Узел пельтье. Что такое элемент пельтье, его устройство, принцип работы и практическое применение

Холодильное оборудование настолько прочно вошло в нашу жизнь, что даже трудно представить, как можно было без него обходиться. Но классические конструкции на хладагентах не подходят для мобильного использования, например, в качестве походной сумки-холодильника.

Для этой цели используются установки, в которых принцип работы построен на эффекте Пельтье. Кратко расскажем об этом явлении.

Что это такое?

Под данным термином подразумевают термоэлектрическое явление, открытое в 1834 году французским естествоиспытателем Жаном-Шарлем Пельтье. Суть эффекта заключается в выделении или поглощении тепла в зоне, где контактируют разнородные проводники, по которым проходит электрический ток.

В соответствии с классической теорией существует следующее объяснение явления: электрический ток переносит между металлами электроны, которые могут ускорять или замедлять свое движение, в зависимости от контактной разности потенциалов в проводниках, сделанных из различных материалов. Соответственно, при увеличении кинетической энергии, происходит ее превращение в тепловую.

На втором проводнике наблюдается обратный процесс, требующий пополнения энергии, в соответствии с фундаментальным законом физики. Это происходит за счет теплового колебания, что вызывает охлаждение металла, из которого изготовлен второй проводник.

Современные технологии позволяют изготовить полупроводниковые элементы-модули с максимальным термоэлектрическим эффектом. Имеет смысл кратко рассказать об их конструкции.

Устройство и принцип работы

Современные модули представляет собой конструкцию, состоящую из двух пластин-изоляторов (как правило, керамических), с расположенными между ними последовательно соединенными термопарами. С упрощенной схемой такого элемента можно ознакомиться на представленном ниже рисунке.


Обозначения:

  • А – контакты для подключения к источнику питания;
  • B – горячая поверхность элемента;
  • С – холодная сторона;
  • D – медные проводники;
  • E – полупроводник на основе р-перехода;
  • F – полупроводник n-типа.

Конструкция выполнена таким образом, что каждая из сторон модуля контактирует либо p-n, либо n-p переходами (в зависимости от полярности). Контакты p-n нагреваются, n-p – охлаждаются (см. рис.3). Соответственно, возникает разность температур (DT) на сторонах элемента. Для наблюдателя этот эффект будет выглядеть, как перенос тепловой энергии между сторонами модуля. Примечательно, что изменение полярности питания приводит к смене горячей и холодной поверхности.


Рис. 3. А – горячая сторона термоэлемента, В – холодная

Технические характеристики

Характеристики термоэлектрических модулей описываются следующими параметрами:

  • холодопроизводительностью (Q max), эта характеристика определяется на основе максимально допустимого тока и разности температуры между сторонами модуля, измеряется в Ваттах;
  • максимальным температурным перепадом между сторонами элемента (DT max), параметр приводится для идеальных условий, единица измерения – градусы;
  • допустимая сила тока, необходимая для обеспечения максимального температурного перепада – I max ;
  • максимальным напряжением U max , необходимым для тока I max , чтобы достигнуть пиковой разницы DT max ;
  • внутренним сопротивлением модуля – Resistance, указывается в Омах;
  • коэффициентом эффективности – СОР (аббревиатура от английского – coefficient of performance), по сути это КПД устройства, показывающее отношение охлаждающей к потребляемой мощности. У недорогих элементов этот параметр находится в пределах 0,3-0,35, у более дорогих моделей приближается к 0,5.

Маркировка

Рассмотрим, как расшифровывается типовая маркировка модулей на примере рисунка 4.


Рис 4. Модуль Пельтье с маркировкой ТЕС1-12706

Маркировка разбивается на три значащих группы:

  1. Обозначение элемента. Две первые литеры всегда неизменны (ТЕ), говорят о том, что это термоэлемент. Следующая указывает размер, могут быть литеры «С» (стандартный) и «S» (малый). Последняя цифра указывает, сколько слоев (каскадов) в элементе.
  2. Количество термопар в модуле, изображенном на фото их 127.
  3. Величина номинального тока в Амперах, у нас – 6 А.

Таким же образом читается маркировка и других моделей серии ТЕС1, например: 12703, 12705, 12710 и т.д.

Применение

Несмотря на довольно низкий КПД, термоэлектрические элементы нашли широкое применение в измерительной, вычислительной, а также бытовой технике. Модули являются важным рабочим элементом следующих устройств:

  • мобильных холодильных установок;
  • небольших генераторов для выработки электричества;
  • систем охлаждения в персональных компьютерах;
  • кулеры для охлаждения и нагрева воды;
  • осушители воздуха и т.д.

Приведем детальные примеры использования термоэлектрических модулей.

Холодильник на элементах Пельтье

Термоэлектрические холодильные установки значительно уступают по производительности компрессорным и абсорбционным аналогам. Но они имеют весомые достоинства, что делает целесообразным их использование при определенных условиях. К таким преимуществам можно отнести:

  • простота конструкции;
  • устойчивость к вибрации;
  • отсутствие движущихся элементов (за исключением вентилятора, обдувающего радиатор);
  • низкий уровень шума;
  • небольшие габариты;
  • возможность работы в любом положении;
  • длительный срок службы;
  • небольшое потребление энергии.

Такие характеристики идеально подходят для мобильных установок.

