Учимся работать с LPT портом. Что такое порты персонального компьютера? И какие они бывают

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Комсомольский-на-Амуре государственный технический университет»

Кафедра «Промышленная электроника»

Тестирование LPT-порта персонального компьютера

Методические указания к лабораторной работе по курсу

«Отладочные средства микропроцессорных систем» для студентов направления 210100 «Электроника и наноэлектроника»

Комсомольск-на-Амуре 2013

Тестирование LPT-порта персонального компьютера: Методические указания к лабоpатоpной работе по курсу "Отладочные средства микропроцессорных систем" для студентов направления 210100 «Электроника и наноэлектроника» / Сост. С.М. Копытов. - Комсомольск-на-Амуpе: Комсомольский-на-Амуpе гос. техн. ун-т, 2013. - 19 с.

Рассмотрены параллельный интерфейс Centronics, сигналы и программная поддержка LPT-порта персонального компьютера, приведены рекомендации по его тестированию.

Предлагаемые методические указания предназначены для студентов направления 210100.

Печатается по постановлению редакционно-издательского совета Комсомольского-на-Амуре государственного технического университета.

Согласовано с отделом стандартизации.

Рецензент В.А. Егоров

Цель работы: изучить основные возможности стандартного LPT-порта. Освоить принципы программно-управляемого обмена информацией через параллельный порт. Научиться проверять его работоспособность.

1 основные сведения

1.1 Описание параллельного интерфейса

Исторически параллельный интерфейс был введен в персональный компьютер (ПК) для подключения принтера (отсюда и аббревиатура LPT – Line Printer – построчный принтер). Однако впоследствии параллельный интерфейс стал использоваться для подключения других периферийных устройств (ПУ). Базовая разновидность порта позволяет передавать данные только в одном направлении (от ПК к ПУ), однако позднее был разработан ряд стандартов двунаправленной передачи данных.

В современных офисных компьютерах LPT-порт, как правило, не предусмотрен, однако, установив мультикарту расширения портов, такой порт можно получить в свое распоряжение.

Адаптер параллельного интерфейса представляет собой набор регистров, расположенных в адресном пространстве устройств ввода/вывода. Количество регистров зависит от типа порта, однако три из них стандартны и присутствуют всегда. Это регистр данных, регистр состояния и регистр управления. Адреса регистров отсчитываются от базового, стандартные значения которого 3BCh, 378h, 278h. Порт может использовать аппаратное прерывание (IRQ7 или IRQ9). Многие современные системы позволяют изменять режим работы порта, его адрес и IRQ из настроек базовой системы ввода-вывода (Base Input Output System – BIOS) Setup.

LPT порт имеет внешнюю 8-битную шину данных, 5-битную шину сигналов состояния и 4-х битную шину управляющих сигналов. Очевидно, что порт асимметричен  12 линий работают на вывод и только 5 на ввод.

При начальной загрузке BIOS пытается обнаружить параллельный порт, причем делает это примитивным и не всегда корректным образом  по возможным базовым адресам портов передается тестовый байт, состоящий из чередующегося набора нулей и единиц (55h или AAh), затем производится чтение по тому же адресу, и если прочитанный байт совпал с записанным, то считается, что по данному адресу найден LPT порт. Определить адрес порта LPT4 BIOS не может. Для работы с ПУ в BIOS предусмотрено прерывание INT 17h, предоставляющее возможность передавать данные (побайтно), инициализировать ПУ и получать информацию о его состоянии.

Понятие Centronics относится к набору сигналов, протоколу обмена и 36-контактному разъему, ранее устанавливаемому в принтерах. Назначение сигналов и контакты разъема ПУ, на который они выведены приведены в таблице 1.

Таблица 1 - Сигналы интерфейса Centronics

Направление

Назначение

Строб данных. Передается ЭВМ, данные фиксируются по низкому уровню сигнала.

Линии данных. D0 - младший бит.

Acknowledge – импульс подтверждения приема байта (запрос на прием следующего). Может использоваться для формирования прерывания.

Занят. Прием данных возможен только при низком уровне сигнала

"1" сигнализирует о конце бумаги

"1" сигнализирует о включении принтера (ГП – готовность приемника), обычно +5 В через резистор от источника питания ПУ)

Автоматический перевод строки. Если "0", то ПУ при получении символа CR (перевод каретки) выполняет функцию LF – перевод строки

Ошибка ПУ (off-line, нет бумаги, нет тонера, внутренняя ошибка)

Инициализация (переход к началу строки, сброс всех параметров на значения по умолчанию)

Выбор принтера. При "1" принтер не воспринимает остальные сигналы интерфейса

Общий провод

Примечание: столбец "T" – активный уровень сигнала: "1" – высокий активный уровень, "0" – низкий активный уровень. Столбец "Направление" – направление передачи по отношению к принтеру: I – Input (вход), O – Output (выход).

Сигнал Auto LF практически не применяется, но его неправильное значение приводит к тому, что принтер либо делает пропуски строк, либо печатает строки поверх друг друга, либо дублирует строки при печати в два прохода.

Отечественным аналогом интерфейса Centronics является ИРПР-М. Кроме него существует интерфейс ИРПР (устаревший), который отличается протоколом обмена, отсутствием сигнала "Error" и инверсией линий данных. Кроме того, ко всем входным линиям ИРПР подключены пары согласующих резисторов: 220 Ом к +5 В и 330 Ом к общему проводу. Это перегружает большинство интерфейсных адаптеров современных ПК.

Протокол обмена данными по интерфейсу Centronics приведен на рисунке 1.

