и так далее.

1. Установите крепежную пластину на материнскую плату

Теперь рекомендуем к водоблоку процессора подсоединить все водяные шланги, что бы предотвратить изгибы материнской платы. И уже потом устанавливать сам водоблок на процессор. Убедитесь что все соединения прижаты фитингами и что шланги сидят плотно на своих местах. Нанесите термопасту и установите водоблок, следите за равномерностью натяжения крепежных винтов.

2.Прикрепите радиатор

Установите радиатор, отрежьте нужной длины трубки следите за тем что бы трубки не перегибались и имели оптимальную длину. Соедините трубки с радиатором.

3. Установите резервуар

Установите на место резервуар для охлаждающей жидкости. Резервуар в зависимости от модели и места можно установить как внутри корпуса так и за его пределами.

5. Установка насоса жидкостного охлаждения

Приступаем к установке водяного насоса. Современные насосы имеют малый размер поэтому установить его не составит особого труда. Насос можно приклеить двухстороннем тейпом. Соедините шланги от насоса к остальным компонентам. Подключите шланг выхода (указано стрелкой на насосе) с радиатором. Следите за оптимальным расположением шлангов, вы же не хотите разбирать половину охлаждающей системы, только для того что бы поменять жесткий диск.

6. Наполните теплоносителем

Теперь когда вся система собрана еще раз проверяем места соединения трубок. Приступаем к заполнению теплоносителем. Аккуратно заливаем жидкость и только тогда можно включить насос. Прогоняем компьютер в течении 10 минут и следим за уровнем жидкости, по мере необходимости добавляем охлаждающую жидкость.

На этом установка завершена остается только следить за уровнем жидкости и температурой системы.​

Как полностью cвоими руками сделать систему водяного охлаждения компа


все в рабочем состоянии

Современные процессоры, графические или основные, становятся все мощнее. С прилагающимися кулерами, температура даже в простое может превышать 60 градусов. А как шумят вентиляторы! Поэтому появилось выражение:»Видеокарта пошла на взлет”))
Но есть альтернативное решение.

Инструкция

Уровень сложности: Непросто

Что вам понадобится:

  • Лист меди/алюминия, толщиной 1мм
  • Клей момент, нужен по-любому, может пригодиться и
  • Герметик
  • антенны от старых (или новых) радиоприемников
  • шланг ПВХ
  • аквариумная помпа
  • бутылка
  • монитор с помойки (ЭЛТ)

1 шаг

Садимся за стол.
Замеряем извлеченный из компа (будьте осторожны) процессор линейкой. Прикидываем размер будущего водоблока, он должен покрывать всю крышку процессора, но излишек большим быть не должен.
Допустим, 4см на 4см.

2 шаг

Разбираем старый монитор, в нем есть разные радиаторы, выберите самый близкий к размеру процессора. Помните, лучше излишек, чем недостаток. В радиаторе есть дырочка для болта, которым крепится транзистор. Изнутри ее залейте клеем, снаружи обмажьте термопастой (не в процессе сборки, конечно)) если размеры радиатора позволяют, можно вкрутить туда тот болт, обмазав клеем, процессор будет не на нем стоять, а на свободном месте). Свободное место зашкурить на доске самой мелкой шкуркой.

3 шаг

Из листа металла вырезаем крышку для радиатора, загибаем «крылышки”, которые будут прикрывать бока радиатора. «Крылышки” рисовать с учетом высоты ребер радиатора. Вырезаем, загибаем (в тисках под 90 гр), подставляем к радиатору, т.е. днищу. Вместо радиатора, если не нашли, можно использовать такую же крышку, только высота будущего водоблока должна быть минимальной.

4 шаг

Таким же образом выполняем детали водоблоков GPU , северного моста, только для них можно обойтись и без радиаторов, для видеокарты можно днище чуть поцарапать изнутри.
Вкладываем детали друг в друга, закрепляем в таком положении тисками,заливаем швы клеем, оставив маленькую дырочку, размер ее не принципиален, но чем меньше, тем лучше. Изнутри швы можно промазать герметиком)))

5 шаг

Для наглядности ребра… гм… в другой проекции

После высыхания деталей (через двое суток) берем антенну, разламываем сильным раздвижением. Самую толстую трубку раскусываем: если короткая, то на 2 части, если длинная, то на 4 (кусачками раскусываем, а не зубами).
Берем сверло по толщине трубки, сверлим в CPU -водоблоке 3 отверстия насквозь, кроме последнего ребра. См. картинку. Теперь замазываем среднюю дырочку клеем, и ту, размер которой не принципиален. Еще раз промазываем швы.

6 шаг

Высохло? Вставим трубки в боковые дырочки, обмажем клеем. То же самое с другими водоблоками.
Изготовляем крепления под сокеты, чтобы плотно прижималось.

