Международные варианты ISDN.

ITU SR-NWT-001953 1991-06, ETS 300 102-1 1990-12, AT&T 801-802-100 1989-05

Стандарты ISDN (Integrated Services Digital Network – цифровая сеть с интеграцией услуг) описывают работу цифровых линий связи, поддерживающих передачу голоса, видео или данных с высокой скоростью через стандартные коммуникационные линии. ISDN обеспечивает единый интерфейс доступа к цифровой сети передачи данных для устройств, выполняющих широкий набор задач, с сохранением полной прозрачности сети для пользователей. Учитывая большой объем информации, передаваемой через сети ISDN, можно говорить что технология ISDN произвела революцию в деловых коммуникационных приложениях.

ISDN может использовать не только обычные телефонные сети, но также сети коммутации пакетов, телексные сети, сети CATV и т. д.

Приложения ISDN

В данной главе описаны следующие протоколы:

LAPD — Link Access Protocol — Channel D (протокол доступа к линии – канал D);

ISDN — Integrated Services Digital Network (цифровая сеть с интеграцией услуг).

LAPD

ITU Q.921 (Blue Book)

LAPD (Link Access Protocol – Channel D или протокол доступа к линии – канал D) является протоколом канального уровня, описанным в стандарте CCITT Q.920/921. LAPD работает в асинхронном сбалансированном режиме (Asynchronous Balanced Mode или ABM). В данном случае термин «сбалансированный» означает отсутствие в соединениях ведущих и ведомых устройств. Каждая станция имеет возможность инициировать организацию соединения и управление этим соединением, обеспечивать исправление ошибок, а также передавать пакеты данных в любой момент времени. Для протокола LAPD понятия DTE и DCE являются эквивалентными.

На рисунке показан формат пакетов LAPD.

Структура пакета LAPD

Флаг

Поле флага всегда имеет значение 0x7E и используется для разделения пакетов. Для того чтобы исключить появление такой же последовательности битов в пакетах, на передающей и принимающей стороне используется метод Bit Stuffing (вставка битов).

Адрес

Первые два байта после флага содержат поле адреса. Формат этого поля показан на рисунке.

Поле адреса LAPD

EA1 Первый бит расширения адреса (всегда равен 0).

C/R Флаг Command/Response (команда/отклик). Пакеты, передаваемые пользователем с C/R=0, содержат команды, так же, как пакеты, передаваемые пользователю со стороны сети при C/R=1. Во всех остальных случаях пакеты содержат отклик на команды.

SAPI Идентификатор точки доступа к сервису (Service Access Point Identifier), который может принимать следующие значения:

0 Процедуры вызова/контроля.

1 Пакетный режим передачи с использованием процедур вызова/контроля I.451.

16 Передача пакетов в соответствии с X.25, уровень 3.

63 Процедуры управления уровня 2.

EA2 Второй бит расширения адреса (всегда равен 1).

TEI Идентификатор конечной точки (терминала), который может принимать следующие значения:

0-63 Используется пользовательским оборудованием без автоматического назначения TEI.

64-126 Используется пользовательским оборудованием с автоматическим назначением TEI.

127 Используется для широковещательный соединений со всеми терминальными устройствами.

Контроль

Поле, следующее за адресом, называется полем управления и служит для идентификации типа кадра. Кроме того, в зависимости от типа сообщения, это поле может включать порядковый номер, а также функции управления и отслеживания ошибок.

FCS

Контрольная сумма (Frame Check Sequence – FCS), позволяющая обнаруживать ошибки при передаче данных. Контрольная сумма вычисляется отправителем пакета с использованием алгоритма, принимающего во внимание каждый бит передаваемого пакета. На приемной стороне пакета заново вычисляет контрольную сумму по тому же алгоритму и сравнивает полученный результат со значением, содержащимся в пакете.

Размер окна

LAPD поддерживает расширенный размер окна (по модулю 128), с возможностью передачи от 8 до 128 неподтвержденных кадров. Расширенный размер окна передачи обычно используется для спутниковых каналов, где задержка подтверждения пакетов может существенно превышать время передачи самих пакетов. Тип пакета, инициализирующего соединение, определяет модуль для сессии. При использовании окна расширенного размера к имени базового типа пакета добавляется суффикс “E” (SABME вместо SABM).

Типы пакета

Протокол LAPD поддерживает несколько типов управляющих кадров (Supervisory Frame):

RR Подтверждение приема информационного пакета и индикация готовности к получению последующей информации.

REJ Запрос повторной передачи всех пакетов, начиная с указанного в пакете порядкового номера.

RNR Индикация состояния временной перегрузки станции (переполнение окна).

LAPD поддерживает несколько типов ненумерованных пакетов (Unnumbered Frame):

DISC Запрос на разрыв соединения.

UA Кадр подтверждения приема.

DM Ответ на запрос DISC, указывающий на режим разрыва соединения.

FRMR Отбрасывание пакета.

SABM Пакет, инициализирующий асинхронный сбалансированный режим.

SABME SABM в режиме расширенного окна.

UI Ненумерованная информация.

XID Обмен информацией.

Протокол LAPD использует единственный тип информационных пакетов

Info Информационный пакет.

Пример декодирования пакетов ISDN

Международные варианты ISDN

За разработку стандартов ISDN отвечает CCITT (в настоящее время ITU-T). Первой публикацией группы, ответственной за разработку стандарта ISDN был набор рекомендаций ISDN 1984 года (Red Book — Красная Книга). Еще до выпуска Красной книги в разных регионах были разработаны местные и национальные версии ISDN. По этой причине рекомендации CCITT определяют только общие для всех стран стандарты ISDN, в дополнение к национальным стандартам.

Возможность использования специфических информационных элементов для отдельных стран обеспечивается за счет набора кодов (Codeset).

Ниже приведено описание большинства существующих национальных и региональных вариантов ISDN.

Национальный вариант ISDN-1 (Bellcore)

SR-NWT-001953 1991-06

Этот вариант используется компанией Bellcore в США. В рамках данного стандарта поддерживаются четыре специфических типа сообщений и не используются однобайтовые информационные элементы. В дополнение к элементам Codeset 0 данный вариант также поддерживает четыре информационных элемента Codeset 5 и пять информационных элементов Codeset 6.

Национальный вариант ISDN-2 (Bellcore)

SR-NWT-002361 1992-12

Основным различием между ISDN-1 и ISDN-2 является загрузка параметров с использованием компонент (субэлементы информационных элементов (Extended Facility). Компоненты используются для передачи информационных параметров между пользовательским оборудованием ISDN (например, ISDN-телефоном) и ISDN-коммутатором.

Другим отличием стандарта ISDN-2 являются дополнительные типы сообщений – SEGMENT, FACILITY и REGISTER, а также дополнительные информационные элементы – Segmented Message (сегментированное сообщение) и Extended Facility (расширенные возможности). Кроме того, изменены значения некоторых полей в пакетах и добавлено несколько дополнительных значений полей.

5ESS (AT&T)

AT&T 801-802-100 1989-05

Этот вариант ISDN используется компанией AT&T в США. 5ESS является наиболее распространенной реализацией ISDN и поддерживает 19 специфических типов сообщений. 5ESS не содержит элементов Codeset 5, но поддерживает 18 информационных элементов Codeset 6 и расширенный управляющий информационный элемент.

