Шифр вертикальной перестановки. Маршрутные перестановки

Блочные шифры

В связи с тем, что открытый текст сообщения обычно имеет произвольную длину, иногда достаточно большую, то он разбивается на более мелкие блоки фиксированной длины. Тексты этих блоков шифруются отдельно и независи­мо друг от друга.

Одноключевые блочные шифры подразделяются на 3 группы:

Шифры перестановки

Шифры замены (подстановки)

Составные шифры.

При использовании шифров перестановки, которые предназначены для ус­транения смысла сообщения путем изменения порядка чередования его сим­волов, знаки открытого текста переставляются по некоторому правилу (клю­чу) в пределах заданного блока. В результате этого нарушается нормальный порядок их следования и сам смысл информационного сообщения. При этом различают шифры простой и сложной перестановки.

Шифр простой перестановки переупорядочивает группу букв текста регу­лярным образом в соответствии с выбранным ключом (правилом) переста­новки. Из истории известно множество примеров использования таких шиф­ров для ручного шифрования. При этом часто использовались специальные таблицы, которые давали простые шифрующие процедуры (ключи), согласно которым производились перестановки букв в сообщении. Ключом у таких таб­лиц служили размеры таблицы, фраза, задающая перестановку или другие специальные особенности таблицы.

Пример простейшего шифра перестановки представлен на рис. 5.5.

Рис. 5.5. Простейший шифр перестановки.

Как видно из рис. 5.5, для того чтобы зашифровать сообщение «ЮСТАС АЛЕКСУ ВСТРЕЧАЙТЕ СВЯЗНОГО», последнее необходимо записать в виде таблицы, состоящей, например, их 5 строк и 6 столбцов. Текст сообщения записы­вается по столбцам, исключая пробелы. Если последний стол­бец оказывается неполным, он заполняется произвольно лю­быми буквами. Для получения зашифрованного сообщения ис­ходный текст считывается по­строчно (слева направо) и за­писывается группами, напри­мер, по 5 цифр. Последняя

процедура не относится к процессу шифрования и делается только для того, чтобы было удобнее записывать текст, лишенный всякого смысла. Для рас­шифрования такого текста необходимо знать ключ, а именно количество строк и столбцов в таблице или иными словами, ее размер.

Более практический метод шифрования, очень похожий на предыдущий, опи­сывается ниже. Он отличается лишь тем, что колонки таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы.

При шифровании простой перестановкой шифруемый текст последова­тельными строками записывается под символами ключевого слова, кото­рые не должны повторяться Для упрощения запоминания ключа использу­ют ключевое слово, буквы которого, пронумерованные в порядке их рас­положения в алфавите, задают правило перестановки. Зашифрованный текст выписывается колонками в той последовательности, в которой располага­ются в алфавите буквы ключа или в порядке следования цифр в натураль­ном ряду, если ключ цифровой. Наглядно процесс шифрования с использо­ванием шифра простой перестановки представлен на рис. 5.6. Предполо­жим, что необходимо зашифровать информационное сообщение



«ЗАСЕДАНИЕ СОСТОИТСЯ ЗАВТРА ЮСТАС».

Для шифрования этого открытого текста запишем его без пробелов (уча­стие последних в процедуре шифрования, из-за их высокой частоты повто­рения, значительно ослабляет криптостойкость шифра) и выберем ключ шифрования, например, 245 136. Согласно этому ключу, состоящему из 6 цифр, поделим все информационное сообщение на блоки, каждый из кото­рых будет содержать по 6 букв текста. После деления на блоки у нас полу­чилось 4 блока, содержащих по 6 букв в каждом, и 1 блок - по 5 букв. В таких случаях последняя группа букв исходного сообщения произвольно дополняется различными символами до получения полного блока. В на­шем случае не достает только одной буквы, поэтому выбираем любую букву, например Ъ, и добавляем ее в конце пятого блока.

Рис. 5.6. Шифр простой перестановки

Далее, используя ключ 245 136, производится перестановка букв исходно­го открытого текста. Например, первая цифра ключа - 2, указывает на то, что в новом блоке первой буквой зашифрованного текста будет вторая буква бло­ка открытого текста, вторая цифра ключа - 4, показывает, что вторая буква шифротекста - это четвертая буква в блоке открытого текста и т. д.