Элемент Пельтье как генератор электроэнергии

Термоэлектрические модули могут работать в качестве генераторов электроэнергии, если одну из их сторон подвергнуть принудительному нагреву. Чем больше разница температур между сторонами, тем выше сила тока, вырабатываемая источником. К сожалению, максимальная температура для термогенератора ограничена, она не может быть выше точки плавления припоя, используемого в модуле. Нарушение этого условия приведет к выходу элемента из строя.

Для серийного производства термогенераторов используют специальные модули с тугоплавким припоем, их можно нагревать до температуры 300°С. В обычных элементах, например, ТЕС1 12715, ограничение – 150 градусов.

Поскольку КПД таких устройств невысокий, их применяют только в тех случаях, когда нет возможности использовать более эффективный источник электрической энергии. Тем не менее, термогенераторы на 5-10 Вт пользуются спросом у туристов, геологов и жителей отдаленных районов. Большие и мощные стационарные установки, работающие от высокотемпературного топлива, используют для питания приборов газораспределительных узлов, аппаратуры метеорологических станций и т.д.


Для охлаждения процессора

Относительно недавно данные модули стали использовать в системах охлаждения CPU персональных компьютеров. Учитывая низкую эффективность термоэлементов, польза от таких конструкций довольно сомнительна. Например, чтобы охладить источник тепла мощностью 100-170 Вт (соответствует большинству современных моделей CPU), потребуется потратить 400-680 Вт, что требует установки мощного блока питания.

Второй подводный камень – незагруженный процессор будет меньше выделять тепловой энергии, и модуль может охладить его меньше точки росы. В результате начнет образовываться конденсат, что, гарантировано, выведет электронику из строя.

Тем, кто решиться создать такую систему самостоятельно, потребуется провести серию расчетов по подбору мощности модуля под определенную модель процессора.

Исходя из выше сказанного, использовать данные модули в качестве системы охлаждения CPU не рентабельно, помимо этого они могут стать причиной выхода компьютерной техники из строя.

Совсем иначе обстоит дело с гибридными устройствами, где термомодули используются совместно с водяным или воздушным охлаждением.


Гибридные системы охлаждения доказали свою эффективность, но высокая стоимость ограничивает круг их почитателей.

Кондиционер на элементах Пельтье

Теоретически такое устройство конструктивно будет значительно проще классических систем климат-контроля, но все упирается в низкую производительность. Одно дело – охладить небольшой объем холодильной камеры, другое – помещение или салон автомобиля. Кондиционеры на термоэлектрических модулях будут больше (в 3-4 раза) потреблять электроэнергии, чем оборудование, работающее на хладагенте.

Что касается использования в качестве автомобильной системы климат-контроля, то для работы такого устройства мощности штатного генератора будет недостаточно. Замена его на более производительное оборудование приведет к существенному расходу топлива, что не рентабельно.

В тематических форумах периодически возникают дискуссии на эту тему и рассматриваются различные самодельные конструкции, но полноценного рабочего прототипа пока не создано (не считая кондиционера для хомячка). Вполне возможно, ситуация измениться, когда появятся в широком доступе модули с более приемлемым КПД.

Для охлаждения воды

Термоэлектрический элемент часто используют как охладитель для кулеров воды. Конструкция включает в себя: охлаждающий модуль, контролер, управляемый термостатом и обогреватель. Такая реализация значительно проще и дешевле компрессорной схемы, помимо этого, она надежней и проще в эксплуатации. Но есть и определенные недостатки:

  • вода не охлаждается ниже 10-12°С;
  • на охлаждение требуется дольше времени, чем компрессорному аналогу, следовательно, такой кулер не подойдет для офиса с большим количеством работников;
  • устройство чувствительно к внешней температуре, в теплом помещении вода не будет охлаждаться до минимальной температуры;
  • не рекомендуется установка в запыленных комнатах, поскольку может забиться вентилятор и охлаждающий модуль выйдет из строя.
Настольный кулер для воды с использованием элемента Пельтье

Осушитель воздуха на элементах Пельтье

В отличие от кондиционера, реализация осушителя воздуха на термоэлектрических элементах вполне возможна. Конструкция получается довольно простой и недорогой. Охлаждающий модуль понижает температуру радиатора ниже точки росы, в результате на нем оседает влага, содержащаяся в воздухе, проходящем через устройство. Осевшая вода отводится в специальный накопитель.


Несмотря на низкий КПД, в данном случае эффективность устройства вполне удовлетворительная.

Как подключить?

С подключением модуля проблем не возникнет, на провода выходов необходимо подать постоянное напряжение, его величина указанна в даташит элемента. Красный провод необходимо подключить к плюсу, черный – к минусу. Внимание! Смена полярности меняет местами охлаждаемую и нагреваемую поверхности.

Как проверить элемент Пельтье на работоспособность?

Самый простой и надежный способ – тактильный. Необходимо подключить модуль к соответствующему источнику напряжения и дотронуться до его разных сторон. У работоспособного элемента одна из них будет теплее, другая – холоднее.

Если подходящего источника под рукой нет, потребуется мультиметр и зажигалка. Процесс проверки довольно прост:

  1. подключаем щупы к выводам модуля;
  2. подносим зажженную зажигалку к одной из сторон;
  3. наблюдаем за показаниями прибора.