Euro ISDN (ETSI)

ETS 300 102-1 1990-12

Этот вариант ISDN адаптирован всеми европейскими странами. В настоящий момент Euro ISDN поддерживает однооктетные типы сообщений и пять информационных элементов размером в один октет. В протоколе не используются элементы Codeset 5 и Codeset 6, но каждая страна вправе определять собственные информационные элементы.

VN3, VN4 (Франция)

DGPT: CSE P 22-30 A 1994-08

Данный вариант стандарта используется преимущественно во Франции. Декодирование VN3 и некоторые сообщения об ошибках переведены на французский язык. Данный протокол является подмножеством стандарта CCITT и поддерживает только однооктетные типы сообщений. Более новый стандарт VN4 не полностью совместим с VN3, однако более точно соответствует рекомендациям CCITT. В Как и VN3, новый стандарт содержит некоторое количество переводов. VN4 поддерживает однооктетные типы сообщений, пять однооктетных информационных элементов и два элемента Codeset 6.

1 TR6 (Германия)

1 TR 6 1990-08

Этот вариант стандарта распространен прежде всего в Германии. Протокол является подмножеством стандарта CCITT с незначительными изменениями. В протоколе частично используется английский язык, частично — немецкий.

ISDN 30 (Англия)

BTNR 190 1992-07

Этот вариант протокола используется компанией British Telecom в дополнение к стандарту ETSI (см. выше). На уровнях 2 и 3 этот стандарт не соответствует структуре CCITT. Пакеты имеют заголовок размером в один октет, за которым может следовать информация. Большая часть информации кодируется с использованием IA5 и, следовательно, может декодироваться как ASCII.

Австралия

AP IX-123-E

Этот протокол ранее использовался в Австралии, но сейчас вытесняется более новым австралийским вариантом ISDN. Протокол является подмножеством стандарта CCITT и поддерживает только однооктетные типы сообщений и однооктетные информационные элементы. В протоколе используются только элементы Codeset 5.

TS014 Австралия

TS014 (Austel) 1995

Это новый стандарт ISDN PRI для Австралии, разработанный компанией Austel. Стандарт очень близок к ETSI.

NTT-Japan (Япония)

INS-NET Interface and Services 1993-03

Сервис ISDN в Японии поддерживается компанией NTT и известен как INS-Net. Основными характеристиками INS-Net являются:

Поддержка интерфейса пользователь-сеть, соответствующего рекомендациям Голубой книги (Blue Book) CCITT.

Поддержка интерфейсов BRI и PRI.

Поддержка пакетного режима с использованием Case B.

Поддержка в сети сигнализации SS 7 ISDN User Part.

Поддержка подключения к телефонным сетям общего пользования.

ARINC 746

Сегодня многие авиакомпании обеспечивают в своих самолетах телефонный сервис для пассажиров. Бортовые телефоны подключаются к сети T1 и соединения организуются через спутниковые каналы. Используемый протокол сигнализации основан на стандарте Q.931, однако имеет отличия от последнего и известен как ARINC 746. Лидирующими компаниями в данной области являются GTE и AT&T. При анализе протокола ARINC с использованием анализатора протоколов в качестве варианта LAPD должно быть установлено значение ARINC .

ARINC 746 Приложение 11 (Attachment 11)

ARINC Characteristic 746-4 1996-04

Приложение 11 стандарта ARINC (Aeronautical Radio, INC.) описывает передачу сообщений сетевого уровня (уровень 3), необходимых для управления оборудованием и поддержки управления процедурами организации соединения между бортовым телефонным оборудованием (Cabin Telecommunications Unit или CTU) и системой SATCOM, North American Telephone System (NATS) или Terrestrial Flight Telephone System (TFTS). Механизм, описанный в Приложении 11, разработан на основе рекомендаций CCITT Q.930, Q.931 и Q.932 (управление вызовами), а также на основе стандартов ISO/OSI DIS 9595 и DIS 9596 (управление оборудованием). Описываемые сообщения сетевого уровня должны передаваться в поле данных пакета канального уровня.

ARINC 746 Attachment 17

ARINC Characteristic 746-4 1996-04

Приложение 17 к стандарту ARINC (Aeronautical Radio, INC.) определяет систему доступа пассажиров и экипажа самолетов к сервису, предлагаемому CTU и интеллектуальным оборудованием самолета. Распределительная часть CDS передает сигнализацию и телефонные каналы от пользовательской телефонной гарнитуры в коммуникационные модули кресел. Каждая зона в самолете имеет устройство, которое управляет и обслуживает кресла в пределах данной зоны.

Northen Telecom – DMS 100

NIS S208-6 Issue 1.1 1992-08

Этот вариант представляет собой реализацию National ISDN-1, разработанную компанией Northen Telecom. Стандарт обеспечивает интерфейс пользователь-сеть на уровне ISDN BRI между коммутатором Northern Telecom ISDN DMS-100 и терминальным оборудованием, разработанным для BRI DSL. Стандарт DMS 100 базируется на спецификации CCITT ISDN-1, рекомендациях Q-серии, ISDN Basic Interface Call Control Switching (управление коммутацией соединений для базового интерфейса ISDN) и требованиях к сигнализации и дополнительной поддержке Bellcore.

DPNSS1

BTNR 188 1995-01

DPNSS1 (Digital Private Network Signaling System № 1 — система сигнализации частных цифровых сетей №1) является сигнальной системой на базе общего канала, используемой в Великобритании. Данная система позволяет расширить возможности, обычно доступные только в пределах одной телефонной станции PBX, на все станции PBX в частной сети. Основным назначением этой системы является передача информации между PBX в частных сетях с использованием временного интервала (time slot) 16 цифрового тракта 2048 Кбит/с (E1) или временного интервала 24 в системах 1544 Кбит/с (T1). Отметим, что при анализе данного протокола поле LAPD должно иметь значение DPNSS1.

Swiss Telecom (Швеция)

PTT 840.73.2 1995-06

Вариант ISDN, используемый в Швеции компанией Swiss Telecom PTT, называется SwissNet. Протокол DSS1 для SwissNet полностью базируется на ETS. Незначительные поправки к последнему состоят лишь в определении различных опций стандарта и игнорировании некоторых требований. Шведский вариант использует также некоторые специфические условия (например, совместимость между пользовательским оборудованием и станциями сети SwissNet различных реализаций).

QSIG

ISO/IEC 11572 1995

QSIG является мощной, интеллектуальной современной сигнальной системой, предназначенной для обмена сообщениями между частными станциями PABX. Стандарты QSIG определяют систему сигнализации на уровне Q, предназначенную, прежде всего, для общего канала (например, интерфейс G.703). Однако, QSIG будет работать при любом методе подключения оборудования PINX. Стек протоколов QSIG идентичен по структуре стеку DSSI (оба стека соответствуют модели ISO). Оба протокола имеют идентичные уровни 1 и 2 (LAPD), однако на третьем уровне протоколы QSIG и DSS1 различаются.

Структура кадров ISDN

На рисунке показана общая структура кадров ISDN.

Структура кадра ISDN

Дискриминатор протокола

Протокол, используемый для оставшейся часть уровня.

Длина поля «Ссылка на вызов»
Флаг

Нулевое значение для сообщений, передаваемых стороной, выделяющей значения ссылки на вызов, 1 — в остальных случаях.

Ссылка на вызов

Значение, присваиваемое в указанном сеансе связи между устройством, инициировавшим вызов и коммутатором ISDN. Данное значение используется устройствами для идентификации соединения.