Рисунок 1 - Протокол обмена данными по интерфейсу Centronics

Передача начинается с проверки источником сигнала Error. Если он установлен, то обмен не производится. Затем проверяется состояние сигнала Busy. Если он равен "0", то источник приступает к передаче байта данных. Для передачи байта источник выставляет на линии D0-D7 байт данных и выдает сигнал Strobe#. Приемник по сигналу Strobe# (здесь и далее по тексту значок "#" после названия сигнала является признаком того, что сигнал имеет низкий активный уровень) читает данные с шины данных и выставляет сигнал Busy на время его обработки. По окончании обработки приемник выдает сигнал ACK# и снимает сигнал Busy.

Если в течение длительного времени (6 – 12 сек) источник не получает ACK#, то он принимает решение об ошибке "тайм-аут" (time-out) устройства. Если после приема байта приемник по какой - либо причине не готов принимать данные, то он не снимает сигнал Busy. При программной реализации обмена по указанному протоколу желательно ограничить время ожидания снятия Busy (обычно 30 – 45 сек), иначе возможно зависание программы.

Стандартный параллельный порт называется SPP (Standard Parallel Port). SPP порт является однонаправленным, на его базе программно реализуется протокол обмена Centronics. Порт обеспечивает возможность генерации IRQ по импульсу ACK# на входе. Сигналы порта выводятся на стандартный разъем DB-25S (розетка), который размещен непосредственно на плате адаптера или соединяется с ним плоским шлейфом (в случае, если адаптер интегрирован с материнской платой).

Названия сигналов соответствуют названиям сигналов интерфейса Centronics (таблица 1), а изображение разъема интерфейсного адаптера со стороны компьютера приведено на рисунке 2.

Таблица 2 - Разъем и шлейф стандартного LPT порта

Провод шлейфа

10, 22, 14, 16, 18, 20, 22, 24, 26

Примечание. I/O – направление передачи: I – вход; O – выход; O(I) – выход, состояние которого может быть считано при определенных условиях, O/I – выходные линии, состояние которых читается при чтении из соответствующих регистров порта. * - Вход ACK# соединен с питанием +5 В через резистор 10 кОм. Это сделано для исключения ложных прерываний, т.к. прерывание генерируется по отрицательному перепаду сигнала на входе ACK#.

Рисунок 2 - Разъем интерфейсного адаптера Cetronics DB-25S

В качестве недостатков стандартного LPT порта (SPP) следует отметить невысокую скорость передачи данных (100 – 150 кБ/сек), загрузку процессора при передаче данных, невозможность двунаправленного побайтного обмена. Существует "радиолюбительская" методика двунаправленного обмена, которая состоит в том, что для ввода данных на линии D0-D7 выставляют "1", а в качестве передатчика используют микросхемы с открытым коллектором, которые при открытом транзисторе могут "подсаживать" напряжение логической единицы до уровня порядка 1.5 – 1.7 В. Ток ограничен на уровне 30 мА. Как очевидно из уровней сигналов, они не соответствуют уровням ТТЛ, поэтому многие порты не работают в таком режиме или работают нестабильно. Кроме того, такой способ может быть опасен для адаптера порта, который будет работать с предельными для него токами.

Стандарт IEEE 1284 , принятый в 1994 году, определяет термины SPP, ЕРР и ЕСР. Стандарт определяет 5 режимов обмена данными, метод согласования режима, физический и электрический интерфейсы. Согласно IEEE 1284, возможны следующие режимы обмена данными через параллельный порт:

Compatibility Mode – однонаправленный (вывод) по протоколу Centronics. Этот режим соответствует стандартному порту SPP;

Nibble Mode – ввод байта в два цикла (по 4 бита), используя для ввода линии состояния. Этот режим обмена может использоваться на любых адаптерах;

Byte Mode – ввод байта целиком, используя для приема линии данных. Этот режим работает только на портах, допускающих чтение выходных данных (Bi-Directional или PS/2 Type 1);

ЕРР (Enhanced Parallel Port) Mode – двунаправленный обмен данными, при котором управляющие сигналы интерфейса генерируются аппаратно во время цикла обращения к порту (чтения или записи в порт). Эффективен при работе с устройствами внешней памяти, адаптерами локальных сетей;

ЕСР (Extended Capability Port) Mode – двунаправленный обмен с возможностью аппаратного сжатия данных по методу RLE (Run Length Encoding), использования FIFO-буферов и DMA. Управляющие сигналы интерфейса генерируются аппаратно. Эффективен для принтеров и сканеров.

В современных машинах с LPT-портом на системной плате режим порта – SPP, ЕРР, ЕСР или их комбинация задается в BIOS Setup. Режим Compatibility Mode полностью соответствует SPP и часто установлен по умолчанию. Все остальные режимы расширяют функциональные возможности интерфейса и повышают его производительность. Кроме того, стандарт регламентирует способ согласования режима, доступного как ПК, так и периферийному устройству.

Физический и электрический интерфейс. Стандарт IEEE 1284 определяет физические характеристики приемников и передатчиков сигналов. Существенным является то, что при передаче используются уровни ТТЛ логики.

Стандарт IEEE 1284 определяет три типа используемых разъемов: А (DB-25S), B (Centronics-36), C (новый малогабаритный 36-контактный разъем). Интерфейсные кабели могут иметь от 18 до 25 проводников (в зависимости от числа проводников GND). Обычные кабели могут работать только на низких скоростях при длине не более 2 метров. Улучшенные экранированные кабели с сигнальными проводниками, перевитыми с общими проводами, могут иметь длину до 10 метров. Такие кабели маркируются как "IEEE Std 1284 - 1994 Compliant".

Работа с параллельным портом на низком уровне (т.е. на уровне прямого обращения к контроллеру порта) применяется при решении различного круга задач по обмену информацией с нестандартными устройствами, для написания драйверов принтеров и ряда других задач. Прямая работа с контроллером позволяет реализовать любой протокол обмена с устройством и использовать линии порта по своему усмотрению.