В конечном итоге, после проведения перестановок во всех блоках, по­лучаем зашифрованный текст. Прочитав его, мы видим, что он полностью лишен какого-либо смыслового содержания.

Для упрощения запоминания ключа обычно используется ключевое слово. В данном случае - это слово «КОРЕНЬ». В нем цифре 1 ключа соответ­ствует буква Е, так как она первой из всех букв этого слова встречается в нашем алфавите, цифре 2 - буква К (по той же причине) и т. д.

То же сообщение можно зашифровать с использованием таблицы, состоя­щей, например, из 5 строк и 6 столбцов (по длине ключевого слова). Исход­ный текст записывается по столбцам и образует таблицу (рис. 5.7). Ключевое слово задает правило перестановки столбцов. Если в ключевом слове встре­чаются одинаковые буквы, то они нумеруются по порядку слева направо. По­лученный второй шифротекст, как это видно из рис. 5.7, совершенно не похож на первый.

Рис. 5.7. Шифрование с помощью таблицы

Основным недостатком данного шифра является его невысокая криптостойкость. Разложив зашифрованный текст на множители (не так уж мно­го получается вариантов), можно легко определить вероятную длину кодо­вого слова, которое использовалось при шифровании.

Для повышения криптостойкости полученного выше шифрованного тек­ста можно попробовать зашифровать его еще раз. Этот способ шифрования известен под названием двойная перестановка. Суть этого способа заключа­ется в следующем. Полученный после первого шифрования текст шифрует­ся вторично с использованием таблицы с другой размерностью (длины строк и столбцов подбираются другими). Кроме того, в одной таблице можно пе­реставлять строки, а в другой столбцы. Заполнять таблицу исходным тек­стом можно разными способами: зигзагом, змейкой, по спирали и т. п.

Шифр простой перестановки с использованием свойств таблиц, назы­ваемых магическими квадратами (рис. 5.8), использовался еще в средние века. Магическими квадратами называются равносторонние таблицы, все клетки которых заполнены натуральными числами, начиная от 1. При­чем эти числа в сумме дают по каждому столбцу, по каждой строке и по диагоналям магического квадрата одно и тоже число (в нашем случае - это число 34). Исходный текст - ЖДУ ВСТРЕЧИ ЮСТАС, при заполне­нии магического квадрата, вписывается по порядку следования натураль­ных чисел, например, число 1 заменялось 1 буквой исходного текста (Ж), число 12 - 12 буквой сообщения (С) и т.п. После записи открытого тек­ста содержимое таблицы считывается по строкам в результате чего и получался шифротскст с перестановкой букв.

Рис. 5.8. Магический квадрат

Широкое распространение получила разновидность маршрутной перестановки - вертикальная перестановка. В этом шифре также используется прямоугольная таблица, в которую сообщение записывается по строкам слева направо. Выписывается шифрограмма по вертикалям, при этом столбцы выбираются в порядке, определяемом ключом.

ОТКРЫТЫЙ ТЕКСТ: пример маршрутной перестановки

КЛЮЧ: (3, 1, 4, 2, 5)

КРИПТОГРАММА: рмупткмрнрнпррйсвиатеаиешоео

Заполнять последнюю строку таблицы «нерабочими» буквами нецелесообразно, так как криптоаналитик, получивший данную криптограмму, получает сведения о длине числового ключа .

Шифр вертикальной перестановки. Является разновидностью предыдущего шифра. К особенностям шифра можно отнести следующие:

Количество столбцов в таблице фиксируется и определяется длиной ключа;

Маршрут вписывания - строго слева-направо сверху-вниз;

Шифрограмма выписывается по столбцам в соответствии с их нумерацией (ключом).

Рис.5.5. Пример использования шифра вертикальной перестановки

В качестве ключа можно использовать слово или фразу. Тогда порядок выписывания столбцов соответствует алфавитному порядку букв в ключе. Например, если ключевым словом будет «ДЯДИНА», то присутствующая в нем буква А получает номер 1, Д – 2 и т.д. Если какая-то буква входит в слово несколько раз, то ее появления нумеруются последовательно слева направо. В примере первая буква Д получает номер 2, вторая Д – 3.

При шифровании сообщения «АБРАМОВ ИЛЬЯ СЕРГЕЕВИЧ» результат будет «ОЯЕ_АВ_ЕРИЕИАЛРЧМЬГ_Б_СВ».