7 шаг

Гыг-гыг

Отрежем у бутылки горловину, вставим туда погружной фильтр, иначе помпу. Крепим 5-мм-е шланги, думаем: не хватает радиатора. От печек, покупные брать не будем: сделаем сами!
Остался радиатор от процессора. Еще 3 подобных берем у друзей, если будем разгонять, или 2, если не будем.

8 шаг

Место на радиаторе, где лежит проц, закрываем крышкой, похожей на крышку от чипсета, но с четырьмя лепестками. Заливаем, сохнет, сверлим, вставляем – все по старому сценарию.

9 шаг

Собираем накоНЕЦ!
У меня такая схема: помпа в бутылке – радиатор♣ – радиатор – радиатор♣ – северный мост – CPU – помпа в бутылке.
♣ – вентилятор, все от 5 вольт

10 шаг

Смотрим температуру: при 20% разгоне 4 пня выше 70 не поднималась (сейчас разгон убран).

  • Все, что вы делаете, вы делаете на свой страх и риск
  • Протестируйте систему перед установкой
  • Воду можно заливать дистиллированную, но у меня год вода из-под крана крутится
  • Ни в коем случае не забывайте про щель, размер к-й не принципиален, ни в одном водоблоке, и в радиаторах, и не забывайте ее залить после просверливания дырочек.
  • Один радиатор лучше поставить между северным мостом и CPU.

И насколько она может быть эффективна. Потребность в жидком охлаждении появилась из-за того, что было решено разогнать процессор, а чем быстрее он работает, тем сильнее греется. То есть стандартного кулера уже не хватало, а магазинные системы охлаждения стоят довольно дорого.

Материалы и инструменты для самоделки:
- теплообменник либо водоблок;
- радиатор охлаждения (от автомобиля);
- помпа (водяной насос центробежного типа с мощностью 600 литров в час);
- расширительный бачок (в нашем случае под воду);
- четыре вентилятора размером 120 мм;
- блок питания для вентилятора;
- различные другие расходные материалы и инструменты.

Процесс изготовления самоделки:

Шаг первый. Изготовление водоблока
Водоблок необходим для того, чтобы максимально эффективно отводить тепло от процессора. Для таких целей будут нужны материалы с хорошей теплопроводностью, автором была выбрана медь. Еще как вариант можно использовать алюминий, но его теплопроводность вдвое меньше, чем у меди, то есть у алюминия это 230Вт/(м*К), а у меди 395,4 Вт/(м*К).








Еще важно разработать структуру водоблока для эффективного отвода тепла. Водоблок должен иметь несколько каналов, по которым будет циркулировать вода. Теплоноситель не должен застаиваться и вода должна циркулировать через весь водоблок. Также важно сделать площадь соприкосновения с водой как можно больше. Чтобы увеличить площадь соприкосновения с охлаждающей жидкостью, на стенки водоблока можно нанести частые надрезы, ну а еще можно установить небольшой игольчатый радиатор.


Автор решил идти по пути наименьшего сопротивления, поэтому в качестве водоблока была изготовлена емкость для воды с двумя трубками для ее подачи и отбора. В качестве основы использовался соединитель для труб из латуни. Основанием послужила пластина из меди толщиной 2 мм. Сверху же водоблок закрывается тоже такой медной пластиной, в которую установлены трубки под диаметр шлангов. Вся конструкция спаивается оловянно-свинцовым припоем.

В итоге водоблок получился довольно больших размеров, что отразилось на его весе, в собранном состоянии на материнскую плату шла нагрузка в 300 грамм. А это привело к дополнительным затратам. Чтобы облегчить конструкцию, понадобилось придумать дополнительную систему креплений для шлангов.

Материал водообменника: медь и латунь
Диаметр штуцеров составляет 10 мм
Сборка путем пайки оловянно-свинцовым припоем
Крепится конструкция с помощью винтов к магазинному кулеру, шланги дополнительно фиксируются с помощью хомутов
Стоимость самоделки на этом шаге в районе 100 рублей.

Подробнее о сборке водоблока
Как происходил процесс сборки, можно увидеть на фото. То есть из листа меди были вырезаны нужные заготовки, впаяны трубки, ну а потом с помощью паяльника все объединилось в готовый орган системы.


























Шаг второй. Разбираемся с помпой
Помпы можно разделить на два вида, это погружаемые и наружные. Внешняя помпа пропускает воду через себя, а погружаемая выталкивает. Автор использовал погружаемый вид помпы для своей самоделки, поскольку наружную нигде найти не удалось. Мощность такой покупной помпы находится в пределах от 200 до 1400 литров в час, а стоят они в районе 500-2000 рублей. В качестве источника питания здесь идет обычная розетка, потребляет устройство от 4 до 20 Вт.