В рабочем модуле при нагреве одной из сторон генерируется электрический ток, что отобразится на табло прибора.

Как сделать элемент Пельтье своими руками?

Сделать самодельный модуль в домашних условиях практически невозможно, тем более в этом нет смысла, учитывая их относительно невысокую стоимость (порядка $4-$10). Но можно собрать устройство, которое будет полезным в походе, например, термоэлектрический генератор.


Для стабилизации напряжения необходимо собрать простой преобразователь на микросхеме ИМС L6920.


На вход такого преобразователя подается напряжение в диапазоне 0,8-5,5 В, на выходе он будет выдавать стабильные 5 В, что вполне достаточно для подзарядки большинства мобильных устройств. Если используется обычный элемент Пельтье, необходимо ограничить рабочий диапазон температуры нагреваемой стороны 150 °С. Чтобы не утруждать себя отслеживанием, в качестве источника тепла лучше использовать котелок с кипящей водой. В этом случае элемент гарантировано не нагреется выше температуры 100 °С.

Можно нагревать какие-либо предметы. Это может быть паяльник, электрочайник, утюг, фен, различного рода обогревашки и тд. Но слышали ли вы, что с помощью электрического тока можно охлаждать? «Ну а как же, например, бытовой холодильник» — скажите вы. И будете не правы. В бытовом холодильнике электрический ток оказывает только вспомогательную функцию: гоняет фреон по кругу.

Но существуют ли такие радиоэлементы, которые при подаче на них электрического тока вырабатывают холод ? Оказывается существуют;-). В 1834 году французский физик Жан Пельтье обнаружил поглощение тепла при прохождении электрического тока через контакт двух разнородных проводников. Или, иными словами, в этом месте наблюдалась пониженная температура . Ну и как положено в физике, чтобы не придумывать новое название этому эффекту, его называют в честь того, кто его открыл. Открыл что-то новое? Отвечай за базар)). С тех пор зовется такой эффект эффектом Пельтье .

Ну и как тоже ни странно, элемент, который вырабатывает холодок, называют элементом Пельтье - это термоэлектрический преобразователь , принцип действия которого основан на эффекте Пельтье - возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. T hermoE lectric C ooler - термоэлектрический охладитель).

Элемент Пельтье (практика)

Выглядеть он может по-разному, но основной его вид — это прямоугольная или квадратная площадка с двумя выводами. Сразу же отметил сторону «А» и сторону «Б» для дальнейших экспериментов


Почему я пометил стороны?

Вы думаете, если мы просто тупо подадим напряжение на этот элемент, он у нас будет полностью охлаждаться? Не хочу вас разочаровывать, но это не так… Еще раз внимательно читаем определение про элемент Пельтье. Видите там словосочетание «разности температур»? То то и оно. Значит, у нас какая-то сторона будет греться, а какая-то охлаждаться. Нет в нашем мире ничего идеального.

Для того, чтобы определить температуру каждой стороны элемента Пельтье, я буду использовать , который шел в комплекте с термопарой


Сейчас он показывает комнатную температуру. Да, у меня тепло;-).

Для того, чтобы определить, какая сторона элемента Пельтье греется, а какая охлаждается, для этого цепляем красный вывод на плюс, черный — на минус и подаем чуток напряжения , вольта два-три. Я узнал, что у меня сторона «А» охлаждается, а сторона «Б» греется, пощупав их рукой. Если перепутать полярность , ничего страшного не случится. Просто сторона А будет нагреваться, а сторона Б охлаждаться, то есть они поменяются ролями.

Итак, номинальное (нормальное) напряжение для работы элемента Пельтье — это 12 Вольт. Так как я подключил на красный — плюс, а на черный — минус, то у меня сторона Б греется. Давайте замеряем ее температуру. Подаем напряжение 12 Вольт и смотрим на показания мультиметра:


77 градусов по Цельсию — это не шутки. Эта сторона нагрелась так, что когда ее трогаешь, она обжигает пальцы.

Поэтому главной фишкой использования элемента Пельтье в своих электронных устройствах является большой радиатор . Желательно, чтобы радиатор обдувался вентилятором. Я пока что взял радиатор от усилителя, который дали в ремонт. Намазал термопасту КПТ-8 и прикрепил элемент Пельтье к радиатору.

Подаем 12 Вольт и замеряем температуру стороны А:


7 градусов по Цельсию). Когда трогаешь, пальцы замерзают.

Но также есть и обратный эффект, при котором можно вырабатывать электроэнергию с помощью элемента Пельтье, если одну сторону охлаждать, а другую нагревать. Очень показательный пример — это фонарик, работающий от тепла руки

Мощность элемента Пельтье

Элемент Пельтье сам по себе считается очень энергозатратным. Регулировка температуры его сторон достигается напряжением. Чем больше напряжение, тем большую силу тока он потребляет. А чем больше силы тока он потребляет, тем быстрее набирает температуру. Поэтому, можно регулировать холодок, тупо меняя значение напряжения).

Вот некоторые значения по потреблению электрического тока элементом Пельтье:


При напряжении в 1 Вольт он кушает 0,3 Ампера. Неплохо)

Повышаю напряжение до 3 Вольт


Кушает уже почти 1 Ампер.

Повышаю до 5 Вольт


Чуть больше полтора Ампера.

Даю 12 Вольт, то есть его рабочее напряжение:


Жрет уже почти 4 Ампера! Грабеж).

Давайте грубо посчитаем его мощность. 4х12=48 Ватт. Это даже больше, чем 40 Ваттная лампочка, которая висит у вас в кладовке). Если элемент Пельтье такой прожорливый, целесообразно ли из него делать бытовые холодильники и холодильные камеры? Конечно же нет! Такой холодильник у вас будет жрать Киловатт 10 не меньше! Но зато есть один маленький плюс — он будет абсолютно бесшумен:-). Но если нет никакой возможности, то делают холодильники даже из элементов Пельтье. Это в основном мини холодильники для автомобилей. Также элемент Пельтье некоторые используют для охлаждения процессора на ПК. Получается очень эффективно, но по энергозатратам лучше все-таки ставить старый добрый вентилятор.

Где купить

На Али можно найти даже мини-кондиционер из элемента Пельтье вот по этой ссылке.


На Али этих элементов Пельтье можете выбрать сколь душе угодно!

Модуль Пельтье можно использовать в 4 разных схемах: как нагревательный элемент (в инкубаторах...), как охлаждающий элемент (в холодильниках...), получать электричество (генератор...), а так же с помощью элемента Пельтье можно получать воду. Об этом и будет моя статья

Элемент Пельтье - это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье - возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. Thermoelectric Cooler - термоэлектрический охладитель).

Эффект, обратный эффекту Пельтье, называется эффектом Зеебека.

Принцип действия

В основе работы элементов Пельтье лежит контакт двух токопроводящих материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используется контакт двух полупроводников.

Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов - одного n-типа и одного p-типа в паре (обычно теллурида висмута, Bi2Te3 и германида кремния), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются - или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 °C.

Достоинства и недостатки

Достоинством элемента Пельтье являются небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание - это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования. Также достоинством являются отсутствие механических частей и отсутствие шума.

Недостатком элемента Пельтье является более низкий коэффициент полезного действия, чем у компрессорных холодильных установок на фреоне, что ведёт к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, ведутся разработки по повышению теплового КПД, а элементы Пельтье нашли широкое применение в технике, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.

Основной проблемой в построении элементов Пельтье с высоким КПД является то, что свободные электроны в веществе являются одновременно переносчиками и электрического тока, и тепла. Материал для элемента Пельтье же должен одновременно обладать двумя взаимоисключающими свойствами - хорошо проводить электрический ток, но плохо проводить тепло.

В батареях элементов Пельтье возможно достижение теоретически очень большой разницы температур, более 70 градусов по цельсию, в связи с этим лучше использовать импульсный метод регулирования температуры, благодаря которому можно снизить также потребление энергии. При этом желательно сглаживать пульсации тока для продления срока службы элемента Пельтье.

Применение термоэлектрического модуля : в куллерах для воды, системах охлаждения компьютеров или микросхем различных малогабаритных приборов,в электрических термогенераторах,охлаждение видеокарт, северных или южных мостов, автомобильные холодильники, охладители воздуха, Arduino, для охлаждение ПЗС матриц и инфрокрасных фотоприемников, в электрических термогенераторах, в термостатах, в научных лаболаторных приборов, термокалибраторов, термостабилизаторов. В общем там где требуется достижения перепадов температур более 60 градусов.

Размеры пластин Пельтье и характеристики потребления

Размеры пластин Пельтье и характеристики потребления (потребляемая мощность, напряжение, сила тока, максимальная разница температур). Маркировки этих термоэлектрических генераторов могут быть на разных сайтах разные, все зависит от производителя (например: TEG1-241-1.4-1.2; СР1.4-127-06L отечественные; TB-127-1.4-1.5 Frost-72; SP1848-27145; термогенератор Зеебека TEP1-142T300). Характеристики, в свою очередь будут не сильно отличаться, но некоторые показатели не значительно разнятся.

Qmax Umax Imax dTmax Размеры,(мм)
(Вт) (В) (A) (град) A B H
36,0 16,1 3,6 71 30,0 30,0 3,6
36,0 16,1 3,6 71 40,0 40,0 3,6
62,0 16,3 6,2 72 40,0 40,0 3,9
65,0 16,7 6,3 74 40,0 40,0 3,9
80,0 16,1 8,0 71 40,0 40,0 3,4
80,0 16,1 8,0 71 48,0 48,0 3,4
94,0 24,9 6,1 70 40,0 40,0 3,9
115,0 24,6 7,6 69 40,0 40,0 3,6
120,0 24,6 7,9 69 40,0 40,0 3,4
131,0 24,6 8,6 69 40,0 40,0 3,3
172,0 24,6 11,3 69 40,0 40,0 3,2
156,0 15,7 16,1 70 48,0 48,0 3,4
223,0 15,5 23,4 68 55,0 59,0 3,3
310,0 24,6 20,6 69 62,0 62,0 3,2

USB Холодильник своими руками (Модуль Пельтье)

Для постройки нашего мини-холодильника нам необходимо найти или купить элемент Пельтье (что это такое и как работает Вы сможете прочитать ниже) и два радиатора.