Преобразования из этого шифра состоят в том, что в фигуру исходный текст вписывается по ходу одного ``маршрута"", а затем по ходу другого выписывается с нее. Такой шифр называют маршрутной перестановкой .

Например, можно вписывать исходное сообщение в прямоугольную таблицу, выбрав такой маршрут: по горизонтали, начиная с левого верхнего угла поочередно слева направо и справа налево.

Выписывать сообщение будем по другому маршруту: по вертикали, начиная с верхнего правого угла и двигаясь поочередно сверху вниз и снизу вверх.

При расшифровании надо определить число длинных столбцов, т.е. число букв в последней строке прямоугольника. Для этого нужно разделить число буев в сообщении на длину числового ключа. Остаток от деления и будет искомым числом.

Шифр ``Сцитала"" .

Одним из самых первых шифровальных приспособлений был жезл (``Сцитала""), применявшийся еще во времена войны Спарты против Афин в V веке до н. э.

Это был цилиндр, на который виток к витку наматывалась узкая папирусная лента (без просветов и нахлестов), а затем на этой ленте вдоль его оси записывался необходимый для передачи текст. Лента сматывалась с цилиндра и отправлялась адресату, который, имея цилиндр точно такого же диаметра, наматывал ленту на него и прочитывал сообщение. Ясно, что такой способ шифрования осуществляет перестановку местами букв сообщения.

Шифр ``Сцитала"‘ реализует не более n перестановок (n - длина сообщения).

Действительно, этот шифр, как нетрудно видеть, эквивалентен следующему шифру маршрутной перестановки: в таблицу, состоящую из столбцов, построчно записывают сообщение, после чего выписывают буквы по столбцам. Число задействованных столбцов таблицы не может превосходить длины сообщения.

Имеются еще и чисто физические ограничения, накладываемые реализацией шифра ``Сцитала"". Естественно предположить, что диаметр жезла не должен превосходить 10 сантиметров. При высоте строки в 1 сантиметр на одном витке такого жезла уместится не более 32 букв (10p < 32). Таким образом, число перестановок, реализуемых ``Сциталой"", вряд ли превосходит 32.

Шифр ``Поворотная решетка"".

Для использования шифра, называемого поворотной решеткой, изготавливается трафарет из прямоугольного листа клетчатой бумаги размера клеток.

В трафарете вырезано 2m x 2k клеток так, что при наложении его на чистый лист бумаги того же размера четырьмя возможными способами его вырезы полностью покрывают всю площадь листа.

Буквы сообщения последовательно вписываются в вырезы трафарета (по строкам, в каждой строке слева направо) при каждом из четырех его возможных положений в заранее установленном порядке.

  1. Шифры замены. Математическая модель. Примеры.

Поточные шифры (Цезаря)

Блочные шифры (Порта и Пфейфера)

Основа – прямоугольная таблица, в которую записан систематически перемешанный алфавит.

Правило зашифрования:

Буквы биграммы (i ,j ), i ¹ j , находятся в данной таблицк. При зашифровании биграмма (i ,j ) заменяется биграммой (k ,l ), где определяются с правилами:

  1. Если i и j не лежат в одной строке или одном столбце, то их позиции образуют противоположные вершины прямоугольника. Тогда k и l – другая пара вершин, причем k –вершина, лежащая в той же строке, что и i .
  2. Если i и j лежат в одной строке, то k и l – буквы той же строки, расположенные непосредственно справа от i и j соответственно. При этом если одна из букв – последняя в строке, то считается, что ее «правым соседом» является первая буква той же строки.
  3. Аналогично если i и j лежат в одном столбце, то они заменяются «соседями снизу.»

Пример шифра Плейфера.

Пусть шифр использует прямоугольник 5х6, в который записан систематически перемешанный русский 30-буквенный алфавит на основе ключевого слова «командир».

В качестве «пустышки» будем использовать редкую букву ф .

Представим фразу в виде последовательности биграмм:

АВ ТО РО МФ МЕ ТО ДА ЯВ ЛЯ ЕТ СЯ УИ ТС ТО НФ

Шифртекст:

ВП ЗД ЗР ОХ ДБ ЗД КН ЭЕ ТЫ ТШ ШД ЩЖ ЖТ ЗД ОЧ

Криптоанализ шифра Плейфера опирается на частотный анализ биграмм, триграмм и четырехграмм шифртекста и особенности замены шифрвеличин на шифрообозначения, связанные с расположением алфавита в прямоугольнике.