Контроллер порта расположен в адресном пространстве устройств ввода-вывода и обращение к нему производится посредством команд IN и OUT ассемблера. Информацию о портах LPT1 – LPT3 можно получить, прочитав переменные BIOS, приведенные в таблице 3.

Таблица 3 - Переменные BIOS для LPT портов

Имя порта

Адрес в BIOS

Тип переменной

Описание

Базовый адрес порта LPT1. Если переменная равна 0, то порт LPT1 не найден

Константа, задающая тайм-аут

Базовый адрес порта LPT2. Если переменная равна 0, то порт LPT2 не найден

Константа, задающая тайм-аут

Базовый адрес порта LPT3. Если переменная равна 0, то порт LPT3 не найден

Константа, задающая тайм-аут

Базовый адрес порта LPT4. Если переменная равна 0, то порт LPT4 не найден

Константа, задающая тайм-аут

BIOS ищет порты по адресам Base: 3BCh, 378h, 278h. Порт LPT4 BIOS найти не может:

378h - параллельный адаптер LPT1;

278h - параллельный адаптер LPT2;

3BCh - параллельный адаптер LPT3.

Стандартный порт имеет три 8-битных регистра, расположенных по соседним адресам, начиная с базового (Base) адреса. Перечень данных регистров приведен в таблице 4.

Таблица 4 - Регистры стандартного LPT порта

Регистр данных (DR). Записанные в этот регистр данные выводятся на выходные линии интерфейса D0D7. Результат чтения этого регистра зависит от схемотехники адаптера и соответствуют либо записанным ранее данным, либо сигналам на линиях D0D7, что не всегда одно и тоже. При стандартном включении справедлив первый вариант - читаемые данные равны ранее записанным.

Регистр состояния (SR) . Представляет собой 5-ти битный порт ввода, на который заведены сигналы состояния от внешнего устройства. Допускает только чтение. Назначение битов данного регистра приведены в таблице 5.

Таблица 5 - Биты регистра состояния SR

Название

Назначение

Инверсное отображение состояния линии Busy (11). При низком уровне на линии 11 (Busy) – бит равен "1" – ПУ готово к приему очередного байта

Отображение состояния линии ACK# (10).

"0" – подтверждение приема,

"1" – обычное состояние

Отображение состояния линии Paper End (12).

"0" – норма, "1" – в ПУ нет бумаги

Отображение состояния линии Select (13).

"0" - ПУ не выбрано, "1" - ПУ выбрано

(инверсн.)

Отображение состояния линии Error (15).

"0" – ошибка ПУ, "1" – обычное состояние

Флаг прерывания по ACK# (только PS/2).

Обнуляется, если ACK# вызвал аппаратное прерывание. "1" – после сброса или после чтения регистра состояния

Не используются (резерв)

Регистр управления (CR). Регистр управления представляет собой 4-х битный порт вывода, допускающий чтение и запись. Биты 0, 1, 3 инвертируются, т.е. "1" в данных битах регистра управления соответствует "0" на соответствующих линиях порта. Назначение битов регистра управления приведены в таблице 6. Бит 5 используется только двунаправленными портами.

Таблица 6 - Биты регистра управления CR

Название

Назначение

Бит управления направлением порта.

"1" – режим ввода, "0" – режим вывода

Бит управления генерацией прерывания по ACK# . "1" – разрешить прерывание по спаду ACK# (10)

Управление линией SLCT IN# (17).

"1" – работа принтера разрешена.

Управление линией INIT# (16). "1" – обычное состояние, "0" – аппаратный сброс ПУ

Управление линией Auto LF# (14). "1" – включить режим "Auto LF", "0" – обычное состояние

Управление линией Strobe# (1). "1" – стробирование данных, "0" – обычное состояние

Программирование интерфейса. Для разработки прикладных программ необходимо выбрать язык программирования. Если требуется несложная, быстрая и компактная программа, которая не содержит сложных вычислительных операций, то для ее написания лучше выбирать язык низкого уровня (язык ассемблера). Язык ассемблера относится к группе машинно-ориентированных языков, т.е. каждому семейству микропроцессоров соответствует свой язык.

Язык высокого уровня следует выбирать, если необходимо производить сложные вычисления, или в случае, если высокое быстродействие программы не требуется. Объектные коды, полученные в результате трансляции программ, написанных на языке высокого уровня, обычно занимают в памяти ЭВМ намного больше места и исполняются медленнее в сравнении с программами на ассемблере. Часто применяется подход, когда критичные к быстродействию части программы пишутся на ассемблере, а вычислительные процедуры – на языке высокого уровня, например, на Паскале или Си.

Рассмотрим работу с регистрами интерфейса CENTRONICS на языке PASCAL или ассемблере:

Х - число типа "byte" (0..255). Например, при посылке 170 10 = =10101010 2 на линии d0–d7 единичный сигнал будет присутствовать на выводах d1, d3, d5, d7 (обозначение выводов начинается с d0). Число 170 останется на выводах разъёма до тех пор, пока Вы не перешлёте туда же другое число (это может сделать и другая программа) или не выключите компьютер. Заметьте, что адрес порта в команде задан в шестнадцатиричном виде, а посылка - в десятичном. Если вместо Паскаль-команды

Port[$378]:=170;

Вы примените

где d – переменная, то переменная примет значение последнего посланного в порт байта или, при переходе в режим приёма, значение байта, поданного на порт внешним устройством.