Тип сообщения

Тип сообщения определяет назначение последнего. Поле типа может занимать один или два (для специфических сообщений) октета. В двухоктетных сообщения первый октет содержит восемь нулей. Полный перечень типов сообщений приведен ниже в параграфе «Типы сообщений ISDN».

Информационные элементы ISDN

В ISDN существует два типа информационных элементов — элементы размером один октет и элементы переменной длины.

Однооктетные информационные элементы

Структура однооктетного информационного элемента приведена на рисунке.

Структура однооктетного элемента

Список существующих типов однооктетных информационных элементов приведен ниже.

Информационные элементы переменной длины

Ниже приведена структура информационного элемента переменной длины.

Информационный элемент переменной длины.

Идентификатор информационного элемента служит уникальным обозначением данного элемента только внутри данного Codeset. Размер информационного элемента сообщает получателю о количестве следующих за этим полем байтов информационного элемента. Ниже приведен список существующих информационных элементов переменной длины.

Сегментированное сообщение

Поддержка однонаправленного режима

Идентификация вызова

Состояние вызова

Идентификация канала

Возможности

Индикатор состояния процесса (progress)

Специфические возможности сети

Индикатор уведомления

Отображение

Дата/время

Поддержка клавишного поля

Переключение рычага (трубки)

Активизация режима (feature)

Индикация режима (feature)

Скорость передачи информации

Транзитная задержка сквозной передачи

Выбор и индикация транзитной задержки

Двоичные параметры пакетного уровня

Размер окна для пакетного уровня

Размер пакета

Номер вызывающего абонента

Подадрес вызывающего абонента

Номер вызываемого абонента

Субадрес вызываемого абонента

Номер перенаправления

Выбор транзитной сети

Индикатор перезапуска

Совместимость с нижележащим уровнем

Совместимость с вышележащим уровнем

Пользователь-пользователь

Отмена использования расширения

Другие значения

Зарезервированы

Типы сообщений ISDN

Ниже приведены возможные типы сообщений ISDN.

Организация соединения

Предупреждение

Обработка вызова

В процессе

Установка (соединения)

Соединение

Подтверждение установки (соединения)

Подтверждение соединения

Фаза передачи информации

Пользовательская информация

Отказ от временной приостановки

Отказ от возобновления передачи данных

Остановить

Временно приостановить

Возобновить

Подтверждение остановки

Подтверждение временной остановки

Подтверждение возобновления

Отказ от остановки

Восстановление

Подтверждение восстановления

Отказ от восстановления

Завершение вызова

Разъединение

Освободить

Подтверждение рестарта

Завершение освобождения

Разное

Терминология ISDN

BRI

Базовый интерфейс (Basic Rate Interface) является одним из двух видов сервиса, предоставляемых ISDN в настоящее время. Канал BRI состоит из двух B-каналов и одного канала типа D (2B + D). B-каналы работают на скорости 64 Кбит/с, а канал D поддерживает скорость 16 Кбит/с. Интерфейс BRI используется в основном для настольных приложений (например, организация доступа в Internet для небольшой компании).

C/R

Команда/отклик (Command/Response). Флаг C/R занимает один бит в поле адреса и позволяет идентифицировать пакет как команду или отклик на переданную ранее команду.

Codeset

Существует три основных набора кодов (Codeset). В каждом кодовом наборе раздел информационных элементов определяется в соответствии со связанным вариантом протокола.

Codeset 0 кодовый набор, используемый по умолчанию, содержит набор информационных элементов, соответствующий рекомендациям CCITT.

Codeset 5 специфический для страны кодовый набор.

Codeset 6 специфический для сети кодовый набор.

Одна и та же величина может иметь разное значение в различных наборах Codeset. Большинство элементов могут появляться в кадре только один раз.

Для изменения кодового наборов могут использоваться два метода:

CPE

Пользовательское оборудование (Customer Premises Equipment или CPE) включает оборудование ISDN, размещаемое у пользователя и применяемое для подключения к сети ISDN. Такими устройствами могут быть телефон, компьютер, телекс, телефакс и так далее. Исключением являются устройства с интерфейсом NT1 в трактовке FCC и CCITT. Правила FCC рассматривают модули NT1 как оборудование CPE, поскольку NT1 устанавливается у пользователя, однако CCITT считает NT1 частью сети. Следовательно, граница между пользователем и сетью определяется в зависимости от принятого варианта.

Каналы ISDN – B, D и H

ISDN поддерживает три типа логических цифровых коммуникационных каналов, которые выполняют следующие функции:

B-канал используется для передачи информации (данные, видео и голос).

D-канал используется для передачи сигнализации и пакетов данных между пользовательским оборудованием и сетью.

H-канал выполняет те же самые функции, что и D-канал, однако работает при скорости, превышающей DS-0 (64 Кбит/с).

Устройства ISDN

Устройства, служащие для соединения CPE и сети. Кроме факсов, телефонов, компьютеров могут использоваться следующие устройства:

TA Терминальный адаптер (Terminal Adapter). TA используется для подключения не-ISDN устройств к сети ISDN.

LE Local Exchange (локальная станция). Используется в телефонной станции (Central Office — CO). LE работает с протоколом ISDN и является частью сети.

LT Local Termination — LT (Локальное окончание). Используется для обозначения LE, служащих для работы с Local Loop (абонентский шлейф).

ET Exchange Termination (завершение станции). Используется для обозначения LE, отвечающих за функции коммутации.

NT Network Termination — NT (оборудование завершения сети). Существует два вида NT, выполняющих различные функции:

  • NT1 – служит для завершения соединений между пользователем и LE. NT1 отвечает за работу, мониторинг, подачу питания и мультиплексирование каналов.
  • NT2 – любое устройство, применяемое пользователем для коммутации, мультиплексирования и концентрации: локальная сеть, компьютер, терминальный контроллер и т. д. Оборудование NT2 не устанавливается для домашнего пользования ISDN.

TE Terminal Equipment — TE (терминальное оборудование). Любое пользовательское устройство (например, телефон или факсимильный аппарат). Существует два типа TE:

  • TE1 – оборудование, совместимое с ISDN.
  • TE1 – оборудование, не совместимое с ISDN.

Опорные точки ISDN

Опорные точки (reference point) ISDN определяют точки связи между различными устройствами. Предполагается, что с разных сторон опорной точки могут использоваться различные протоколы. Основные опорные точки перечислены ниже:

R связь между оборудованием TE, не совместимым с ISDN, и TA.

S связь между TE или TA и оборудованием NT.

T связь между коммутационным оборудованием пользователя и завершением абонентского шлейфа.

U Узловая точка между оборудованием NT и LE. Эта точка может определяться как граница сети в случае использования определения FCC для терминала сети.

На рисунке показаны функциональные узлы ISDN и опорные точки.

LAPD

Link Access Protocol – Channel D (протокол доступа к линии – Канал D) представляет собой протокол канального уровня, работающий с битовыми потоками (бит-ориентированный протокол). Основной задачей этого протокола является безошибочная передача последовательности битов на физическом уровне (уровень 1).

PRI

ISDN PRI (Primary Rate Interface — основной интерфейс) является одним из двух видов сервиса, предоставляемых в современных сетях ISDN. Реализация PRI зависит от принятого стандарта и может отличаться в разных странах. В Северной Америке PRI поддерживает 23 B-канала и один канал D (23B + D), а в Европе — 30 каналов типа B и один D-канал (30B + D).

В Америке каналы B и D работают со скоростью 64Кбит/с. Следовательно, если D-канал в некоторых случаях не используется в качестве канала управления, он может служить как дополнительный B-канал. PRI 23B + D работает с заданной CCITT скоростью 1544 Кб/с.

Европейский вариант PRI содержит 30 каналов B и один D-канал (30B + D). Так же как и в американском стандарте, все каналы работают на скорости 64Кбит/с. PRI 30B + D работает с заданной CCITT скоростью 2048 Кбит/с.

SAPI

Идентификатор точки доступа к сервису (Service access point identifier — SAPI) — первая часть адреса каждого пакета.

TEI

Идентификатор оконечного терминала (Terminal End Point Identifier) — вторая часть адреса каждого пакета.

В ЦСИО обеспечен протокол канального уровня для логиче­ской связи данных, который позволяет ООД взаимодействовать друг с другом по каналу D. Этим протоколом является LAPD, подмножество HDLC. Протокол независим от скорости передачи и требует полнодуплексного прозрачного канала. Он описывается Рекомендацией I.440. В соответствии с этим протокол LAPD предназначен для выполнения многочис­ленных функций, связанных с управлением канала. Прежде всего он обеспечивает мультиплексирование и кодирование информации, контроль последовательности ее передачи, диагностирование каналов. Основными функциями этого протокола являются:

Обеспечение функционирования нескольких логических соединений в каждом канале;

Разграничение, синхронизация и создание прозрачности соединений (в том числе, отделение друг от друга, распознавание кадров);

Управление последовательностями передаваемых битов;

Обнаружение ошибок в кадрах и уничтожение кадров, содержащихошибки;

Восстановление соединений после сбоев и ошибок;

Передача без подтверждения ненумерованных кадров и с под­тверждением нумерованных кадров.

Протокол LAPD имеет формат кадра, очень похожий на формат HDLC. Более того, подобно HDLC, этот формат обеспе­чивает ненумерованные, супервизорные и информационные кад­ры. Управ­ляющий байт, который определяет различия между форматами информационного, супервизорного и ненумерованного кадров, идентичен структуре байта в HDLC).

Канальный протокол LAPD во многом похож на LAPB, используемый в Рекомендации Х.25, и произошел от последнего. Более того, LAPD совместим с Х.25/3 - сетевым уровнем, описываемым Рекомендацией Х.25. Отличается LAPD от LAPВ главным образом тем, что может обслуживать не один (как LAP В), а одновременно группу параллельно идущих каналов. Для этого LAPD обеспечивает мультиплексирование передаваемой инфор­мации. С этой целью в канале прокладывается несколько соеди­нений для одновременной работы нескольких комплектов терми­нального оборудования. В этой схеме адрес кадра LAPD идентифицирует не только канал, но и номер адресата.

LAPD предусматривает два байта для адресного поля. Это особенно ценно для мультиплексирова­ния многих функций в канале D. Расширение адресного поля предназначено для обеспечения большего числа битов в этом поле.

Бит в поле указания команды/отклика (К/О) идентифициру­ет, чем является кадр -командой или откликом. Со стороны пользователя отсылаются команды с битом К/О, установленным в 0. Отклики с этой же стороны идут с битом К/О, равным 1. Сеть выполняет все обратным образом. Она отправляет коман­ды, указывая 1 в бите К/О, а отклики -указывая 0.

Через интегральную сеть передаются пакеты, которые упаковываются в кадры. При коммутации каналов образуется последовательность групп каналов, по которой направляются эти кадры. При коммутации пакетов в каждом узле коммутации пакеты переупаковываются в новые кадры, передаваемые по очередной группе каналов. Рекомендация I.440 определяет две формы передачи информации по каждому каналу: одно- и многокадровая. Абонентская система выбирает одну из этих форм либо использует поочередно обе формы. Соответственно передается подтверждение о получении без ошибок одного либо группы кадров. Для этого в LAPD введены две команды и отклики, которые не су­ществуют в множестве HDLC. Это последовательная информа­ция 0(SI0) и последовательная информация 1(SI1). Команды SI0/SI1 предназначены для пересылки информации с использо­ванием последовательно подтверждаемых кадров. От­клики SI0 и SI1 используются при выполнении действий над единичным кадром для подтверждений приема кадров команд SI0 и SI1, а также для индикации потерь кадров или проблем с синхронизацией.

ЦСИО также обращаются к уровню 3. Спецификации уровня 3 (рекомендации I.450 и I.451) включают соединения коммутации каналов, соединения коммутации пакетов и соединения между пользователями.

Благодаря LAPD создается дуплексный синхронный канал, предоставляющий сетевому уровню четыре вида сервиса: запрос, подтверждение, индикацию, ответ. Запрос предназначен для подачисетевымуровнем заявки на необходимый сервис. Подтверждениеявляется сообщением канального уровня о приеме заявки на сервис. Индикация обеспечивает оповещение сетевого уровня о действиях, проводимых канальным уровнем по заявке на сервис. Ответ является информацией, передаваемой сетевым уровнем, о приеме индикации.

Протокол «Управление вызовом абонента» (см. рис. выше) определен Рекомендацией I.450. Он ориентирован на передачу специальных сообщений. Последние согласуют виды сервиса, используемого при сигнализации, и сообщают о результатах проверки совместимости этого сервиса во взаимодействующих абонентских системах. Обеспечение сквозной (через интегральную сеть) сигнализации осуществляется протоколами уровней 4-7. Второй режим коммутации отличается от первого (см. табл. в начале лекции) более современной методологией. Поэтому первый режим применяется в старых сетях. Для вновь создаваемых интегральных сетей рекомендуется использовать для сигнализации D-канал.

Третий режим (см. ту же табл.) обеспечивает в интегральной сети коммутацию пакетов. Иерархия протоколов в этом режиме показана на рис. 4, из которого следует, что в рассматриваемом режиме используются как протокол LAPD, так и широко применяемый в подсетях коммутации пакетов стандарт LAPВ. На сетевом уровне, как и в указанных подсетях, в интегральной сети используется третий уровень Рекомендации Х.25/3.

  • Контрольная по информационным сетям и телекоммуникациям (Лабораторная работа)
  • Брейман А.Д. Сети ЭВМ и телекоммуникации. Глобальные сети (Документ)
  • Дипломная работа - Построение сети широкополосного абонентского доступа на ГТС г. Алматы (Дипломная работа)
  • Презентация - Технологии широкополосного доступа. IP-телфония (Реферат)
  • Дипломный проект - Сеть абонентского доступа (Дипломная работа)
  • Дипломная работа - Планирование сети доступа NGN для новых групп пользователей (Дипломная работа)
  • Дипломный проект - Модернизации и расширения сети телекоммуникаций с использованием возможностей системы беспроводного доступа (Дипломная работа)
  • Наукова стаття - Пассивные оптические сети (PON) (Документ)
  • Протоколы родительских собраний (Документ)
  • Шувалов В.Н. Телекоммуникационные системы и сети (3/3) (Документ)
  • n1.doc

    3.3. УРОВЕНЬ LAPD

    Протоколы уровня 2 (LAPD - Link Access Procedure on the D-channel) как базового, так и первичного доступа определены в рекомендациях ITU-T 1.440 (основные аспекты) и 1.441 (подроб­ные спецификации). Эти же рекомендации в серии Q имеют но­мера Q.920 и Q.921. Обмен информацией на уровне LAPD осуще­ствляется посредством информационных блоков, называемых кад­рами и схожих с сигнальными единицами ОКС- 7.

    Сформированные на уровне 3 сообщения помещаются в ин­формационные поля кадров, не анализируемые уровнем 2. Задачи уровня 2 заключаются в переносе сообщений между пользовате­лем и сетью с минимальными потерями и искажениями. Форматы и процедуры уровня 2 основываются на протоколе управления зве­ном передачи данных высокого уровня HDLC (High-level Data-Link Control procedures), первоначально определенном Международной организацией по стандартизации ISO и образующем подмножест­во других распространенных протоколов: LAPB, LAPV5 и др. Про­токол LAPD, также входящий в подмножество HDLC, управляет потоком кадров, передаваемых по D-каналу, и предоставляет ин­формацию, необходимую для управления потоком и исправления ошибок.

    Рис. 3.8. Формат кадра

    Кадры могут содержать либо команды на выполнение дейст­вий, либо ответы, сообщающие о результатах выполнения команд, что определяется специальным битом идентификации коман­да/ответ C/R. Общий формат кадров LAPD показан на рис. 3.8.

    Каждый кадр начинается и заканчивается однобайтовым фла­гом. Комбинация флага (0111 1110) такая же, как в ОКС-7. Имита­ция флага любым другим полем кадра исключается благодаря за­прещению передачи последовательности битов, состоящей из бо­лее чем пяти следующих друг за другом единиц. Это достигается с помощью специальной процедуры, называемой «бит-стаффингом» (bit-stuffing), которая перед передачей кадра вставляет ноль после любой последовательности из пяти единиц, за исключением фла­га. При приеме кадра любой ноль, обнаруженный следом за по­следовательностью из пяти единиц, изымается.

    Адресное поле (байты 2 и 3) кадра на рис. 3.8 содержит иден­тификатор точки доступа к услуге SAPI (Service Access Point Identi­fier) и идентификатор терминала TEI (Terminal Equipment Identifi­er) и используется для маршрутизации кадра к месту его назначе­ния. Эти идентификаторы, уже упоминавшиеся в первом парагра­фе данной главы, определяют соединение и терминал, к которым относится кадр.

    Идентификатор пункта доступа к услуге SAPI занимает 6 би­тов в адресном поле и фактически указывает, какой логический объект сетевого уровня должен анализировать содержимое инфор­мационного поля. Например, SAPI может указывать, что содер­жимое информационного поля относится к процедурам управле­ния соединениями в режиме коммутации каналов или к процеду­рам пакетной коммутации. Рекомендацией Q.921 определены зна­чения SAPI, приведенные в табл. 3.1.
    Таблица 3.1. Значения SAPI

    Идентификатор TEI указывает терминальное оборудование, к которому относится сообщение. Код TEI=127 (1111111) указы­вает на вещательную (циркулярную) передачу информации всем терминалам, связанным с данной точкой доступа. Остальные зна­чения (0-126) используются для идентификации терминалов. Диа­пазон значений TEI (табл. 3.2) разделяется между теми термина­лами, для которых TEI назначает сеть (автоматическое назначе­ние TEI), и теми, для которых TEI назначает пользователь (неав­томатическое назначение TEI).

    Таблица 3.2. Значения TEI

    При подключении УПАТС (представляющей собой функцио­нальный блок NT2) к АТС ISDN общего пользования с использо­ванием интерфейса PR1 в соответствии с требованиями стандар­тов ETSI, принятых и в России, ТЕ1==0. В этом случае процедуры назначения TEI не применяются.

    Бит идентификации команды/ответа C/R (Command/Res­ponse bit) в адресном поле перенесен в DSS-1 из протокола Х.25. Этот бит устанавливается LAPD на одном конце и обрабатывается на противоположном конце звена. Значение C/R (табл.3.3) классифицирует каждый кадр как командный или как кадр ответа. Если кадр сформирован как команда, адресное поле идентифицирует получателя, а если кадр является ответом, адресное поле иденти­фицирует отправителя. Отправителем или получателем могут быть как сеть, так и терминальное оборудование пользователя.

    Таблица 3.3. Биты C/R в поле адреса

    Бит расширения адресного поля ЕА (Extended address bit) слу­жит для гибкого увеличения длины адресного поля. Бит расшире­ния в первом байте адреса, имеющий значение 0, указывает на то, что за ним следует другой байт. Бит расширения во втором байте, имеющий значение 1, указывает, что этот второй байт в адресном поле является последним. Именно такой вариант приведен на рис. 3.8. Если впоследствии возникнет необходимость увеличить размер адресного поля, значение бита расширения во втором бай­те может быть изменено на 0, что будет указывать на существова­ние третьего байта. Третий байт в этом случае будет содержать бит расширения со значением 1, указывающим, что этот байт являет­ся последним. Увеличение размера адресного поля, таким обра­зом, не влияет на остальную часть кадра.

    Два последних байта в структуре кадра на рис. 3.8 содержат 16-битовое поле проверочной комбинации кадра PCS (Frame check sequence) и генерируются уровнем звена данных в оборудовании, передающем кадр. Это поле имеет ту же функцию, что и поле СВ (контрольные биты) в сигнальных единицах ОКС-7 (глава 10 тома 1), и позволяет LAPD обнаруживать ошибки в полученном кадре. В поле FSC передается 16-битовая последовательность, биты которой формируются как дополнение для суммы (по модулю 2), в которой: а) первым слагаемым является остаток от деления (по модулю 2) произведения х k (x 15 +x 14 +…+x+l) на образующий поли­ном (х 16 +х 12 +х 5 +1), где k - число битов кадра между последним битом открывающего флага и первым битом проверочной комби­нации, исключая биты, введенные для обеспечения прозрачности;

    б) вторым слагаемым является остаток от деления (по модулю 2) на этот образующий полином произведения х16 на полином, коэф­фициентами которого являются биты кадра, расположенные ме­жду последним битом открывающего флага и первым битом проверочной комбинации, исключая биты, введенные для обеспече­ния прозрачности. Обратное преобразование выполняется уров­нем звена данных в оборудовании, принимающем кадр, с тем же образующим полиномом для адресного поля, полей управления, информационного и FCS. Протокол LAPD использует соглаше­ние, по которому остаток от деления (по модулю 2) произведения х16 на полином, коэффициентами которого являются биты пере­численных полей и FCS, всегда составляет 0001110100001111 (де­сятичное 7439), если на пути от передатчика к приемнику никакие биты не были искажены. Если результаты обратного преобразова­ния соответствуют проверочным битам, кадр считается передан­ным без ошибок. Если же обнаружено несоответствие результатов, это означает, что при передаче кадра произошла ошибка.

    Поле управления указывает тип передаваемого кадра и зани­мает в различных кадрах один или два байта. Существует три кате­гории форматов, определяемых полем управления: передача ин­формации с подтверждением (I-формат), передача команд, реали­зующих управляющие функции (S-формат), и передача информа­ции без подтверждения (U-формат). Табл. 3.4, являющаяся клю­чевой в этом параграфе, содержит сведения об основных типах кад­ров протокола DSS-1.

    Рассмотрим эти типы несколько подробнее.