Вот этот самый элемент Пельтье, я выдрал его из сломанного компа, он там стоял между процессором и кулером. Счистил с него старую термопасту. В двух словах — этот элемент Пельтье при подаче на него постоянного тока начинает работать следующим образом: одна сторона у него начинает греться, а вторая — охлаждаться, если поменять полярность источника питания, то стороны элемента будут вести себя наоборот!

Далее я взял два массивных радиатора от ненужного усилка. Потом смазал элемент новой термопастой, которую купил в радио магазине, и зажал элемент Пельтье между радиаторов. Использование термопасты в данном случае обязательно!
Подключил провода к элементу от USB кабеля и воткнул в комп — одна радиатор начал греться, а второй — охлаждаться! Значит, всё пучком!

Материал, из которого я склеил холодильник, похож на прессованный пенопласт или пористый пластик. В общем, материал может быть любым, его главное качество термоизоляция.
Стекло — органическое, выглядит довольно хрупко, но на самом деле материал прочный.
Клей — суперклей.

Потом для удобства сделал застёжку на магнитиках.
Получилось нормально — туда спокойно влезает бутылка минералки.

Генератор — получение электричества с помощью элемента Пельтье

Плюсы этого генератора:

— Топливо – всё что горит или греет.
— Выход USB 5 Вольт, 500mA.
— Не зависит от солнца, ветра и т.д.
— Простая и крепкая конструкция, которая может служить вечно.
— Можно готовить на нем еду, пока ваш телефон заряжается.
— Универсальность.
— Может собрать любой у себя дома за 1 вечер (даже работник АвтоВАЗа=)).
— Дешевизна конструкции.

Изобрел не я, есть коммерческие экземпляры, которые на много лучше моего. Например, BioLite CampStove, его цена 7900 руб. Мой экземпляр сделан на скорую руку для написания этой статьи и дальнейших экспериментов.

Основой является элемент Пельтье. Это термоэлектрический модуль, используемый в кулерах для воды и переносных холодильниках, так же его применяют для охлаждения процессора. При подаче на него напряжения, одна сторона охлаждается, а другая нагревается. Мы же наоборот будем греть одну сторону, чтобы получить электричество.

Главный принцип в том чтобы одна сторона нагревалась, а другая оставалась неизменной, для максимальной эффективности нужен перепад температур в 100 градусов по Цельсию.

Приступим!


Нам понадобится:
— Элемент Пельтье, я использовал TEC1-12710
— Не нужный блок питания от компа
Любой, даже тот, который сгорел, и выгорело всё кроме корпуса
— Стабилизатор напряжения
DC-DC Boost Module, Входное напряжение 1-5 Вольт, на выходе всегда 5В.
— Радиатор (чем больше, тем лучше), желательно с кулером на 5В, т.к. радиатор будет постепенно нагреваться. Зимой это не грозит, так как можно поставить радиатор на лед.
— Термопаста
— Набор инструментов

Модуль TEC1-12710, рассчитан на 10 А (есть меньше, есть больше). Но более мощные будут большего размера. Чем больше сила тока, тем он эффективней и дороже. Я купил в алиэкспресс примерно за 250 руб. У нас в магазинах электроники такой стоит около 1500 руб.

Модуль рассчитан на максимальное напряжение 12В, но столько он не выдает из-за низкого КПД, когда мы используем его в обратном направлении, т.е. на получение тока.

Для того чтобы было стабильно 5 вольт и устройства заряжались безопасно, нужен повышающий стабилизатор. Он начинает выдавать 5 Вольт, когда на элементе Пельтье еще только 1. О том, что всё готово к зарядке, можно узнать по горящему светодиоду на модуле.


Можете собрать свой, я же решил довериться китайцам, они предлагают готовый модуль с USB выходом, за 80 руб. на том же сайте.

Распотрошим наш блок питания. Мне пришлось сделать дополнительные дырки для лучшей циркуляции воздуха (блок питания попался очень уж древний).

Главный принцип в том, чтобы воздух засасывало снизу, и выходил он через верх. Проще говоря, нужно сделать обычную печку. Не забудьте предусмотреть отверстие для подкидывания щепок и подставку под котелок или кружку для кипячения воды, если вам это нужно.


Далее к ровной стенке нужно прикрепить модуль Пельтье с радиатором, предварительно равномерно нанеся термопасту. Чем плотнее контакт, тем лучше. Та сторона, где написана модель – холодная, именно к ней мы прикладываем радиатор. Если вы перепутали, модуль не будет выдавать напряжение, в этом случае нужно просто поменять провода местами.


Припаиваем повышающий преобразователь, и находим, куда его спрятать. Можно вообще оставить его висеть на проводах, но обязательно нужно заизолировать, например, одеть на него термоусадку.

Собираем всё вместе. Вот что должно получиться:


Как это работает?

Закидываем внутрь ветки, щепки, в общем, всё то, что горит. Затем разжигаем. Огонь нагревает стенки печки и элемент Пельтье, который на одной из этих стенок. Другая сторона элемента, которая на радиаторе, остается при уличной температуре. Чем больше разница температур, тем больше мощность, но не переборщите.

Максимальная эффективность достигается уже при разнице в 100 градусов. Со временем радиатор начинает нагреваться, и его нужно будет охлаждать. Можно подбрасывать снег, поливать водой, поставить радиатором на лед или в воду, поставить на него кружку с холодной водой. Вариантов много, самый простой это кулер, он будет забирать часть мощности, но за счет охлаждения общий результат не измениться.


НЕ допускайте воздействие больших температур на элемент, он может перегореть и сгореть. В документации указана максимальная температура 180 °С, но особо беспокоится не стоит, с хорошим охлаждением и на простых дровах ничего с ним не будет.

Если вы не будете ленится и всё правильно сделаете, то получите вот такую простую щепочницу на которой можно подогревать еду, кипятить, воду и одновременно заряжать свои гаджеты.

Её можно использовать дома, если отключили электричество, поставив внутрь свечку. Кстати если подключить к ней светодиоды, но свет будет на много ярче чем от самой свечки.

В любом месте где можно найти что-то горящее, у вас будет электричество, тепло и возможность удобно готовить еду, расходуя меньше горючего по сравнению с костром.

Первые испытания!

Пошел после работы в лес, солнце почти село, хворост мокрый, но печь оправдала себя на 100%.

Результат превзошёл все мои ожидания. Сразу после разгорания щепок, загорелся индикатор, я подключи телефон и он начал заряжаться. Зарядка шла стабильно.

Преобразователь вообще не напрягался. Еще я брал с собой охлаждающую подставку для ноутбука, на ней 2 кулера и светодиоды, должно прилично потреблять. Подключил, всё крутится, светится, ветерок дует. Брал еще USB вентилятор, подключил в конце, когда остались одни угли. Всё отлично крутится, даже не знаю что еще можно попробовать.

Результат:

Всё прекрасно работает выдает свои пол Ампера. Все таки нужен кулер, т.к. за пол часа радиатор нагрелся порядка 40 градусов, летом это будет еще больше. Пускай крутиться себе.

Языки пламени вырываются высоко вверх, мне лично такого костра не надо, буду закрывать часть отверстий, чтобы горело медленней.

Буду делать все по новой, возьму за основу стандартную щепочницу которую делают из консервных банок, но сделаю из метала потолще и прямоугольной формы. Куплю хороший радиатор с кулером подходящей формы и постараюсь сделать разборный вариант, чтобы при переноске занимало меньше места.

Получение питьевой воды с помощью модуля Пельтье

Термопреобразователь (модуль Пельтье) работает по принципу, обратному действию термопары, - появлению разности температур, когда протекает электрический ток.

Как работает элемент Пельтье?

Довольно просто применять модуль Пельтье, принцип работы которого заключается в выделении или поглощении тепла в момент контакта разных материалов при прохождении через него энергетического потока электронов перед контактом и после него отличается. Если на выходе она меньше, значит, там выделяется тепло. Когда электроны в контакте тормозятся электрическим полем, они передают кинетическую энергию кристаллической решетке, разогревая ее. Если они ускоряются, тепло поглощается. Это происходит за счет того, что часть энергии забирается у кристаллической решетки и происходит ее охлаждение.

В значительной степени это явление присуще полупроводникам, что объясняется большой разностью зарядов.

Модуль Пельтье, применение которого является темой нашего обзора, используется при создании термоэлектрических охлаждающих устройств (ТЭМ). Простейшее из них состоит из двух полупроводников p- и n-типов, последовательно соединенных через медные контакты.

Если электроны движутся от полупроводника "p" к "n", на первом переходе с металлической перемычкой они рекомбинируют с выделением энергии. Следующий переход из полупроводника "p" в медный проводник сопровождается "вытягиванием" электронов через контакт электрическим полем. Данный процесс приводит к поглощению энергии и охлаждению области вокруг контакта. Аналогичным образом происходят процессы на следующих переходах.

При расположении нагреваемых и охлаждаемых контактов в разных параллельных плоскостях получится практическая реализация способа. Полупроводники изготавливаются из селена, висмута, сурьмы или теллура. Модуль Пельтье вмещает большое количество термопар, размещенных между керамическими пластинами из нитрида или оксида алюминия.

Факторы, влияющие на эффективность ТЭМ

  • Сила тока.
  • Количество термопар (до нескольких сотен).
  • Типы полупроводников.
  • Скорость охлаждения.

Больших величин достигнуть пока не удалось из-за низкого КПД (5-8 %) и высокой стоимости. Чтобы ТЭМ успешно работал, надо обеспечить эффективный отвод тепла с нагреваемой стороны. Это создает сложности в практическом воплощении способа. Если изменить полярность, холодная и горячая стороны меняются друг с другом.

Достоинства и недостатки модулей

Потребность в ТЭМ появилась с возникновением электронных устройств, нуждающихся в миниатюрных системах охлаждения. Преимущества модулей следующие:

  • компактность;
  • отсутствие подвижных соединений;
  • модуль Пельтье принцип работы имеет обратимый при смене полярности;
  • простота каскадных соединений для повышения мощности.

Главным недостатком модуля является низкий КПД. Это проявляется в больших затратах мощности при достижении требуемого эффекта охлаждения. Кроме того, он обладает высокой стоимостью.

Применение ТЭМ

Пельтье модуль применяется преимущественно для охлаждения микросхем и небольших деталей. Начало было положено для охлаждения элементов военной техники:

  • микросхемы;
  • инфракрасные детекторы;
  • элементы лазеров;
  • кварцевые генераторы.

Термоэлектрический модуль Пельтье постепенно стал применяться в бытовой технике: для создания холодильников, кондиционеров, генераторов, терморегуляторов. Главным его назначением является охлаждение небольших объектов.