Пример чтения статус-регистра на языке Pascal:

В переменной d после выполнения программы будет отображено состояние порта. Допустим, переменная вернула значение 126 10 . В двоичном виде оно выглядит как 01111110 2 . Младшие (правые) три бита (нулевой, первый и второй) не используются, и почти равны 1, 1 и 0. Третий бит – 1, значит на ERROR высокий уровень. Та же ситуация на SELECT, Paper End, ACK и BUSY (не забывайте, что сигнал BUSY является инвертированным).

Приведем пример фрагмента программы, которая считывает байт с линий данных D0-D7:

Port[$37A]:=32 ; значение 32 "включает" единицу в пятом

d:=Port[$378] ; бите, переводя порт в режим ввода

Как видно из приведенных примеров, программирование LPT-порта является весьма простой задачей, что позволяет в значительной степени облегчить работу разработчика программного обеспечения устройств с обсуждаемым интерфейсом.

1.2 Тестирование LPT-поpтa

Тестирование LPT-поpтa можно выполнить с помощью простой заглуш­ки, которую можно изготовить, воспользовавшись таблице 7.

Таблица 7 - Таблица цепей заглушки для тестирования LPT-поpтa

Направление

Направление

Компьютер обрабатывает сигналы параллельными потоками, поэтому ему легче «общаться» с параллельными, а не с последовательными внешними портами. В 1984 г. в составе IBM PC впервые появился параллельный порт. Задуман он был как средство подключения матричных принтеров, отсюда и название LPT - Line PrinTer или Line Printer Terminal. В дальнейшем для принтеров стали использовать быстродействующий интерфейс USB, а LPT-порт начал постепенно вытесняться из компьютерных спецификаций. Остряки сравнивают LPT с чемоданом без ручки - и выбросить жалко, и тащить невозможно. Тем не менее, «ветеран» ещё на многое способен, если, конечно, он присутствует в конкретном компьютере.

Разъём LPT-порта имеет 25 контактов. Нормой «де-факто» считается розетка DB-25F в компьютере и вилка DB-25M в ответном кабеле (Табл. 4.2). Нумерация контактов вилок и розеток зеркальная (Рис. 4.7, а, б).

Таблица 4.2. Раскладка сигналов в 25-контактном разъёме LPT-порта

Расшифровка

Направление

Вход/выход

Вход/выход

Подтверждение

Готовность

Нет бумаги

Автоперенос

Вход/выход

Инициализация

Вход/выход

Выбор входа

Вход/выход

Рис. 4.7. Внешний вид спереди 25-контактных разъёмов LPT-порта: а) розетка DB-25F в компьютере; б) вилка DB-25M в соединительном кабеле.

Первоначально линии LPT-порта были однонаправленными SPP (Standard Parallel Port). Часть из них работала только на вход, часть - только на выход, что по набору сигналов и протоколу обмена соответствовало принтерному интерфейсу «Centronics». В 1994 г. был утверждён новый стандарт параллельного интерфейса IEEE 1284, предусматривающий двунаправленные линии и три режима работы: SPP, EPP (Enhanced Parallel Port), ECP (Extended Capabilities Port).

Уровни электрических сигналов LPT-порта совпадают с обычными «пятивольтовыми» логическими микросхемами. Раньше в компьютерах применялись буферные TTJl-микросхемы серии 74LSxx, позднее - КМОП-микросхемы и БИС, примерно эквивалентные серии 74ACxx. В последнем случае можно ориентировочно считать, что НИЗКИЙ уровень равен 0.1..0.2 В, а ВЫСОКИЙ - 4.5…4.9 В.

Стандартом регламентируется нагрузка 14 мА по каждому выходу при сохранении напряжения не менее +2.4 В ВЫСОКОГО и не более +0.4 В НИЗКОГО уровня. Однако в разных материнских платах выходные буферы LPT-порта могут иметь разную нагрузочную способность, в том числе и ниже стандарта («слабый» порт).

Требования к соединительным кабелям, подключаемым к LPT-порту:

Сигнальные провода должны быть свиты в пары с общим проводом GND;

Каждая пара должна иметь импеданс 56…68 Ом в диапазоне частот 4… 16 M Гц;

Если применяется плоский ленточный кабель, то сигнальные провода должны физически чередоваться с общим проводом GND (локальные экраны);

Уровень перекрёстных помех между сигналами не более 10%;

Кабель должен иметь экран, покрывающий не менее 85% внешней поверхности. На концах кабеля экран должен быть окольцован и соединён с «земляным» контактом разъёма;

В разъёме кабеля можно запаять на контакты 1…17 последовательные резисторы C2-23 (OMJIT-O.125) сопротивлением 100…300 Ом (Рис. 4.8). Это позволит защитить компьютер от случайных коротких замыканий в нагрузке и уменьшить высокочастотный «звон» на фронтах сигналов.

Рис. 4.8. Электрическая схема LPT-кабеля с «антизвонными» резисторами.

Схемы соединения MK с LPT-портом можно разделить на три группы:

Приём сигналов от компьютера (Рис. 4.9, а…з);

Передача сигналов в компьютер (Рис. 4.10, а…д);

Приём/передача сигналов одновременно (Рис. 4.11, a…e).

В схемах приняты некоторые упрощения. В качестве входного сигнала указывается в основном «DO», а в качестве выходного - «АСК», хотя могут быть и другие, перечисленные в Табл. 4.2. На каждом конкретном компьютере работоспособность самодельных схем необходимо проверять экспериментально, что связано с наличием «сильных» и «слабых» LPT-портов по нагрузочной способности.