    Информационный кадр (I) сопоставим со значащей сигналь­ной единицей MSU в ОКС-7 (параграф 10.2 первого тома). С по­мощью 1-кадров организуется передача информации сетевого уров­ня между терминалом пользователя и сетью. Этот кадр содержит информационное поле, в котором помещается сообщение сетево­го уровня. Поле управления 1-формата содержит порядковый но­мер передачи, который увеличивается на 1 (по модулю 128) каж­дый раз, когда передается кадр. При подтверждении приема 1-кад­ров в поле управления вводится порядковый номер приема. Про­цедура организации порядковых номеров рассматривается в сле­дующем параграфе данной главы.

    Управляющий кадр (S) используется для поддержки функций управления потоком и запроса повторной передачи. S-кадры не имеют информационного поля и сравнимы с сигнальными еди­ницами состояния звена LSSU в ОКС-7 (параграф 10.2 первого тома). Например, если сеть временно не в состоянии принимать 1-кадры, пользователю посылается S-кадр «к приему не готов» (RNR). Когда сеть снова сможет принимать 1-кадры, она передает другой S-кадр - «к приему готов» (RR). S-кадр также может использоваться для подтверждения и содержит в этом случае поряд­ковый номер приема, а не передачи.
    Таблица 3.4. Основные типы кадров LAPD


    формат

    Команды

    Ответы

    Описание

    Информа­ционные

    кадры (I)


    Информация

    -

    Используется в режиме с подтверждением для передачи нумерованных кадров, содержащих информационные поля с сообщениями уровня 3

    Управля­ющие

    К приему готов (PR-receive ready)

    К приему готов (RR-receive ready)

    Используется для указания готовности встречной стороны к приему I-кадра или для подтверждения ранее полученных 1-кадров

    кадры (S)

    К приему не готов (RNR)

    К приему не готов (RNR)

    Используется для указания неготовности встречной стороны к приему I-кадра

    Отказ/переспрос (REJ-reject)

    Отказ/переспрос (REJ-reject)

    Используется для запроса повторной передачи 1-кадра

    Ненумерованная информация (UI-unnumbered information)

    Используется в режиме

    передачи без подтверждения


    Отключено (DM-disconnected mode)

    Ненуме­рованные кадры (U)

    Установка расширенного асинхронного балансного режима (SABME-set asynchronous balanced mode extended)

    Используется для начальной установки режима с подтверждением

    Отказ кадра (FRMR-frame reject)

    Разъединение (DISC-disconnect)

    Используется для прекращения режима с подтверждением

    Ненумерованное подтверждение (UA-unnumbered ask)

    Используется для подтверждения приема команд установки режима, например, SABME, DISC

    Управляющие кадры можно передавать или как командные, или как кадры ответа.

    Ненумерованный кадр (U) не имеет аналогов в ОКС-7. В этой группе имеется кадр ненумерованной информации (UI), единст­венный из группы содержащий информационное поле и несущий сообщение сетевого уровня. U-кадры используются для передачи информации в режиме без подтверждения и для передачи некото­рых административных директив. Чтобы транслировать сообще­ние ко всем ТЕ, подключенным к шине S-интерфейса, станция передает кадр UI с ТЕ1==127. Поле управления U-кадров не содер­жит порядковых номеров.

    Как следует из вышеизложенного, информационное поле имеется в кадрах только некоторых типов и содержит информа­цию уровня 3, сформированную одной системой, например, тер­миналом пользователя, которую требуется передать другой систе­ме, например, сети. Информационное поле может быть пропуще­но, если кадр не имеет отношения к конкретной коммутируемой связи (например, в управляющих кадрах, S-формат). Если кадр относится к функционированию уровня 2 и уровень 3 не участвует в его формировании, соответствующая информация включается в поле управления.

    Биты P/F (poll/final) поля управления идентифицируют груп­пу кадров (из табл. 3.4), что также заимствовано из спецификаций протокола Х.25. Путем установки в 1 бита Р в командном кадре функции LAPD на одном конце звена данных указывают функци­ям LAPD на противоположном конце звена на необходимость от­вета управляющим или ненумерованным кадром. Кадр ответа с F== 1 указывает, что он передается в ответ на принятый командный кадр со значением Р= 1. Оставшиеся биты байта 4 идентифицируют кон­кретный тип кадра в пределах группы.

    И в заключение данного параграфа, с учетом уже детально проанализированной структуры кадра уровня 2 протокола DSS-1, еще раз рассмотрим оба способа передачи кадров: с подтвержде­нием и без подтверждения.

    Передача с подтверждением. Этот способ используется толь­ко в соединениях звена данных, имеющих конфигурацию «точка-точка», для передачи информационных кадров. Он обеспечивает исправление ошибок путем повторной передачи и доставку не со­держащих ошибок сообщений в порядке очередности. Этот спо­соб подобен основному методу защиты от ошибок при передаче значащих сигнальных единиц MSU в системе ОКС-7.

    Поле управления информационного кадра имеет подполя «номер передачи» и «номер приема» . Эти подполя сопоставимы с полями FSN, BSN в сигнальных единицах MSU системы ОКС-7 (параграф 10.2 первого тома). Протокол LAPD присваивает возрастающие порядковые номера передачи N(S) по­следовательно передаваемым информационным кадрам, а имен­но: N(S)=0, 1, 2,... 127, О, 1,... и т.д. Он также записывает переда­ваемые кадры в буфер повторной передачи и хранит эти кадры в буфере вплоть до получения положительного подтверждения их приема.

    Рассмотрим передачу информационных кадров от термина­ла к сети (рис. 3.9). Все поступающие к сети кадры проверяются на наличие ошибок, а затем в свободных от ошибок информацион­ных кадрах проверяется порядковый номер. Если величина N(S) выше (по модулю 128) на единицу, чем N(S) последнего принятого информационного кадра, новый кадр считается следующим по порядку и потому принимается, а его информационное поле пере­сылается конкретной функции сетевого уровня. После этого сеть подтверждает прием информационного кадра своим исходящим кадром с номером приема , значение которого на единицу больше (по модулю 128), чем значение N(S) в последнем приня­том информационном кадре.

    Предположим, что последний принятый информационный кадр имел номер N(S)== 11 и что информационный кадр с номером N(S)=12 передан с ошибкой, в результате которой отбракован функциями LAPD на стороне сети. Следующий информационный кадр с N(S)= 13 успешно проходит проверку на ошибки, но посту­пает к сети с нарушением очередности и отбрасывается ею при проверке порядка следования. Тогда сеть передает кадр отказа (REJ) с номером N(R)=12, который запрашивает повторную пе­редачу информационных кадров из буфера повторной передачи терминала, начиная с кадра с N(S)=12. Сетевая сторона продол­жает отбрасывать информационные кадры при проверке их на по­рядок следования, пока не примет повторно переданный кадр с номером N(S)= 12.

    Два потока сообщений от терминала к сети и в обратном на­правлении для этого соединения «точка-точка» независимы друг от друга и от потоков сообщений в других соединениях «точка-точка» в том же D-канале. В D-канале с n соединениями типа «точ­ка-точка» могут присутствовать 2п независимых последователь­ностей N(S)/N(R).

    Передача неподтверждаемых сообщений. Управляющие кад­ры S и ненумерованные кадры U не содержат подполя N(S). Они принимаются, если получены без ошибок, и не подтверждаются. Управляющие кадры содержат поле N(R) для подтверждения при­нятых информационных кадров.

    Ненумерованные информационные кадры UI не содержат ни поля N(S), ни поля N(R), поскольку они передаются в вещатель­ном режиме с ТЕ1==127, а возможность координировать порядко­вые номера передачи и приема для групповых функций во всех тер­миналах, подключенных к одному S-интерфейсу, отсутствует.

    Протокол, используемый для уровня 2 в D-канале при выполнении процедуры установления соединения, называется LAPD (L ink A ccess P rocedure on the D -channel). Данный протокол основывается на протоколе LAPB (рекомендация MKKTT X.25). Однако особенности LAPD дают ему ряд важных преимуществ. Прежде всего это мультиплексирование пакетов, имеющих собственные адреса 2-го уровня, позволяющее существовать множеству процедур доступа на одном физическом соединении. Это позволяет нескольким терминалам (до 8) "делить" сигнальный канал между собой. Формат D-канального сигнального сообщения представлен на рис.4

  • Flag

    Каждая сигнальная единица начинается и заканчивается флагом, он отмечает начало сигнальной единицы и ее конец. Флаг - это последовательность битов 01111110 . Флаг, предшествующий адресному полю, называется открывающим флагом; флаг, следующий за полем FCS - закрывающим флагом.

  • Address

    Адресное поле состоит из двух байт. В нем определяется получатель управляющей сигнальной единицы и передатчик посланной единицы (см. рис. 5).

    В адресное поле входят бит расширения (EA), индикатор команда/ответ (C/R), идентификатор пункта, обеспечивающего услуги звена передачи данных второго уровня (SAPI), индикатор терминального окончания (TEI).

    Бит расширения адресного поля (EA)

    "1" указывает на то, что байт - последний в адресном поле.

    Индикатор команда/ответ (C/R)

    Индикатор указывает, является ли данный пакет командой или ответом на команду. Если пользователь посылает команду, то C/R установлен в "0"; если ответ - в "1". Со стороны сети наоборот: "1" - команда, "0" - ответ.

    Индикатор пункта, обеспечивающего услуги звена передачи данных (SAPI)

    Указывает класс передаваемой информации. Эти классы информации используются для распознавания сигнальной информации, административной информации 2-го уровня и пакетов пользовательской информации.
    Например, цифровые телефоны и терминалы X.25 могут быть подключены к одному стыку S0. Разные типы терминалов имеют разные типы доступа и могут иметь выход на различные сети. Пакеты, передаваемые разными типами терминалов (работающих по разным протоколам), идентифицируются с помощью индикатора SAPI. Шесть бит адресного поля, отведенные под SAPI, могут определить 64 класса информации:

    Индикатор терминального окончания (TEI)

    Ввиду того, что к одному блоку сетевого окочания может быть подключено несколько пользовательских устройств, станция ISDN присваивает каждой из них уникальный номер, который называется TEI (terminal equipment identifier).

    Комбинация SAPI и TEI идентифицирует процедуры звена передачи данных и обеспечивает уникальность адреса для уровня 2. Терминал будет использовать этот адрес во всех передаваемых им пакетах и принимать только те пакеты, которые имеют соответствующий ему адрес.
    Например, пакет, несущий информацию от процедур управления телефонным вызовом, помечается SAPI, как принадлежащий телефонии, и все телефонное оборудование пользователя будет проверять его, но только то терминальное оборудование, чей адрес (TEI) указан в данном пакете, примет его для обработки вторым и третьим уровнем.
    Не должно существовать двух одинаковых TEI. Для этого сеть осуществляет специальное управление распределением TEI и следит за их правильным использованием. Семь бит адресного поля, используемые для TEI, позволяют назначить 128 идентификаторов терминальных окончаний:

    Не автоматически присваемые TEI выбираются и распределяются пользователем. Автоматически присваемые TEI выбираются и распределяются сетью. Общие TEI всегда распределены и обычно называются как TEI для общего оповещения.
    Терминалам, которые используют TEI из диапазона от 0 до 63, нет необходимости обмениваться информацией с сетью до начала установления соединения вторым уровнем. Однако правило, что все терминалы пользователя должны иметь различные TEI, действует и по отношению к ним. Пользователь должен сам следить, чтобы не было двух терминалов с одинаковыми, не автоматически присваемыми TEI.
    Терминалы, использующие TEI из диапазона от 64 до 126, не могут установить соединение второго уровня до того, как запросят у сети TEI. В этом случае обязанность сети распределять TEI так, чтобы не было повторений.
    Общие TEI используются для оповещения всех терминалов с одинаковыми SAPI. Например, оповещение всех телефонов о пришедшем вызове.

  • Control field (поле управления)

    Поле управления определяет тип D-канального сообщения, которое может быть командой или ответом на команду. Оно может состоять из одного или двух байтов, размер его зависит от формата. Существует три типа форматов поля управления: передача информации о номере пакета (I-формат ), функции надзора (S-формат ), неномерованная информация и функции управления (U-формат ).

    где:
    N(S) - номер посланного сообщения; N(R) - номер принятого сообщения; P - указывает на подтверждение приема пакета уровнем 2 ("1" - пакет принят); S - бит функции супервизора; M - бит модификации; P/F - P используется как указатель подтверждения приема в командах, F используется как указатель передачи пакета в откликах (ответах); X - зарезервирован и установлен в "0".

    Information transfer (I) format

    I-формат используется при передаче информации между третьими уровнями.

    Supervisory (S) format

    S-формат используется для выполнения функций управления звеном передачи данных, таких как обозначение готовности звена передачи данных к приему пакета I-формата, подтверждение получения пакета I-формата, запрос на повтор пакетов I-формата (начиная с номера N(R)), запрос на временное прекращение посылки пакетов I-формата.

    Unnumbered (U) format

    U-формат используется для обеспечения дополнительных функций контроля за звеном передачи данных и для передачи информации, не требующей подтверждения.
    Различные комбинации значений битов S и M определяют различные типы сообщений формата S и U.

  • Information (информационное поле)

    Информационное поле может и не присутствовать в пакете (в этом случае пакет не несет в себе информацию третьего уровня, а используется вторым уровнем, например, для управления звеном передачи данных); если же оно присутствует, то находится за полем управления. Размер информационного поля может достигать 260 байт.

  • FCS (поле контрольных бит)

    Ввиду того, что при передаче по сети пакеты могут искажаться шумами на первом уровне, в каждом из них присутствует поле контрольных битов (F rame C heck S equence field). Оно состоит из 16 проверочных битов и используется для проверки ошибок в принимаемом пакете. Если пакет принят с неправильной последовательностью проверочных битов, то он сбрасывается.

  • Протокол LAPD (Link Access Procedure on the D-channel) управляет пото­ком кадров, передаваемых по D-каналу, и предоставляет информацию, необхо­димую для управления потоком и исправления ошибок. Спецификации протоко­ла как базового, так и первичного доступа определены в рекомендациях ITU-T 1.440 (основные аспекты) и 1.441 (подробные спецификации). Эти же рекомен­дации в серии Q имеют номера Q.920 и Q.921. Обмен информацией на уровне LAPD осуществляется посредством информационных блоков, называемых кад­рами. Форматы и процедуры LAPD основаны на протоколе управления звеном передачи данных высокого уровня HDLC (High-level Data-Link Control procedures), первоначально определенном Международной организацией по стан­дартизации ISO. Структура кадра LAPD. Кадры содержат либо команды на выполнение дей­ствий, либо ответы, сообщающие о результатах выполнения команд, что опре­деляется специальным битом идентификации команда/ответ C/R. Общий фор­мат кадров LAPD показан на рис. 5.5. Каждый кадр начинается и заканчивается однобайтовым флагом. Комби­нация флага (01111110) такая же, как в HDLC. Подмена флага любым другим полем кадра исключена благодаря процедуре «битстаффинга» (bit-stuffing). Адресное поле (байты 2 и 3) кадра содержит идентификатор точки доступа к услуге SAPI (Service Access Point Identifier) и идентификатор терминала TEI (Terminal Equipment Identifier). Это поле используется для маршрутизации кадра к месту его назначения. Эти идентификаторы определяют соединение и тер­минал, к которым относится кадр. Идентификатор пункта доступа к услуге SAPI занимает 6 бит в адресном поле и фактически указывает, какой логический объект сетевого уровня дол­жен анализировать содержимое информационного поля. Например, SAPI мо­жет указывать, что содержимое информационного поля относится к процеду­рам управления соединениями в режиме коммутации каналов или к процеду­рам пакетной коммутации. Рекомендацией Q.921 определены значения SAPI (табл. 5.1).