Чтобы снизить шум, помпу нужно устанавливать на поролон или другой подобный материал. Резервуаром послужила банка, в которую была помещена помпа. Чтобы подключить силиконовые шланги, понадобились металлические хомуты на винтах. Чтобы в будущем легко надевать и снимать шланги, можно применять смазку без запаха.






В итоге максимальная производительность насоса составила 650 литров в час. Высота, на которую насос может поднять воду, равна 80 см. Требуемое напряжение - 220В, потребляет устройство 6Вт. Стоимость составляет 580 рублей.

Шаг третий. Пару слов о радиаторе
От того, насколько качественно будет работать радиатор, будет зависеть успех всей затеи. Для самоделки автор применил автомобильный радиатор от печки «Жигулей» девятой модели, он был куплен на барахолке всего за 100 рублей. В связи с тем, что расстояние между пластинами радиатора оказалось слишком маленьким, чтобы кулеры смогли прогнать через него воздух, их пришлось принудительно раздвигать.


Характеристики радиатора:
- трубки изготовлены из меди;
- ребра радиатора алюминиевые;
- размеры 35х20х5 см;
- диаметр штуцеров составляет 14 мм.

Шаг четвертый. Обдув радиатора

Для охлаждения радиатора используются две пары кулеров по 12 см, два устанавливаются с одной стороны и два с другой. Для вентиляторов использовался отдельный блок питания на 12В. Подключаются они параллельно с учетом полярности. Если перепутать полярность, вентилятор можно испортить. Черным цветом обозначен минус, красным плюс, а по желтому передаются значения скорости.
Ток вентилятора составляет 0.15А, один стоит 80 рублей.




Здесь главной задачей автор посчитал эффективность и дешевизну устройства, поэтому для снижения шума не прилагалось никаких усилий. Дешевые китайские вентиляторы сами по себе являются довольно шумными, но их можно установить на силиконовые прокладки или изготовить другие крепления для снижения вибраций. Если покупать более дорогие кулеры стоимостью 200-300 рублей, то они работают более тихо, но на максимальных оборотах все равно шумят. Но зато имеют высокую мощность и потребляют 300-600 мА тока.

Шаг пятый. Блок питания

Если нужного блока питания под рукой нет, то его можно собрать и своими руками. Понадобится недорогая микросхема за 100 рублей и несколько других доступных элементов. Для четырех вентиляторов понадобится ток в 0.6 А, ну и конечно нужно иметь немного в запасе. Собранная микросхема выдает порядка 1А при напряжении в районе 9-15В в зависимости от конкретной модели. Вообще подойдет любая модель , менять напряжение можно с помощью переменного резистора.






Инструменты и материалы для блока питания:
- паяльник с припоем;
- микросхема;
- радиодетали;
- изоляция и провода.
Цена вопроса составляет 100 рублей.

Шаг шестой. Завершающий этап. Установка и проверка

Подопытный компьютер:
- процессор Intel Core i7 960 3.2 ГГц / 4.3 ГГц;
- термопаста АЛ-СИЛ 3;
- блок питания OCZ ZX1250W;
- материнская плата ASUS Rampage 3 formula.

Используемое программное обеспечение: Windows 7 x64 SP1, RealTemp 3.69, Prime 95, Cpu-z 1.58.




Сразу первые тесты показали, что система охлаждения плохо справляется со своей задачей и требует доработки. Сперва были подключены только два вентилятора и не были раздвинуты пластины в радиатор для лучшего продува. При стандартном кулере с нулевой нагрузкой температура процессора составляет 42 градуса, а при самодельной системе охлаждения 57 градусов.

Тестом prime95 процессор был нагружен до 50%, температура при воздушном охлаждении составляет 65 градусов, а при самодельном водяном 100 С всего за 30 секунд. Конечно, при разгоне результаты еще куда хуже.




В итоге автор решил сделать водоболок, используя более тонкую пластину на 0.5 мм. Также были раздвинуты пластины в радиатор и подключено 4 кулера. В итоге температура без нагрузки составила 55 градусов, и при родном кулере 42. При запуске же теста на 50% загрузки, процессор прогревается до 83 градусов вместо 65 на родной системе охлаждения. Далее, спустя 5-7 минут вода начинает перегреваться и температура процессора достигает 96 градусов. И все это без разгона.


По словам автора, система оказалась не эффективной, чтобы можно было охладить современный процессор. В более старых компьютерах с этой задачей отлично справляется обычный кулер. Возможно, в системе можно еще что-то доработать или автор неправильно сделал водоблок. В любом случае собрать самому систему охлаждения мене чем за 1000 рублей является крайне тяжело.

Видео самоделки: