Как сделать чтобы мигал светодиод? Мигающий светодиод – находка для автомобилиста.

Мигающие светодиоды часто применяют в различных сигнальных цепях. В продаже довольно давно появились светодиоды (LED) различных цветов, которые при подключении к источнику питания периодически мигают. Для их мигания не нужны никакие дополнительные детали. Внутри такого светодиода смонтирована миниатюрная интегральная микросхема, управляющая его работой. Однако для начинающего радиолюбителя намного интереснее сделать мигающий светодиод своими руками, а заодно изучить принцип работы электронной схемы, в частности мигалок, освоить навыки работы с паяльником.

Как сделать светодиодную мигалку своими руками

Существует множество схем, с помощью которых можно заставить мигать светодиод. Мигающие устройства можно изготовить как из отдельных радиодеталей, так и на основе различных микросхем. Сначала мы рассмотрим схему мигалки мультивибратора на двух транзисторах. Для ее сборки подойдут самые ходовые детали. Их можно приобрести в магазине радиодеталей или «добыть» из отживших свой срок телевизоров, радиоприемников и другой радиоаппаратуры. Также во многих интернет магазинах можно купить наборы деталей для сборки подобных схем led мигалок.

На рисунке изображена схема мигалки мультивибратора, состоящая всего из девяти деталей. Для ее сборки потребуются:

  • два резистора по 6.8 – 15 кОм;
  • два резистора имеющие сопротивление 470 – 680 Ом;
  • два маломощных транзистора имеющие структуру n-p-n, например КТ315 Б;
  • два электролитических конденсатора емкостью 47 –100 мкФ
  • один маломощный светодиод любого цвета, например красный.

Не обязательно, чтобы парные детали, например резисторы R2 и R3, имели одинаковую величину. Небольшой разброс номиналов практически не сказывается на работе мультивибратора. Также данная схема мигалки на светодиодах не критична к напряжению питания. Она уверенно работает в диапазоне напряжений от 3 до 12 вольт.

Схема мигалки мультивибратора работает следующим образом. В момент подачи на схему питания, всегда один из транзисторов окажется открытым чуть больше чем другой. Причиной может служить, например, чуть больший коэффициент передачи тока. Пусть первоначально больше открылся транзистор Т2. Тогда через его базу и резистор R1 потечет ток заряда конденсатора С1. Транзистор Т2 будет находиться в открытом состоянии и через R4 будет протекать его ток коллектора. На плюсовой обкладке конденсатора С2, присоединенной к коллектору Т2, будет низкое напряжение и он заряжаться не будет. По мере заряда С1 базовый ток Т2 будет уменьшаться, а напряжение на коллекторе расти. В какой-то момент это напряжение станет таким, что потечет ток заряда конденсатора C2 и транзистор Т3 начнет открываться. С1 начнет разряжаться через транзистор Т3 и резистор R2. Падение напряжения на R2 надежно закроет Т2. В это время через открытый транзистор Т3 и резистор R1 будет течь ток и светодиод LED1 будет светиться. В дальнейшем циклы заряда-разряда конденсаторов будут повторяться попеременно.

Если посмотреть осциллограммы на коллекторах транзисторов, то они будут иметь вид прямоугольных импульсов.

Когда ширина (длительность) прямоугольных импульсов равна расстоянию между ними, тогда говорят, что сигнал имеет форму меандра. Снимая осциллограммы с коллекторов обоих транзисторов одновременно, можно заметить, что они всегда находятся в противофазе. Длительность импульсов и время между их повторениями напрямую зависят от произведений R2C2 и R3C1. Меняя соотношение произведений можно изменять длительность и частоту вспышек светодиода.

Для сборки схемы мигающего светодиода понадобятся паяльник, припой и флюс. В качестве флюса можно использовать канифоль или жидкий флюс для пайки, продающийся в магазинах. Перед сборкой конструкции необходимо тщательно зачистить и залудить выводы радиодеталей. Выводы транзисторов и светодиода нужно соединять в соответствии с их назначением. Также необходимо соблюдать полярность включения электролитических конденсаторов. Маркировка и назначение выводов транзисторов КТ315 показаны на фото.

Мигающий светодиод на одной батарейке

Большинство светодиодов работают при напряжениях свыше 1.5 вольт. Поэтому их нельзя простым способом зажечь от одной пальчиковой батарейки. Однако существуют схемы мигалок на светодиодах позволяющие преодолеть эту трудность. Одна из таких показана ниже.

В схеме мигалки на светодиодах имеется две цепочки заряда конденсаторов: R1C1R2 и R3C2R2. Время заряда конденсатора С1 гораздо больше времени заряда конденсатора С2. После заряда С1 открываются оба транзистора и конденсатор С2 оказывается последовательно соединен с батарейкой. Через транзистор Т2 суммарное напряжение батареи и конденсатора прикладывается к светодиоду. Светодиод загорается. После разряда конденсаторов С1 и С2 транзисторы закрываются и начинается новый цикл зарядки конденсаторов. Такая схема мигалки на светодиодах называется схемой с вольтодобавкой.

Мы рассмотрели несколько схем мигалок на светодиодах. Собирая эти и другие устройства можно не только научиться паять и читать электронные схемы. На выходе можно получить вполне работоспособные приборы полезные в быту. Дело ограничивается только фантазией создателя. Проявив смекалку, из светодиодной мигалки можно, например, сделать сигнализатор открытой дверцы холодильника или указатель поворотов велосипеда. Заставить мигать глазки мягкой игрушки.

У любого начинающего радиолюбителя присутствует желание поскорей собрать что-нибудь электронное и желательно, чтобы оно заработало сразу и без трудоёмкой настройки. Да и это понятно, так как даже маленький успех в начале пути даёт массу сил.

Как уже говорилось, первым делом лучше собрать блок питания . Ну а если он уже есть в мастерской, то можно собрать мигалку на светодиодах. Итак, пришло время «подымить» паяльником .

Вот принципиальная схема одной из простейших мигалок. Базовой основой данной схемы является симметричный мультивибратор . Мигалка собрана из доступных и недорогих деталей, многие из которых можно найти в старой радиоаппаратуре и использовать повторно. О параметрах радиодеталей будет сказано чуть позднее, а пока разберёмся с тем, как работает схема.

Суть работы схемы заключается в том, что транзисторы VT1 и VT2 поочерёдно открываются. В открытом состоянии переход Э-К у транзисторов пропускает ток. Так как в коллекторные цепи транзисторов включены светодиоды, то при прохождении через них тока они светятся.

Частота переключений транзисторов, а, следовательно, и светодиодов может быть приблизительно подсчитана с помощью формулы расчёта частоты симметричного мультивибратора.

Как видим из формулы, главными элементами с помощью которых можно менять частоту переключений светодиодов является резистор R2 (его номинал равен R3), а также электролитический конденсатор C1 (его ёмкость равна C2). Для подсчёта частоты переключений в формулу нужно подставить величину сопротивления R2 в килоомах (kΩ) и величину ёмкости конденсатора C1 в микрофарадах (μF). Частоту f получим в герцах (Гц или на зарубежный манер - Hz).

Данную схему желательно не только повторить, но и «поиграться» с ней. Можно, например, увеличить ёмкость конденсаторов C1, C2. При этом частота переключений светодиодов уменьшиться. Переключаться они будут более медленно. Также можно и уменьшить ёмкость конденсаторов. При этом светодиоды станут переключаться чаще.

При C1 = C2 = 47 мкф (47 μF), а R2 = R3 = 27 кОм (kΩ) частота составит около 0,5 Гц (Hz). Таким образом светодиоды будут переключаться 1 раз в течении 2 секунд. Уменьшив ёмкость C1, C2 до 10 мкф можно добиться более быстрого переключения - около 2,5 раз в секунду. А если установить конденсаторы C1 и C2 ёмкостью 1 мкф, то светодиоды будут переключаться с частотой около 26 Гц, что на глаз будет практически незаметно - оба светодиода будут просто светиться.

А если взять и поставить электролитические конденсаторы C1, C2 разной ёмкости, то мультивибратор из симметричного превратится в несимметричный. При этом один из светодиодов будет светить дольше, а другой короче.

Более плавно частоту миганий светодиодов можно менять и с помощью дополнительного переменного резистора PR1, который можно включить в схему вот так.

Тогда частоту переключений светодиодов можно плавно менять поворотом ручки переменного резистора. Переменный резистор можно взять с сопротивлением 10 - 47 кОм, а резисторы R2, R3 установить с сопротивлением 1 кОм. Номиналы остальных деталей оставить прежними (см. таблицу далее).

Вот так выглядит мигалка с плавной регулировкой частоты вспышек светодиодов на макетной плате.

Первоначально схему мигалки лучше собрать на беспаечной макетной плате и настроить работу схемы по своему желанию. Беспаечная макетная плата вообще очень удобна для проведения всяких экспериментов с электроникой.

Теперь поговорим о деталях, которые потребуются для сборки мигалки на светодиодах, схема которой приведена на первом рисунке. Перечень элементов, используемых в схеме, приведён в таблице.

Название

Обозначение

Номинал/Параметры

Марка или тип элемента

Транзисторы VT1, VT2

КТ315 с любым буквенным индексом
Электролитические конденсаторы C1, C2 10...100 мкф (рабочее напряжение от 6,3 вольт и выше) К50-35 или импортные аналоги
Резисторы R1, R4 300 Ом (0,125 Вт) МЛТ, МОН и аналогичные импортные
R2, R3 22...27 кОм (0,125 Вт)
Светодиоды HL1, HL2 индикаторный или яркий на 3 вольта

Стоит отметить, что у транзисторов КТ315 есть комплементарный «близнец» - транзистор КТ361. Корпуса у них очень похожи и их легко перепутать. Было бы не очень страшно, но эти транзисторы имеют разную структуру: КТ315 – n-p-n , а КТ361 – p-n-p . Поэтому их и называют комплементарными. Если вместо транзистора КТ315 в схему установить КТ361, то она работать не будет.

Как же определить who is who? (кто есть кто?).

На фото показаны транзистор КТ361 (слева) и КТ315 (справа). На корпусе транзистора обычно указывается только буквенный индекс. Поэтому отличить КТ315 от КТ361 по внешнему виду практически нереально. Чтобы достоверно удостовериться в том, что перед вами именно КТ315, а не КТ361 надёжнее всего будет проверить транзистор мультиметром.

Цоколёвка транзистора КТ315 показана на рисунке в таблице.

Перед тем, как впаивать в схему другие радиодетали их также стоит проверить. Особенно проверки требуют старые электролитические конденсаторы. У них одна беда – потеря ёмкости. Поэтому не лишним будет проверить конденсаторы .

Кстати, с помощью мигалки можно косвенно оценивать ёмкость конденсаторов. Если электролит «высох» и потерял часть ёмкости, то мультивибратор будет работать в несимметричном режиме – это сразу станет заметно чисто визуально. Это означает, что один из конденсаторов C1 или C2 имеет меньшую ёмкость («высох»), чем другой.

Для питания схемы потребуется блок питания с выходным напряжением 4,5 - 5 вольт. Также можно запитать мигалку и от 3 батареек типоразмера AA или AAA (1,5 В *3 = 4,5 В). О том, как правильно соединять батарейки читайте .

Электролитические конденсаторы (электролиты) подойдут любые с номинальной ёмкостью 10…100 мкф и рабочим напряжением от 6,3 вольт. Для надёжности лучше подобрать конденсаторы на более высокое рабочее напряжение - 10....16 вольт. Напомним, что рабочее напряжение электролитов должно быть чуть больше напряжения питания схемы.

Можно взять электролиты и с большей ёмкостью, но и габариты устройства заметно увеличатся. При подключении в схему конденсаторов соблюдайте полярность! Электролиты не любят переполюсовки.

Все схемы проверены и являются рабочими. Если что-то не заработало, то в первую очередь проверяем качество пайки или соединений (если собирали на макетке). Перед впаиванием деталей в схему их стоит проверить мультиметром , чтобы потом не удивляться: «А почему не работает?»

Светодиоды могут быть любые. Можно использовать как обычные индикаторные на 3 вольта, так и яркие. Яркие светодиоды имеют прозрачный корпус и обладают большей светоотдачей. Очень эффектно смотрятся, например, яркие светодиоды красного свечения диаметром 10 мм. В зависимости от желания можно применить и светодиоды других цветов излучения: синего, зелёного, жёлтого и др.

Одной из самых простых схем в любительской радиоэлектронике является светодиодная мигалка на одном транзисторе. Ее изготовление под силу любому новичку, у которого есть минимальный набор для пайки и полчаса времени.

Рассматриваемая схема хоть и отличается простотой, однако, она позволяет наглядно увидеть лавинный пробой транзистора, а также работу электролитического конденсатора. В том числе, путем подбора емкости можно легко изменять частоту мигания светодиода. Экспериментировать также можно с входным напряжением (в небольших диапазонах), которое тоже влияет на работу изделия.