Существенную информацию о заменах дает знание того, что используется систематически перемешанный алфавит.

  1. Шифры перестановки. Математическая модель. Примеры.

Шифр, преобразования из которого изменяют только порядок следования символов исходного текста, но не изменяют их самих, называется шифром перестановки.


Пример
Рассмотрим, предназначенное для зашифрования сообщения длиной n символов. Его можно представить с помощью таблицы

где i1 - номер места шифртекста, на которое попадает первая буква исходного сообщения при выбранном преобразовании, i2 - номер места для второй буквы и т.д.

В верхней строке таблицы выписаны по порядку числа от 1 до, а в нижней - те же числа, но в произвольном порядке. Такая таблица называется подстановкой степени n . Зная подстановку, задающую преобразование, можно осуществить как зашифрование, так и расшифрование текста.

Зная подстановку, задающую преобразование, можно осуществить как зашифрование, так и расшифрование текста. Например, если для преобразования используется подстановка

и в соответствии с ней зашифровывается слово МОСКВА,

то получится КОСВМА.

Число различных преобразований шифра перестановки, предназначенного для зашифрования сообщений длины n , меньше либо равно n! (в это число входит и вариант преобразования, оставляющий все символы на своих местах!).

  1. Шифры гаммирования. Математическая модель. Примеры.

Гамми́рование - симметричный метод шифрования, основанный на «наложении» гамма-последовательности на открытый текст. Обычно это суммирование в каком-либо конечном поле

Принцип шифрования заключается в формировании генератором псевдослучайных чисел (ГПСЧ) гаммы шифра и наложении этой гаммы на открытые данные обратимым образом, например путем сложения по модулю два. Процесс дешифрования данных сводится к повторной генерации гаммы шифра и наложении гаммы на зашифрованные данные. Ключом шифрования в данном случае является начальное состояние генератора псевдослучайных чисел. При одном и том же начальном состоянии ГПСЧ будет формировать одни и те же псевдослучайные последовательности.

  1. Принципы построения блочных шифров. Схема Фейстеля.

Сеть Фейстеля:

Сеть Фейстеля - это общий метод преобразования произвольной функции F в перестановку на множестве блоков. Она состоит из циклически повторяющихся ячеек - раундов. Внутри каждого раунда блок открытого текста разделяется на две равные части. Раундовая функция

берет одну половину (на рис. правую), преобразует её с использованием ключа K i и объединяет результат с второй половиной посредством операции исключающее ИЛИ (XOR). Этот ключ задаётся первоначальным ключом K и различен для каждого раунда. Далее половинки меняются местами (иначе будет преобразовываться только одна половина блока) и подаются на следующий раунд. Преобразование сети Фейстеля является обратимой операцией.

Для функции F существуют определенные требования:

· её работа должна приводить к лавинному эффекту

· должна быть нелинейна по отношению к операции XOR

В случае невыполнения первого требования, сеть будет подвержена дифференциальным атакам (похожие сообщения будут иметь похожие шифры). Во втором случае действия шифра линейны и для взлома достаточно решения системы линейных уравнений.

Подобная конструкция обладает ощутимым преимуществом: процедурышифрования/расшифрования совпадают, только производные от первоначального ключи используются в обратном порядке. Это значит, что одни и те же блоки могут использоваться как для шифрования, так и для расшифрования, что, безусловно, упрощает реализацию шифра. Недостаток схемы заключается в том, что в каждом раунде обрабатывается только половина блока, что приводит к необходимости увеличивать число раундов.

История

Точное время появления шифра перестановки не известно. Вполне возможно, что писцы в древности переставляли буквы в имени своего царя ради того, чтобы скрыть его подлинное имя или в ритуальных целях.

Одно из древнейших известных нам шифровальные устройство - Скитала. Бесспорно известно, что скитала использовалась в войне Спарты против Афин в конце V века до н. э.

Прародителем анаграммы считают поэта и грамматика Ликофрона, который жил в Древней Греции в III веке до н. э. Как сообщал византийский автор Иоанн Цец, из имени царя Птоломея он составил первую из известных нам анаграмм: Ptolemaios - Аро Melitos, что в переводе означает «из мёда», а из имени царицы Арсинои - как «Ion Eras » (фиалка Геры).