Рис. 4.9. Схемы ввода сигналов из LPT-порта в MK (начало):

а) резистор R1 ограничивает входной ток. Элементы R2, C1 могут отсутствовать, но они уменьшают «звон» на фронтах сигналов при длинном кабеле;

б) буферный транзистор VT1 инвертирует сигнал. Диод VD1 не обязателен, но он защищает транзистор от ошибочной подачи большого отрицательного напряжения. Если не ставить резистор R2, то схема останется работоспособной, однако при отстыковке кабеля от LPT-порта возможны ложные срабатывания транзистора VT1 от внешних помех и наводок;

в) диод VD1 отсекает помехи и повышает порог срабатывания транзистора VT1. Резистор R1 надёжно закрываеттранзистор VT1 при НИЗКОМ уровне с LPT-порта;

г) буферный логический элемент DD1 имеет выход с открытым коллектором. Фронты сигналов формируются элементами R1, C1. Можно вместо инвертора DD1 поставить повторитель К155ЛП9, сделав соответствующие изменения в программе MK и компьютера;

д) триггер Шмитта DD1 (замена - К555ТЛ2) повышает помехоустойчивость. Чем меньше сопротивление резисторов R1, R2, тем больше крутизна фронтов сигнала. При отключённом кабеле от LPT-порта резистор R1 не даёт входу микросхемы DD1 «висеть в воздухе»;

е) последовательное включение двух логических элементов DD11, /)/)/.2увеличивает (восстанавливает) крутизну фронтов сигнала. Резистор R1 устраняет выбросы, «звон»;

Рис. 4.9. Схемы ввода сигналов из LPT-порта в MK (окончание):

ж) данные, поступающие от LPT-порта, предварительно помещаются в промежуточный регистр DD1. Запись производится при ВЫСОКОМ уровне на входе «С» микросхемы DD1, хранение - при НИЗКОМ. Такое решение устраняет помехи, поскольку в LPT-порт в зависимости от установленных в компьютере драйверов периодически могут выводиться случайные данные. Их устраняют программно, например, путём многократного считывания входного сигнала с линий MK;

з) буферизация LPT-порта мощными транзисторными ключами, находящимися в микросхеме DA1 фирмы Texas Instruments. Резисторы R1…R8 могут иметь в 10… 15 раз более низкие сопротивления, что позволяет подключить параллельно выходам микросхемы А4/другие узлы устройства.

Рис. 4.10. Схемы вывода сигналов из MK в LPT-порт (начало):

а) непосредственное подключение выхода MK без буферных элементов. Резисторы R1, R2 уменьшают отражение сигналов в линии. Кроме того, резистор R2 защищает выход MK от случайного короткого замыкания с цепью GND в проводах соединительного кабеля;

б) триггер Шмитта DD1 служит защитным буфером для MK при аварийной ситуации на выходе (короткое замыкание или подача большого напряжения);

в) микросхема DD1 имеет выход с открытым коллектором, что защищает её от короткого замыкания в проводах и разъёмах соединительного кабеля;

г) подача двух противофазных сигналов в компьютер. Цель - программная необходимость или организация дублирующего (контрольного) канала передачи данных;

д) опторазвязка на элементах HL1, BL1, которые применяются в компьютерных механических «мышах». Транзистор КГ/усиливает и инвертирует сигнал. Для нормальной работы устройства компьютер должен выставить ВЫСОКИЙ уровень на линии «D8».

Рис. 4.11. Комбинированные схемы ввода/вывода сигналов между MK и LPT-портом (начало):

а) если компьютер выставляет на линии «DO» ВЫСОКИЙ уровень, то MK в режиме выхода может генерировать сигнал «АСК» через резистор R1. Если MK переводится в режим входа, то компьютер может передавать ему данные по линии «DO» через диод VD1 при этом внутренний « pull-up» резистор MK формирует ВЫСОКИЙ уровень;

б) сигнал от LPT-порта вводится в MK через инвертор на транзисторе VT1 при этом компьютер должен выставить ВЫСОКИЙ уровень на линии «D2». Информация в MK вводится с линии «DO» через резистор R1 Высокое сопротивление резистора R1 физически развязывает входной и выходной каналы;

Рис. 4.11. Комбинированные схемы ввода/вывода сигналов между MK и LPT-портом (окончание):

б) сигнал от LPT-порта вводится в MK через инвертор на транзисторе VT1, при этом компьютер должен выставить НИЗКИЙ уровень на линии «DO». Информация в МК вводится через элементы R1, R3, VT2;

г) сигнал от LPT-порта вводится в MK через повторитель на транзисторе VT1, при этом компьютер должен выставить ВЫСОКИЙ уровень на линии «DO». Информация в MK вводится через повторитель на микросхеме DD1\

ж) сигналы «D0»…«D3» вводятся в MK при НИЗКОМ уровне на линии «INIT», при этом компьютер должен настроить линии «D4»…«D7» как входы. В настройках BIOS компьютера надо установить двунаправленный режим EPP или ЕСР для LPT-порта. Информация в компьютер из МК передаётся по линиям «D4»…«D7» при ВЫСОКОМ уровне на линии «INIT». Резистор R1 переводит выходы микросхемы DD1 в Z-состояние при отключённом кабеле от LPT-порта;

e) сигнал от MK в LPT-порт вводится через повторитель DD1.2, при этом компьютер должен выставить ВЫСОКИЙ уровень на линии «D2» и НИЗКИЙ уровень на линии «D5». Информация в MK вводится через повторитель DD1.1 при НИЗКОМ уровне налинии «D2». Стробирование сигналов по входам «Е1», «Е2» микросхемы DD1 повышает достоверность передачи данных.

Не смотря на то, что на сегодняшний день прочно вошел в моду USB интерфейс - порт, для радиолюбительских целей LPT порт и поныне остается достаточно востребованным. Ведь на самом деле, не так уж и важно каким образом и через какой порт, будет происходить управление внешними устройствами от компьютера, важен результат. Почему я решил остановиться на изучении LPT порта? Ответ прост, это достаточно доступный и легко осваиваемый в плане программирования порт, для новичков, это пожалуй не плохое практическое руководство по освоению LPT, а в дальнейшем и других портов - интерфейсов. В данной статье, я постараюсь детально ознакомить начинающих радиолюбителей - программистов с принципами программирования LPT порта. Практическое программирование, будет показано опираясь на языки программирования Паскаль и Делфи. От вас требуются, базовые знания языка Паскаль и Делфи, ну и конечно же радиоэлектроники, в пределах 10 - ти уроков представленных на сайте.

Что такое LPT-порт?

LPT порт, это то место в компьютере, куда подключается принтер. Но туда можно воткнуть ещё много чего интересного. В том числе и придуманные вами схемы. У меня, например, через LPT порт, включался свет в комнате, реализовано управление поворотным уст-вом антенны и много было проведено других экспериментов (измерение некоторых параметров радиосхем с использованием порта и пр.).

Так выглядят разъемы на компьютере и соединительные разъемы.

Направление

Сигнал

Для простых схем управления нам понадобятся выводы:

2 - 9 - это выходы Data0-7. 18 - 25 - это земля (минус). Обычно(не всегда) они соединены с корпусом компьютера. Это основной набор контактов, необходимый для изготовления собственных схем. Также хочу обратить внимание на вывод - это "Data Strobe". Как я понял, положительный сигнал на этом выходе говорит устройству, что нужно произвести чтение очередной команды. Если мы не запитаем этот выход программно, то принтер просто не будет обращать внимания на остальные выходы. Для ввода информации в порт используются выводы 10-13, 15. Подробнее позже. Выходы порта могут принимать только 2 состояния - log0 и log1. При включении компьютера состояния выходов быстро меняются, потом переходят в log0. В зависимости от типа материнской платы один-два выхода могут перейти в log1. Далее, при загрузке ОС Windows состояния входов могут снова измениться. После окончания загрузки система не трогает выходы пока не начнется печать или "поиск оборудования. Примеры схем для отладки программ при работе с LPT портом и не только. В этом разделе, я попытаюсь привести несколько примеров схем управляемых при помощи LPT порта. Думаю, что этих схем вполне хватит для изучения принципов работы порта. Когда я начал программировать LPT порт, я спаял себе не большую схемку. Мне кажется, что это самый простой и самый наглядный пример для изучения, советую, не откладывая в долгий ящик спаять себе такую же схемку. Она нам пригодится на протяжении всех занятий:

Все резисторы на схеме по 270 - 470 ом, в зависимости от выбранных светодиодов. Резисторы здесь ограничивают потребляемый ток. По стандарту напряжение между сигнальным выводом и землей должен быть в не более 2,4V - 2.6 mA. Те. очень мало, но на самом деле современные материнские платы рассчитаны на большую нагрузку и очень часто имеют защиту от КЗ. В любом случае, с портом нужно обращаться очень аккуратно, т.к. без него материнская плата компьютера может вообще отказаться работать. Вот самая простая схема подключения реле:

Думаю, что объяснять здесь ничего не нужно. Data - это один из выходов LPT порта, например, вывод 2 (Data-0). Если на нем появится log1, транзистор откроется, сработает реле K1 и подключит какую-то более мощную нагрузку.. В этой схеме LPT порт напрямую подключен к транзистору и в случае его пробоя на выходе data может оказаться опасное для порта напряжение. Чтобы защитить порт нужно использовать гальваническую развязку. Схема с применением оптопары.

В данной схеме порт отделен от высоковольтной части и ему почти ничего не угрожает. В этой схеме я ставил оптоизолятор 4N25 - самый дешевый и маленький. Катушка на схеме - это реле на 12 вольт. Во время экспериментов я подключил к этой схеме реле РЭС22, а к нему настольную лампу. Для пробы написал программку, которая управляла лампой по часам...
Кстати, вот примерчик управления симистором:

Эту схемку я просто воткнул вместо выключателя от основного освещения в своей комнате. Итак, мы рассмотрели некоторые простейшие схемки, которые смело можно использовать в наших экспериментах с LPT портом, а в дальнейшем взять их за основу при разработке управляемых устройств. И так, из этой статьи вы узнали, что такое LPT порт и как его можно использовать в радиолюбительских целях. Так же были приведены примеры простейших радиосхем, которые будут нами использоваться для дальнейших экспериментов. Переходим к теории и практики программирования LPT порта.

|

LPT порт - это то место в компе куда подключается принтер. Но туда можно воткнуть ещё много чего интересного. В том числе и придуманые вами схемы. У меня, например, через LPT порт включался свет в комнате, открывался замок на двери и выключалось радио.

Так выглядит разъем на компьютере.

У него 25 выводов:

N Направление Сигнал
1 Выход Data Strobe
2 Выход Data 0
3 Выход Data 1
4 Выход Data 2
5 Выход Data 3
6 Выход Data 4
7 Выход Data 5
8 Выход Data 6
9 Выход Data 7
10 Вход Acknowledge
11 Вход Busy
12 Вход Paper Out
13 Вход Select
14 Выход Auto feed
15 Вход Error
16 Выход Init
17 Выход Select Input
18-25 Ground

Для простых схем управления нам понадобятся выводы:
2 - 9 - это выходы Data0-7.
18 - 25 - это земля (минус). Обычно(не всегда) они соединены с корпусом компа.
Это основной набор контактов, необходимый для изготовления собственных схем.

Также хочу обратить внимание на вывод 1 - это "Data Strobe". Как я понял, положительный сигнал на этом выходе говорит устройству, что нужно произвести чтение очередной команды. Если мы не запитаем этот выход программно, то принтер просто не будет обращать внимания на остальные выходы.

Для ввода информации в порт используются выводы 10-13, 15 . Подробнее позже.

Выходы порта могут принимать только 2 состояния - log0 и log1 . При включении компьютера состояния выходов быстро меняются, потом переходят в log0. В зависимости от типа материнской платы один-два выхода могут перейти в log1. Далее, при загрузке ОС Windows состояния вхлдов могут снова измениться. После окончания загрузки система не трогает выходы пока не начнется печать или "поиск оборудования".

Источник: zps-electronics.com


C этой схемой также часто просматривают:

Д. ЗАХАРОВ, г. Прокопьевск Кемеровской обл.

Овладев управлением интерфейсными портами компьютера, радиолюбитель может подключать к ним различные сигнальные и исполнительные устройства и датчики, превращая компьютер в центр управления бытовой электроникой, системой охраны квартиры или в измерительный прибор. Наиболее привлекателен для начинающего параллельный порт LPT, исходно предназначенный для подключения к компьютеру принтера. Отсюда происходит и аббревиатура LPT - Line Printer Terminal (первые принтеры печатали информацию "line by line" - построчно). Позже область применения этого порта значительно расширилась, к нему стали подключать самые разные периферийные устройства. К сожалению, сегодня его (как, впрочем, и другие порты компьютера) постепенно вытесняет быстродействующая универсальная последовательная шина USB.

Разъем порта LPT на системном блоке компьютера - 25-контактная розетка DB-25F. На ее контакты можно подавать и снимать с них логические сигналы уровней, характерных для микросхем структуры ТТЛ. Логически низким считается напряжение 0...0,8 В, высоким - 2,4...5 В. Соединять выходные контакты разъема с общим проводом или с источником напряжения, не превышающего +5 В, рекомендуется только через резисторы сопротивлением не менее 300 Ом. Не допускается подавать как на входы, так и на выходы порта отрицательное напряжение или положительное более 5 В. Подключать к порту и отключать что-либо от него можно только при полностью отключенном от сети 220 В компьютере (сетевая вилка вынута из розетки). Если подключаемое устройство имеет сетевое питание, оно тоже должно быть физически отсоединено от сети.

Несоблюдение этих требований может иметь тяжелые последствия. Если расположенная внутри компьютера микросхема контроллера параллельного порта выйдет из строя, потребуется ремонт или замена материнской платы.

При включении компьютера его параллельный порт работает в режиме Centronics - простейшем и традиционном для этого порта с момента его появления в компьютерах. Иногда этот режим называют Simple Parallel Port (SPP). Более сложные режимы ЕРР и ЕСР используются, как правило, для скоростного обмена информацией с лазерными принтерами и сканерами. Мы их рассматривать не будем, потому что программирование работы с портом в таких режимах доступно лишь опытным программистам.

С точки зрения программы порт LPT в режиме Centronics представляет собой три восьмиразрядных регистра в пространстве ввода-вывода микропроцессора: регистр данных DR по адресу &Н378, регистр состояния принтера SR по адресу &Н379 и регистр управления принтером CR по адресу &Н37А. Указанные адреса относятся к порту LPT1, обычно единственному в компьютере. Если в нем имеются другие параллельные порты, им также отводят по три регистра с последовательными адресами. Например, регистры порта LPT2 обычно имеют адреса &Н278-&Н27А.

Входы и выходы регистров порта (правда, не все) соединены с контактами интерфейсного разъема, как показано на рис. 1.

Поэтому, записывая в эти регистры определенные коды, можно устанавливать соответствующие логические уровни напряжения на выходных контактах разъема, а читая коды из регистров, определять уровни поданных на входы внешних сигналов.

Работать с портом LPT можно практически в любой среде программирования и операционной системе. Наиболее доступными считаются среды Visual Basic и Delphi, причем во всем, что требуется для программирования порта, они весьма схожи. Нужно сказать, что современные многозадачные операционные системы (в том числе семейства Windows) не допускают прямых обращений из прикладных программ к портам компьютера. Это сделано для того, чтобы избежать конфликтов между одновременно выполняемыми программами, если они случайно обратятся к одному и тому же порту в один и тот же момент времени. Связь с портами возможна лишь через специальные программы-драйверы, автоматически выполняющие все, что необходимо для разрешения конфликтов. Программисту остается лишь написать несколько управляющих команд.

Мы будем использовать одну из самых популярных библиотек таких программ - Inpout32.dll второй версии, которую легко найти в Интернете. Она применима в различных средах программирования и операционных системах. Работая в Windows 98, файл lnpout32.dll необходимо скопировать в папку C:\Windows\system\, а в Windows ХР - в папку C:\Windows\system32\. Во многих случаях достаточно просто поместить этот файл в папку исполняемой программы. Для программирования в DOS дополнительные драйверы не нужны, достаточно предусмотренных в используемом языке программирования обычных команд ввода-вывода в порт.

Дальнейшее изложение относится к работе с параллельным портом в системе программирования Visual Basic 6.0 под управлением Windows ХР. Для ее освоения разработана простая программа. Ее проект, в том числе исполняемый фаил test.exe и файл главной (и единственной) формы Form1.frm приложены к статье. При запуске этой программы на экране монитора появится окно, показанное на рис. 2.


Нажимая в нем на экранные кнопки и вводя числа в соответствующие поля, можно устанавливать уровни напряжения на выходах порта и считывать состояние его входов (оно будет отображено числом в соответствующем поле). Библиотеку для работы с портом LPT "подключает" к программе фрагмент файла Form1.frm, показанный в таблице.