Охлаждение процессора

Основные компоненты компьютеров постоянно совершенствуются, что приводит к росту тепловыделения. Вместе с ними развиваются системы охлаждения с применением новаторских технологий, с современными средствами контроля. Модуль Пельтье применение в данной сфере нашел прежде всего в охлаждении микросхем и других радиодеталей. С форсированными режимами разгона микропроцессоров традиционные кулеры уже не справляются. А увеличение частоты работы процессоров дает возможность повысить их быстродействие.

Увеличение скорости вращения вентилятора приводит к значительному шуму. Его устраняют за счет использования модуля Пельтье в комбинированной системе охлаждения. Таким путем передовые фирмы быстро освоили производство эффективных охлаждающих систем, которые стали пользоваться большим спросом.

С процессоров тепло обычно отводится кулерами. Воздушный поток может засасываться снаружи или поступать изнутри системного блока. Главная проблема состоит в том, что температура воздуха порой оказывается недостаточной для теплоотвода. Поэтому ТЭМ стали использовать для охлаждения потока воздуха, поступающего в системный блок, тем самым повышая эффективность теплообмена. Таким образом, встроенный воздушный кондиционер является помощником традиционной системы охлаждения компьютера.

С обеих сторон модуля крепятся алюминиевые радиаторы. Со стороны холодной пластины нагнетается воздух на охлаждение к процессору. После того как он заберет тепло, его выдувает другой вентилятор через радиатор горячей пластины модуля.

Современный ТЭМ управляется электронным устройством с датчиком температуры, где степень охлаждения пропорциональна разогреву процессора.

Активизация охлаждения процессоров создает также некоторые проблемы.

  1. Простые охлаждающие модули Пельтье предназначены для непрерывной работы. При пониженном энергопотреблении также уменьшается тепловыделение, что может вызвать переохлаждение кристалла и последующее зависание процессора.
  2. Если работа кулера и холодильника не будет должным образом согласована, последний может перейти в режим нагрева вместо охлаждения. Источник дополнительного тепла вызовет перегрев процессора.

Таким образом, для современных процессоров нужны передовые технологии охлаждения с контролем работы самих модулей. Подобные изменения режимов работы не происходят с видеокартами, которые также требуют интенсивного охлаждения. Поэтому для них ТЭМ подходит идеально.

Автохолодильник своими руками

В середине прошлого века отечественная промышленность пыталась освоить выпуск малогабаритных холодильников, основанных на эффекте Пельтье. Существующие технологии того времени не позволили этого сделать. Сейчас сдерживающим фактором преимущественно является высокая цена, но попытки продолжаются, и успехи здесь уже достигнуты.

Широкое производство термоэлектрических устройств позволяет создать своими руками небольшой холодильник, удобный для использования в автомобилях. Его основой является "сэндвич", который делается следующим образом.

  1. На верхний радиатор наносится слой теплопроводной пасты типа КПТ-8 и приклеивается Пельтье модуль с одной стороны керамической поверхности.
  2. Аналогично к нему крепится с нижней стороны другой радиатор, предназначенный для помещения в камеру холодильника.
  3. Все устройство плотно сжимается и просушивается в течение 4-5 часов.
  4. На обоих радиаторах устанавливаются кулеры: верхний будет отводить тепло, а нижний - выравнивать температуру в камере холодильника.

Корпус холодильника делается с теплоизолирующей прокладкой внутри. Важно, чтобы он плотно закрывался. Для этого можно использовать обычный пластиковый ящик для инструментов.

Питание 12 В подается из системы автомобиля. Его можно сделать и от сети 220 В переменного тока, с блоком питания. Схема преобразования переменного тока в постоянной применяется самая простая. Она содержит выпрямительный мост и сглаживающий пульсации конденсатор. При этом важно, чтобы на выходе они не превышали величину 5 % от номинального значения, иначе эффективность устройства снижается. У модуля имеются два вывода из цветных проводов. К красному всегда подключается "плюс", к черному - "минус".

Мощность ТЭМ должна соответствовать объему бокса. Первые 3 цифры маркировки означают количество пар полупроводниковых микроэлементов внутри модуля (49-127 и более). выражается двумя последними цифрами маркировки (от 3 до 15 А). Если мощности недостаточно, надо приклеить на радиаторы еще один модуль.

Обратите внимание! Если сила тока будет превосходить мощность элемента, он будет нагреваться с обеих сторон и быстро выйдет из строя.

Модуль Пельтье: генератор электрической энергии

ТЭМ можно использовать для выработки электроэнергии. Для этого надо создать перепад температуры между пластинами, и расположенные между ними термопары будут вырабатывать электрический ток.

Для практического использования нужен ТЭМ не менее чем на 5 В. Тогда с его помощью можно будет заряжать мобильный телефон. Из-за низкого КПД модуля Пельтье потребуется повышающий преобразователь постоянного напряжения. Для сборки генератора понадобятся:

  • 2 модуля Пельтье ТЕС1-12705 с размером пластин 40х40 мм;
  • преобразователь ЕК-1674;
  • алюминиевые пластины толщиной 3 мм;
  • кастрюля для воды;
  • термостойкий клей.