Шифры простой перестановки

Как правило, при шифровании и дешифровании шифра простой перестановки используется таблица перестановок:

1 {\displaystyle 1} 2 {\displaystyle 2} 3 {\displaystyle 3} ... n {\displaystyle n}
I 1 {\displaystyle I_{1}} I 2 {\displaystyle I_{2}} I 3 {\displaystyle I_{3}} ... I n {\displaystyle I_{n}}

Первая строка - позиция символа в открытом тексте, вторая строка - позиция в шифрограмме. Таким образом, при длине сообщения n {\displaystyle n} символов существует ровно n ! {\displaystyle n!\ } ключей.

Шифры маршрутной перестановки

Широкое распространение получили так называемые маршрутные перестановки, использующие некоторую геометрическую фигуру (плоскую или объемную). Преобразования состоят в том, что отрезок открытого текста записывается в такую фигуру по некоторой траектории, а выписывается по другой траектории. Пример данного шифра - шифр Скиталы.

Шифр табличной маршрутной перестановки

Наибольшее распространение получили маршрутные шифры перестановки, основанные на прямоугольниках (таблицах). Например, можно записать сообщение в прямоугольную таблицу по маршруту: по горизонтали, начиная с верхнего левого угла, поочередно слева направо. Сообщение будем списывать по маршруту: по вертикалям, начиная с верхнего правого угла, поочередно сверху вниз.

п р и м е
р м а р ш
р у т н о
й п е р е
с т а н о
в к и

КРИПТОГРАММА: ешоеомрнрниатеаирмупткпррйсв

Обращение описанных шагов не представит труда при расшифровании.

Шифр вертикальной перестановки

Широкое распространение получила разновидность маршрутной перестановки - вертикальная перестановка. В этом шифре также используется прямоугольная таблица, в которую сообщение записывается по строкам слева направо. Выписывается шифрограмма по вертикалям, при этом столбцы выбираются в порядке, определяемом ключом.

ОТКРЫТЫЙ ТЕКСТ: пример маршрутной перестановки

КЛЮЧ: (3, 1, 4, 2, 5)

п р и м е
р м а р ш
р у т н о
й п е р е
с т а н о
в к и

КРИПТОГРАММА: рмупткмрнрнпррйсвиатеаиешоео

Заполнять последнюю строку таблицы «нерабочими» буквами нецелесообразно, так как криптоаналитик, получивший данную криптограмму, получает сведения о длине числового ключа.

Шифр «поворотная решётка

В 1550 году итальянский математик Джероламо Кардано (1501-1576) в книге «О тонкостях» предложил новую технику шифрования сообщений - решётку.

Изначально решётка Кардано представляла собой трафарет с отверстиями, в которые записывали буквы, слоги или слова сообщения. Затем трафарет убирали, а свободное место заполняли более или менее осмысленным текстом. Такой метод сокрытия информации относится к стеганографии.

Позднее был предложен шифр «поворотная решётка» - первый транспозиционный (геометрический) шифр. Несмотря на то, что существует большая разница между изначальным предложением Кардано и шифром «поворотная решётка», методы шифрования, основанные на трафаретах, принято называть «решётками Кардано».

Для шифрования и дешифрования с помощью данного шифра изготовляется трафарет с вырезанными ячейками. При наложении трафарета на таблицу того же размера четырьмя возможными способами, его вырезы полностью должны покрывать все клетки таблицы ровно по одному разу.

При шифровании трафарет накладывают на таблицу. В видимые ячейки по определённому маршруту вписывают буквы открытого текста. Далее трафарет переворачивают три раза, каждый раз проделывая операцию заполнения.

Шифрограмму выписывают из получившейся таблицы по определённому маршруту. Ключом являются трафарет, маршрут вписывания и порядок поворотов.

Данный метод шифрования использовался для передачи секретной информации нидерландскими правителями в 1740-х годах. Во время Первой мировой войны армия кайзера Вильгельма использовала шифр «поворотная решётка». Немцы использовали решётки разных размеров, однако очень недолго (четыре месяца), к огромному разочарованию французских криптоаналитиков, которые только-только начали подбирать к ним ключи. Для решёток разных размеров французы придумали собственные кодовые имена: Анна (25 букв), Берта (36 букв), Дора (64 буквы) и Эмиль (81 буква).

Шифр перестановки «скитала». В V в. до н.э. правители греческого государства Спарты имели хорошо отработанную систему секретной военной связи и шифровали свои послания с помощью скитала, первого простейшего криптографического устройства, реализующего метод простой перестановки (рис. 1.6).

Рис. 1.6.

Шифрование выполнялось следующим образом. На стержень цилиндрической формы, который назывался скитала, наматывали спиралью (виток к витку) полоску кожи и писали на ней вдоль стержня несколько строк текста сообщения. Затем снимали со стержня полоску - буквы на ней оказывались расположенными вразнобой.

Вестник обычно прятал сообщение, используя кожаную полосу как пояс, т.е. кроме шифрования применяли также и стеганографию. Чтобы получить исходное сообщение, полоску кожи надо намотать вокруг скиталы того же диаметра. Ключом этого шифра является диаметр стержн я - с к итал ы. Зная только вид шифра, но не имея ключа, расшифровать сообщение непросто. Шифр «скитала» многократно совершенствовался в последующие времена.

Способ взлома этого шифра предложен Аристотелем. Надо изготовить длинный конус и, начиная с основания, обертывать его лентой с шифрованным сообщением, постепенно сдвигая к вершине. В какой-то момент начнут просматриваться куски сообщения. Диаметр конуса в этом месте соответствует диаметру скиталы.

Шифрующие таблицы. Одним из самых примитивных табличных шифров перестановки является простая перестановка, для которой ключом служит размер таблицы. Этот метод шифрования в простейшем варианте сходен с шифром «скитала». Например, текст сообщение записывается в таблицу определенного размера в столбик, а считывается но строкам.

Запишем фразу «Терминатор прибывает седьмого в полночь» в таблицу размером 5x7 (рис. 1.7) но столбцам. Выписав текст из таблицы построчно, получим шифр: «тннвеглеарадонртиеьвомобтмнчирысооь».

Рис. 1.7.

Отправитель и получатель сообщения должны заранее условиться об общем ключе в виде размера таблицы. При расшифровке действия выполняют в обратном порядке (построчная запись, чтение по столбцам).

Этот шифр может быть несколько усложнен: например, столбцы могут быть переставлены в некоторой последовательности, определяемой ключом. Возможна двойная перестановка - столбцов и строк.

Решетка Кардано. Решетка Кардано (поворотная решетка) - это прямоугольная или квадратная карточка с четным числом строк и столбцов 2k X 2т. В ней проделаны отверстия таким образом, что при последовательном отражении или поворачивании и заполнении открытых клеток карточки постепенно будут заполнены все клетки листа.

Карточку сначала отражают относительно вертикальной оси симметрии, затем - относительно горизонтальной оси, и снова - относительно вертикальной (рис. 1.8).

Если решетка Кардано - квадратная, то возможен и другой вариант ее преобразований - поворот на 90° (рис. 1.9).


Рис. 1.8.


Рис. 1.9.

При записи обычным способом (слева направо и сверху вниз) словосочетания «шифрование текста» (без пробелов) в свободные клетки поворотной решетки, изображенной на рис. 1.9, получим текст в виде таблицы (рис. 1.10), или, записав текст в одну строку, - «кшииоесвтафатрен».

Рис. 1.10.

Получатель должен знать трафарет и наложить его в той же последовательности, что и при шифровании. Ключом является выбранный тип перемещения решетки (отражение или поворот) и трафарет - расположение отверстий, которые для квадратной решетки размером х могут быть выбраны 4""* способами (с учетом начальной ориентации трафарета). В этом случае среди трафаретов, считающихся различными, будут встречаться такие, которые являются зеркальным отражением или поворотами других трафаретов, т.е. трафареты, различающиеся только начальным расположением (ориентацией). Если пренебречь начальным расположением трафарета, то, очевидно, различных трафаретов будет в 4 раза меньше - 4""*"

Например, для решеток размером 4X4 существует 256 возможных вариантов трафарета (с учетом начальной ориентации) или всего 64 различных трафаретов.

Несмотря на то, что число трафаретов для больших решеток достаточно велико (порядка 4 млн (4- 10 е)), оно все же существенно меньше, чем случайных перестановок элементов таблицы, число которых равно (2т? 2k).

Например, для таблицы размером 4x4 число случайных перестановок составляет порядка 2 ? 10 13 , а для таблиц размером 8x8 - около 10 89 .

Решетки Кардано, так же как и шифрующие таблицы, являются частными случаями шифра маршрутной перестановки.