Прежде всего, разберем работу с регистром управления CR (напомним, его адрес - &Н37А). В рассматриваемом случае ее выполняет подпрограмма

Private Sub Command4_click()
out &H37A, Text2.Text
End Sub

При нажатии на экранную кнопку Command4 ("Отправить") она записывает в регистр по адресу &Н37А двоичный код, соответствующий десятичному числу, введенному в поле над этой кнопкой.

Для наглядности соберем и подключим к разъему LPT светодиодный узел по схеме, изображенной на рис. 3.


Введем в нужное поле число 4 (двоичное 00000100) и нажмем на кнопку "Отправить". После этого все четыре светодиода окажутся включенными. Дело в том, что разряды CR, CR и CR соединены с контактами разъема через инверторы, поэтому при записи 0 в эти разряды уровни на соответствующих им контактах стали высокими. Чтобы включить только светодиод HL3, нужно ввести число 15 (двоичное 00001111), а при вводе числа 11 (двоичное 0001011) все светодиоды будут выключены. Старшие разряды регистра управления (CR-CR) с контактами разъема не соединены, поэтому их состояние в данном случае никакого значения не имеет.

Чтобы изучить работу с регистром состояния SR, подключим к разъему порта узел, схема которого изображена на рис. 4.


При разомкнутых выключателях SA1-SA5 через резисторы R1-R5 на контакты разъема поступает напряжение высокого логического уровня. Его источником могут быть любой сетевой адаптер с выходным напряжением 5 В, батарея из трех гальванических элементов и даже один из выходов порта LPT, на котором описанным ранее способом установлен нужный уровень напряжения. Во многих компьютерах резисторы, по назначению аналогичные R1- R5, уже имеются, в установке внешних резисторов в таких случаях нет необходимости.

При нажатии на экранную кнопку "Принять" будет выполнена подпрограмма

Private Sub Command5_c1ick()
Text3.Text = Inp(&H379)
End Sub

Она выведет в поле над кнопкой число, отображающее содержимое регистра SR. Если все выключатели (рис. 4) разомкнуты, это будет 126 (двоичное 01111110), а если они замкнуты - 134 (10000110). Значения разрядов SR- SR соответствуют уровням, поданным на соответствующие контакты разъема, а значение разряда SR инверсно уровню на контакте 11. Так как младшие разряды SR-SR на разъем не выведены, их значения не зависят от поданных на его контакты сигналов.

Главный регистр порта - регистр данных DR по адресу &Н378. Именно через него печатаемая информация побайтно передается на принтер. Все восемь разрядов регистра соединены с контактами разъема, причем без инверторов. Эти восемь цепей часто объединяют названием "шина данных". В исходном состоянии она работает только на вывод. Однако почти во всех современных компьютерах имеется возможность переключить ее на параллельный ввод восьмиразрядных двоичных кодов. Для этого достаточно записать единицу в разряд CR регистра управления.

К сожалению, в режиме Centronics никакие сигналы о том, в каком направлении работает шина данных порта LPT, на его разъем не выводятся. Поэтому необходимо соблюдать особую осторожность и подавать на эту шину внешние сигналы, только удостоверившись, что ее программное переключение "на прием" выполнено. Иначе могут быть повреждены интерфейсные микросхемы как самого компьютера, так и подключенного к порту источника сигналов. Этот недостаток устранен в режимах ЕРР и ЕСР, где предусмотрен полный набор сигналов управления направлением передачи информации по шине данных параллельного порта.

В рассматриваемой тестовой программе с регистром данных работает подпрограмма

Private Sub Command3_Click()
Out &H378, Text1.Text
Text1.Text = Inp(&H378)
End Sub

При нажатии на экранную кнопку "OK" она записывает в регистр данных число из поля, находящегося над кнопкой, а затем читает содержимое регистра и отображает его в том же поле. Естественно, если регистр работает как выходной (на экране отмечен пункт "Передача"), число в поле остается прежним. Чтобы убедиться, что логические уровни на контактах 2-9 разъема порта в этом случае соответствуют введенному в поле вручную и записанному в регистр данных числу, подключите к разъему узел, аналогичный тому, схема которого показана на рис. 3, но с увеличенным до восьми числом светодиодов и резисторов.

Операцию переключения шины данных на ввод выполняет подпрограмма

Private Sub Option1_Click()
Out &H37A, 32
End Sub

Ее вызов происходит при нажатии на экранную кнопку с зависимой фиксацией "Прием". Кнопкой "Передача" вызывают аналогичную подпрограмму, отличающуюся лишь тем, что она записывает в регистр управления не 32 (двоичное 00100000), а ноль, возвращая таким образом шину данных в режим вывода.

Когда шина данных переведена в режим ввода, процедура Out в рассмотренной ранее подпрограмме, вызываемой при нажатии на кнопку "ОК", фактически не работает. Однако функция Inp возвращает значение, соответствующее уровням на выводах 2-9, установленных подключенными к ним внешними цепями. В виде десятичного числа оно появляется в поле над кнопкой "ОК". Задавать логические уровни на линиях шины данных можно с помощью узла, подобного использовавшемуся для работы с регистром состояния (рис. 4).

Чтобы не усложнять программу, отображение в поле ввода над кнопкой "Отправить" изменений состояния регистра управления с помощью кнопок "Прием" и "Передача" не предусмотрено.

Освоив приведенные в статье примеры, мы научились выводить через порт из компьютера 12 и выводить в него 5 логических сигналов либо (в другом режиме) выводить 4 и вводить 13 таких сигналов. Теперь можно разрабатывать гораздо более сложные программы и устройства, подключаемые через порт LPT к компьютеру.

От редакции. Упомянутые в статье и другие необходимые для работы с тестовой программой файлы находятся на нашем FTP-сервере по адресу ftp://ftp.radio.ru/pub/2007/09/testlpt.zip

Радио 2007 №9