Между пластинами помещаются два модуля на клей, а затем вся конструкция фиксируется на дне кастрюли. Если ее заполнить водой и поставить на огонь, получится необходимая разность температуры, вырабатывающая ЭДС порядка 1,5 В. Подключив модули к повышающему преобразователю, можно повысить напряжение до 5 В, необходимых для зарядки аккумулятора телефона.

Чем больше разница температуры между водой и нижней подогреваемой пластиной, тем генератор работает эффективней. Поэтому надо стараться снижать нагрев воды разными способами: сделать ее проточной, почаще заменять свежей и т. п. Действенным средством увеличения разности температур является каскадное включение модулей, когда они накладываются слоями один на другой. Увеличение габаритных размеров устройства позволяет поместить между пластинами больше элементов и тем самым увеличить общую мощность.

Производительности генератора будет достаточно для зарядки небольших аккумуляторов, работы светодиодных ламп или радиоприемника. Обратите внимание! Для создания термогенераторов потребуются модули, способные работать при 300-400 0 С! Остальные подойдут только для пробных испытаний.

В отличие от других средств альтернативного получения электроэнергии они могут работать во время движения, если создать что-то типа каталитического нагревателя.

Отечественные модули Пельтье

ТЭМ своего производства появились у нас на рынке не так давно. Они отличаются высокой надежностью и имеют хорошие характеристики. Модуль Пельтье, который пользуется широким спросом, имеет размеры 40х40 мм. Он рассчитан на максимальный ток 6 А и напряжение до 15 В.

Отечественный модуль Пельтье купить можно за небольшую цену. При 85 Вт он создает температурный перепад 60 0 С. Вместе с кулером он способен защитить от перегрева процессор с рассеиваемой мощностью 40 Вт.

Характеристики модулей ведущих фирм

Зарубежные устройства представлены на рынке в большем разнообразии. Для защиты процессоров ведущих фирм применяется в качестве холодильника РАХ56В модуль Пельтье, цена которого в комплекте с вентилятором составляет $35.

При размерах 30х30 мм он поддерживает температуру процессора не выше 63 0 С при выделяемой мощности 25 Вт. Для питания достаточно напряжения 5 В, а ток не превышает 1,5 А.

Хорошо подходит под охлаждение процессора модуль Пельтье РА6ЕХВ, обеспечивающий нормальный температурный режим при мощности рассеивания 40 Вт. Площадь его модуля составляет 40х40 мм, а потребляемый ток - до 8 А. Кроме внушительных размеров - 60х60х52,5 мм (вместе с вентилятором) - устройство требует наличия вокруг него свободного пространства. Цена его составляет $65.

Когда применяется модуль Пельтье, технические характеристики у него должны соответствовать потребностям охлаждаемых устройств. Недопустимо, чтобы у них была слишком низкая температура. Это может привести к конденсации влаги, которая губительно действует на электронику.

Модули для изготовления генераторов, такие как отличаются большей мощностью - 72 Вт и 108 Вт соответственно. Их различают по маркировке, всегда наносимой на горячую сторону. Максимальная допускаемая температура горячей стороны у них составляет 150-160 0 С. Чем больше температурный перепад между пластинами, тем выше получается напряжение на выходе. Устройство работает при максимальном температурном перепаде 600 0 С.

Модуль Пельтье купить можно недорого - порядка $10 и менее за штуку, если хорошо поискать. Довольно часто продавцы значительно завышают цены, но можно найти в несколько раз дешевле, если приобретать на распродаже.

Заключение

Эффект Пельтье нашел применение в настоящее время в создании небольших холодильников, необходимых современной технике. Обратимость процесса дает возможность изготовить микроэлектростанции, востребованные для зарядки аккумуляторов электронных устройств.

В отличие от других средств альтернативного получения электроэнергии, они могут работать во время движения, если установить каталитический нагреватель.

Многие слышали про «магические» элементы Пельтье - при прохождении тока через них одна сторона охлаждается, а другая - нагревается. Это работает и в обратную сторону - если одну сторону нагревать, а другую охлаждать - вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей - есть точка максимальной мощности, и если работать далеко от неё - КПД генерации сильно снижается).

В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями , так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…

Краткая теория

Классические «китайские» элементы Пельтье - это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В - то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).

Нужно помнить, что элемент Пельтье - это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В - у нас может не получится 6 ампер (для 6-и амперного элемента) - ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.

Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С - перенос тепла стремится к 0, а при нулевой разнице - 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию - нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).

Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С - так что если элемент случайно останется без охлаждения и перегреется - то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие - как керамика, так и сами охлаждающие элементы - я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:

Пробуем



Итак, маленький элемент - 5В*2А, большой - 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…

Идея - вынести все на морозный воздух, но есть проблема - кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам - к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях - добавим килограммовую медную пластину - тепловой аккумулятор.


Результат шокирующий - те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха - -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.

Выкатываем тяжелую артиллерию

Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда - подключаем ток - на 12В температура моментально начинает расти, при 5В - падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты…

Выводы и видео на сладкое

Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах - я пробовал элементы разных моделей от 3-х разных продавцов - поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).

Ну а с оставшимся сухим льдом можно поступить следующим образом:

PS. А если смешать сухой лед с изопропиловым спиртом - получится жидкий азот для «бедных» - в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей - получить обморожение существенно легче.