Устройство и принцип работы

Мигалка состоит из следующих элементов:
  • источник питания;
  • сопротивление;
  • конденсатор;
  • транзистор;
  • светодиод.
Работает схема по очень простому принципу. В первой фазе цикла транзистор «закрыт», то есть не пропускает ток из источника питания. Соответственно, светодиод не светится.
Конденсатор расположен в цепи до закрытого транзистора, потому накапливает электрическую энергию. Происходит это до тех пор, пока напряжение на его выводах не достигнет показателя, достаточного для обеспечения так называемого лавинного пробоя.
Во второй фазе цикла накопленная в конденсаторе энергия «пробивает» транзистор, и ток проходит через светодиод. Он вспыхивает на короткое время, а затем опять гаснет, так как транзистор опять закрывается.
Далее мигалка работает в циклическом режиме и все процессы повторяются.

Необходимые материалы и радиодетали

Чтобы собрать светодиодную мигалку своими руками, работающую от источника питания с напряжением 12 В, понадобится следующее:
  • паяльник;
  • канифоль;
  • припой;
  • резистор на 1 кОм;
  • конденсатор емкостью 470-1000 мкФ на 16 В;
  • транзистор КТ315 или его более современный аналог;
  • классический светодиод;
  • простой провод;
  • источник питания на 12 В;
  • спичечный коробок (необязательно).


Последний компонент выступает в роли корпуса, хотя собрать схему можно и без него. В качестве альтернативы можно использовать монтажную плату. Навесной монтаж, описанный далее, рекомендуется для начинающих радиолюбителей. Такой способ сборки позволяет быстрее сориентироваться в схеме и сделать все правильно с первого раза.

Последовательность сборки мигалки

Изготовление светодиодной мигалки на 12 В осуществляется в следующей последовательности. Первым делом подготавливаются все вышеперечисленные компоненты, материалы и инструменты.
Для удобства светодиод и провода питания лучше сразу закрепить на корпусе. Далее к выводу «+» следует припаять резистор.




Свободная «ножка сопротивления соединяется с эмиттером транзистора. Если КТ315 расположить маркировкой вниз, то этот вывод будет у него крайним правым. Далее эмиттер транзистора соединяется с положительным выводом конденсатора. Определить его можно по маркировке на корпусе – «минус» обозначается светлой полосой.
Следующим этапом идет соединение коллектора транзистора с положительным выводом светодиода. У КТ315 – это ножка посредине. «Плюс» светодиода можно определить визуально. Внутри элемента имеется два электрода, отличающихся размерами. Тот, который поменьше, и будет положительным.



Теперь осталось только припаять отрицательный вывод светодиода к соответствующему проводнику источника питания. К этой же линии подсоединяется «минус» конденсатора.
Светодиодная мигалка на одном транзисторе готова. Подав на нее питание, можно увидеть ее работу по вышеописанному принципу.
Если есть желание уменьшить или увеличить частоту мигания светодиода, то можно поэкспериментировать с конденсаторами, имеющими разную емкость. Принцип очень простой – чем больше емкость элемента, тем реже будет мигать светодиод.

Зачастую случается так, что спустя некоторое время эксплуатации, светодиодная лента начинает моргать, мерцать как ”стробоскоп”, частично тускнеть или гореть не в полную силу.

Не стоит впадать в панику, такие проблемы можно выявить быстро и устранить их самостоятельно, не прибегая к помощи специалистов.

Блок питания

Если такие дефекты возникают не сразу после подключения, а через несколько минут или секунд, возможно неправильно подобран блок питания. Ему элементарно не хватает мощности и начинается падение напряжения.

По правилам, при выборе источника питания необходимо покупать его с запасом мощности минимум в 30%.


Обычно, как происходит — в магазине ленту вам подключают и все светится нормально, и только дома через некоторое время, после нагрева микросхем и других элементов, начинаются проблемы. Почему такое случается?

Да потому что многие китайские блоки питания не соответствуют своим паспортным данным. На табличке написано, что он 200Вт, а по факту не выдает и 150Вт!

При включении через такой блок на полную мощность, лента может «вспыхнуть» и тут же погаснуть. Так как блок питания уходит в защиту от перегрузки.


Когда у вас протяженная подсветка длиной 15-20 метров и более, старайтесь монтировать ее лентой одной марки. Иначе в RGB варианте при разноцветном моргании, какой-то из участков будет отставать или вообще пропускать отдельные цвета.

Также такое возможно при подключении лент от разных блоков питания. За счет разницы на них выходного напряжения, отрезок подсоединенный к блоку с одним Uвых., может чуть позже менять цвета RGB, чем другой, или грубо говоря отставать.

Еще распространенной причиной мерцания светодиодной ленты, даже в выключенном состоянии является ситуация, когда блок питания подключают через комнатный выключатель света с подсветкой.

Общеизвестно, что подсветка выключателя заставляет светиться светодиодные лампочки. То же самое относится и к светодиодной ленте.

Так что подключайте блок напрямую через автомат в эл.щитке, либо через выключатели, но без подсветки.

Ну и конечно не нужно забывать про сроки эксплуатации. При длительной исправной работе в течение нескольких лет, в блоках могут элементарно высохнуть конденсаторы стабилизации и потерять свою изначальную емкость.

Либо они просто выйдут из строя. Иногда это можно определить даже визуально по вздутию бочонка.

Также слабое, тусклое свечение ленты по истечении длительного периода времени происходит от естественной деградации кристаллов в светодиодах.

И процесс этот ускоряется при отсутствии нормального охлаждения в виде алюминиевого профиля.

Даже дорогие и качественные экземпляры будут перегреваться, если вы их приклеите на деревянное или пластиковое основание.

Некачественная пайка

Светодиодную ленту запрещено паять активными (кислотными) флюсами. В противном случае кислота остается на контактной площадке и постепенно будет разъедать место соединения.

Начинается непонятное моргание во включенном состоянии ленты, с последующей не работоспособностью всего участка после пайки. Поэтому для такого соединения используйте только рекомендуемые материалы и соблюдайте правила пайки.

Если же контакт уже разъело, придется вырезать один модуль ленты и впаивать на его место другой.

А еще возможен перегрев контакта не правильно выбранным паяльником (более 60Вт). В итоге медная площадка отслаивается от дорожки и появляется неустойчивое место соединения.

Прижмешь его пальцем – свет есть, отпускаешь – исчезает. Отсюда и проблемы с мерцанием, морганием.


Окисление контакта на коннекторах

Не все любят и умеют паять ленту, поэтому соединяют ее другим, более доступным способом – коннекторами.

Однако они имеют один существенный недостаток – окисление контактов. Чаще всего такое происходит в помещениях, где недавно покрасили, побелили стены или заливали стяжку.

То есть там, где наблюдался переизбыток влаги. Сила тока протекающего через коннектор, не редко превышает 10А:

  • для участка в 5м и мощностью 75Вт – 6,5А
  • для лент мощность 30Вт на метр – 12,5А

Если контакт окислен, то при большом токе он будет нагреваться и выгорать, пока не исчезнет полностью.

Такое же может произойти из-за недостаточного пятна соприкосновения контактных площадок, что не редко наблюдается в подобных соединителях.

1 of 2



Поэтому рекомендуется тщательно подходить к выбору коннекторов. Какие виды из них наиболее распространены и как выбрать лучший, можно ознакомиться в статье " ".

Неисправный светодиод

Вышеуказанные дефекты относятся в первую очередь к низковольтным лентам 12-24В. А есть еще ленты 220 вольт.

В них подключение светодиодов выполняется последовательно на более протяженных участках. Например, в 1 метре у вас будет 60 диодов.

И стоит одному из них выйти из строя или заморгать, это сразу же отразится на всех остальных, по всей длине.

В подсветке 12В вы от этого более-менее избавлены. Они состоят из коротких модулей по 3-6 диодов. Мерцание или затухание одного из них, приведет к такому же эффекту только на этом коротком модуле.

Выявляется это легко и устраняется либо перепайкой неисправного диода, либо заменой одного модуля или кластера.

Иногда мигание ленты начинается только спустя час или два после ее запуска и подачи питания. Это тоже может быть связано с неисправностью одного диода.

Он со временем нагревается и разрывает контакт. Лента тухнет, остывает, светодиод вновь запускается, свечение возобновляется. И так далее по новому кругу.

Контроллер и пульт

Если подсветка спустя продолжительный период времени вообще не запускается или включается “через раз”, не спешите ругать китайских товарищей. Возможно это происходит из-за банальной причины – сели батарейки в пульте дистанционного управления.

Поэтому такую вещь нужно проверять в первую очередь. Чаще всего пульты идут для управления контроллерами RGB.

И если разноцветная лента вдруг начнет сама собой переключаться и менять цвета, проверяйте не пульт, а сам контроллер.


Исправный пульт, не должен производить никаких самостоятельных переключений. Чтобы удостовериться, что он здесь не причем, просто извлеките батарейки.

Еще один способ выявить неисправный контроллер на RGB подсветке, это исключить его из схемы и подавать на ленту по отдельности питание на каждый цвет.

Если по отдельности все цвета работают исправно, а вместе ничего не горит, или моргнет один раз и сразу тухнет, то причина в повреждении RGB контроллера. Меняйте именно его.

Как найти неисправность

Когда разобрались с основными причинами, стоит понять, как же их лучше выявить и диагностировать. Что для этого понадобится и с чего начинать?

Всю светодиодную подсветку можно разбить на отдельные функциональные части:






Основной прибор необходимый для диагностики – мультиметр для замеров постоянного и переменного напряжения.

Перво-наперво замеряете переменное напряжение, которое поступает на блок питания. Вдруг там и нет необходимых 220В ("+" "-" 10%).

Далее проверяете выход. Здесь уже должно быть 12В или 24В ("+"/"-" 10%), смотря какой источник вы используете. Если выходное напряжение ниже или выше, не забывайте, что его можно немного подрегулировать при помощи резистора.

Находите разъем ADJ и подкручиваете винт отверткой. Когда с этим все в норме, идете по цепочке дальше.

Проверяете, поступает ли питание на вход RGB контроллера или диммера. Оно должно быть таким же, как на выходе блока питания.

Постепенно доходите до самой ленты. Подносите измерительные щупы к контактным площадкам и делаете замер. На них может быть напряжение от 7 до 12 вольт.

Если тускло светится какой-то один участок, а не вся лента, то измерения нужно проводить именно на нем.

При ненормальном снижении напряжения или его полном отсутствии, как раз таки и выявляется неисправный участок или элемент подсветки, отвечающий за работоспособность ленты.

В случае, когда все замеры показали, что напряжение на контактах в норме или в его пределах, нужно переходить к поиску неисправных светодиодов.

  • брак

Нельзя исключить и заводского брака, когда один из диодов плохо припаян.

Нажимаешь на него с усилием, и весь участок начинает светиться. Отпускаешь – потухает.

Тут спасает только повторная пайка.

Открывать полный загадок мир радиоэлектроники, не имея специализированного образования, рекомендуется начинать со сборки простых электронных схем. Уровень удовлетворения при этом будет выше, если положительный результат будет сопровождаться приятным визуальным эффектом. Идеальным вариантом являются схемы с одним или двумя мигающими светодиодами в нагрузке. Ниже приведена информация, которая поможет в реализации наиболее простых схем, сделанных своими руками.

Готовые мигающие светодиоды и схемы с их использованием

Среди многообразия готовых мигающих светодиодов, наиболее распространены изделия в 5-ти мм корпусе. Помимо готовых одноцветных мигающих светодиодов, существуют двухвыводные экземпляры с двумя или тремя кристаллами разного цвета. У них в одном корпусе с кристаллами встроен генератор, который работает на определенной частоте. Он выдает одиночные чередующиеся импульсы на каждый кристалл по заданной программе. Скорость мерцания (частота) зависит от заданной программы. При одновременном свечении двух кристаллов мигающий светодиод выдает промежуточный цвет. Вторыми по популярности являются мигающие светоизлучающие диоды, управляемые током (уровнем потенциала). То есть, чтобы заставить мигать светодиод данного типа нужно менять питание на соответствующих выводах. Например, цвет излучения двуцветного красно-зелёного светодиода с двумя выводами зависит от направления протекания тока.

Трёхцветный (RGB) мигающий светодиод с четырьмя выводами имеет общий анод (катод) и три вывода для управления каждым цветом отдельно. Эффект мигания достигается путём подключения к соответствующей системе управления.

Смастерить мигалку на основе готового мигающего светодиода достаточно легко. Для этого потребуется батарейка CR2032 или CR2025 и резистор на 150–240 Ом, который следует припаять на любой вывод. Соблюдая полярность светодиода, контакты подключаются к батарейке. Светодиодная мигалка готова, можно наслаждаться визуальным эффектом. Если использовать батарейку типа «крона», основываясь на законе Ома, следует подобрать резистор большего сопротивления.

Обычные светодиоды и семы мигалок на их основе

Начинающий радиолюбитель может собрать мигалку и на простом одноцветном светоизлучающем диоде, имея минимальный набор радиоэлементов. Для этого рассмотрим несколько практических схем, отличающихся минимальным набором используемых радиодеталей, простотой, долговечностью и надежностью.

Первая схема состоит из маломощного транзистора Q1 (КТ315, КТ3102 или аналогичный импортный аналог), полярного конденсатора C1 на 16В с емкостью 470 мкФ, резистора R1 на 820-1000 Ом и светодиода L1 наподобие АЛ307. Питается вся схема от источника напряжения 12В.

Приведенная схема работает по принципу лавинного пробоя, поэтому база транзистора остаётся «висеть в воздухе», а на эмиттер подаётся положительный потенциал. При включении происходит заряд конденсатора, примерно до 10В, после чего транзистор на мгновение открывается с отдачей накопленной энергии в нагрузку, что проявляется в виде мигания светодиода. Недостаток схемы заключается в необходимости наличия источника напряжения 12В.

Вторая схема собрана по принципу транзисторного мультивибратора и считается более надёжной. Для её реализации потребуется:

  • два транзистора КТ3102 (или их аналога);
  • два полярных конденсатора на 16В емкостью 10 мкФ;
  • два резистора (R1 и R4) по 300 Ом для ограничения тока нагрузки;
  • два резистора (R2 и R3) по 27 кОм для задания тока базы транзистора;
  • два светодиода любого цвета.

В данном случае на элементы подаётся постоянное напряжение 5В. Схема работает по принципу поочередного заряда-разряда конденсаторов С1 и С2, что приводит к открыванию соответствующего транзистора. Пока VT1 сбрасывает накопленную энергию С1 через открытый переход коллектор-эмиттер, светится первый светодиод. В это время происходит плавный заряд С2, что способствует уменьшению тока базы VT1. В определённый момент VT1 закрывается, а VT2 открывается и светится второй светодиод.

Вторая схема имеет сразу несколько преимуществ:

  1. Она может работать в широком диапазоне напряжений начиная от 3В. Подавая на вход более 5В, придётся пересчитать номиналы резисторов, чтобы не пробить светодиод и не превысить максимальный ток базы транзистора.
  2. В нагрузку можно включать 2–3 светодиода параллельно или последовательно, пересчитав номиналы резисторов.
  3. Равное увеличение ёмкости конденсаторов ведёт к увеличению длительности свечения.
  4. Изменив ёмкость одного конденсатора, получим несимметричный мультивибратор, в котором время свечения будет различным.

В обоих вариантах можно применить транзисторы pnp проводимости, но с коррекцией схемы подключения.

Иногда вместо мигающих светодиодов радиолюбитель наблюдает обычное свечение, то есть оба транзистора частично приоткрыты. В таком случае нужно либо заменить транзисторы, либо запаять резисторы R2 и R3 с меньшим номиналом, увеличив, тем самым, ток базы.

Следует помнить, что питания от 3В будет недостаточно, чтобы зажечь светодиод с высоким значением прямого напряжения. Например, для светодиода белого, синего или зелёного цвета потребуется большее напряжение.

Кроме рассмотренных принципиальных схем, существует великое множество других несложных решений, которые вызывают мигание светодиода. Начинающим радиолюбителям стоит обратить внимание на недорогую и широко распространенную микросхему NE555, на которой также можно реализовать данный эффект. Её многофункциональность поможет собирать и другие интересные схемы.

Область применения

Мигающие светодиоды со встроенным генератором нашли применение в построении новогодних гирлянд. Собирая их в последовательную цепь и устанавливая резисторы с небольшим отличием по номиналу, добиваются сдвига в мигании каждого отдельного элемента цепи. В итоге получается прекрасный световой эффект, не требующий сложного блока управления. Достаточно только подключить гирлянду через диодный мост.

Мигающие светоизлучающие диоды, управляемые током, применяются в качестве индикаторов в электронной технике, когда каждому цвету соответствует определённое состояние (вкл./выкл. уровень заряда и пр.). Также из них собирают электронные табло, рекламные вывески, детские игрушки и прочие товары, в которых разноцветное мигание вызывает интерес у людей.

Умение собирать простые мигалки станет стимулом к построению схем на более мощных транзисторах. Если приложить немного усилий, то с помощью мигающих светодиодов можно создать множество интересных эффектов, например – бегущую волну.

Читайте так же