    и теми, для которых TEI назнача­ет пользователь (неавтоматичес­кое назначение TEI).

    Бит идентификации команды/ ответа C/R (Command/Response bit) в адресном поле перенесен в протокол LAPD из протокола Х.25. Этот бит устанавливается LAPD на одном и обрабатывается на противоположном конце звена. Значение C/R (табл. 5.3) классифицирует каж­дый кадр как командный или как кадр ответа. Если кадр сформирован как команда, адресное поле идентифицирует получателя, а если кадр является от­ветом, адресное поле идентифицирует отправителя. Отправителем или полу­чателем могут быть как сеть, так и терминальное оборудование пользователя. Бит расширения адресного поля ЕА (Extended address bit) служит для гибко­го увеличения длины адресного поля. Бит расширения в первом байте адреса, имеющий значение 0, указывает на то, что за ним следует другой байт. Бит расширения во втором байте, имеющий значение 1, указывает, что этот второйбайт в адресном поле является последним. Именно такой вариант приведен на рис. 5.1. Если впоследствии возникнет необходимость увеличить размер ад­ресного поля, значение бита расширения во втором байте может быть измене­но на 0, что будет указывать на существование третьего байта. Третий байт в этом случае будет содержать бит расширения со значением 1, указывающим, что этот байт является последним. Увеличение размера адресного поля, таким образом, не влияет на остальную часть кадра. Два последних байта в структуре кадра содержат 16-битовое поле прове­рочной комбинации кадра FCS (Frame check sequence) и генерируются уров­нем звена данных в оборудовании, передающем кадр. Это поле позволяет про­токолу LAPD обнаруживать ошибки в полученном кадре. В поле FCS передается 16-битовая последовательность, биты которой формируются как дополнение для суммы (по модулю 2), в которой: а) первым слагаемым является остаток от деления (по модулю 2) произве­дения х*(х 15 + х 14 + ... + х + 1) на образующий полином (х 16 + х 12 + х 5 + 1), где к - число битов кадра между последним битом открывающего флага и пер­вым битом проверочной комбинации, исключая биты, введенные для обеспе­чения прозрачности; б) вторым слагаемым является остаток от деления (по модулю 2) на этот образующий полином произведения х 16 на полином, коэффициентами которого являются биты кадра, расположенные между последним битом открывающе­го флага и первым битом проверочной комбинации, исключая биты, введенные для обеспечения прозрачности. Обратное преобразование выполняется уровнем звена данных в оборудова­нии, принимающем кадр, с тем же образующим полиномом для адресного поля, полей управления, информационного и FCS. Протокол LAPD использует согла­шение, по которому остаток от деления (по модулю 2) произведения х 16 на по­лином, коэффициентами которого являются биты перечисленных полей и FCS, всегда составляет 0001110100001111 (десятичное 7439), если на пути от пере­датчика к приемнику никакие биты не были искажены. Если результаты обрат­ного преобразования соответствуют проверочным битам, кадр считается пе­реданным без ошибок. Если же обнаружено несоответствие результатов, это означает, что при передаче кадра произошла ошибка. Поле управления указывает тип передаваемого кадра и занимает в раз­личных кадрах один или два байта. Существует три типа форматов, определя­емых полем управления: передача информации с подтверждением (1-фор­мат), передача команд, реализующих управляющие функции (S-формат), и передача информации без подтверждения (U-формат). В табл. 5.4 приведе­ны сведения об основных типах кадров протокола LAPD.

    Рассмотрим эти типы несколько подробнее. Информационный кадр (1-кадр) - с его помощью организуют передачу ин­формации сетевого уровня между терминалом пользователя и сетью. Этот кадр содержит информационное поле, в котором помещено сообщение сетевого уров­ня. Поле управления 1-кадра содержит порядковый номер передачи (N/S), ко­торый увеличивается на 1 (по модулю 128) для каждого передаваемого кадра. При подтверждении приема 1-кадров в поле управления вводится порядковый номер приема (N/R). Управляющий кадр (S-кадр) необходим для поддержки функций управления потоком и запроса повторной передачи. S-кадры не имеют информационного поля. Например, если сеть временно не в состоянии принимать 1-кадры, пользо­вателю посылается S-кадр «к приему не готов» (RNR). Когда сеть снова мо­жет принимать 1-кадры, она передает другой S-кадр - «к приему готов» (RR). S-кадр также можно использовать для подтверждения в этом случае он содер­жит порядковый номер приема, а не передачи. Управляющие кадры передают как командные или как кадры ответа. Ненумерованный кадр (U-кадр). Среди ненумерованных кадров имеется кадр ненумерованной информации (UI), единственный, содержащий информа­ционное поле и несущий сообщение сетевого уровня. U-кадры используют для передачи информации в режиме без подтверждения и некоторых администра­тивных директив. Чтобы транслировать сообщение ко всем терминалам, под­ключенным к шине S-интерфейса, станция передает кадр UI с TEI = 127. Поле управления U-кадров не содержит порядковых номеров. Информационное поле предусмотрено в кадрах только некоторых типов. В нем заключена информация сетевого уровня, сформированная одной системой, например, терминалом пользователя, которую необходимо передать другой си­стеме, например сети. Информационное поле может быть пропущено, если кадр не имеет отношения к конкретной коммутируемой связи (например, в управля­ющих кадрах, S-формат). Если кадр относится к канальному уровню и сетевой уровень не участвует в его формировании, соответствующая информация вклю­чается в поле управления. Биты P/F (poll/final) поля управления идентифицируют группу кадров (см. табл. 5.4), что также заимствовано из спецификаций протокола HDLC. Путем установки в «1» бита Р в командном кадре функции LAPD на одном конце звена данных указывают функциям LAPD на противоположном конце звена на необходимость ответа управляющим или ненумерованным кадром. Кадр отве­та с F = 1 указывает, что он передается в ответ на принятый командный кадр со значением Р = 1. Оставшиеся биты байта 4 идентифицируют конкретный тип кадра в пределах группы. Передача с подтверждением. Этот способ используют для передачи ин­формационных кадров только в соединениях звена данных, имеющих конфигу­рацию «точка-точка». Он обеспечивает исправление ошибок путем повтор­ной передачи и доставку не содержащих ошибок сообщений в порядке очередности. Поле управления информационного кадра имеет подполя «номер передачи» N(S) и «номер приема» N(R). Эти подполя аналогичны одноименным полям в HDLC. Протокол LAPD присваивает по модулю 128 возрастающие порядко­вые номера передачи N(S) последовательно передаваемым информационным кадрам. Он также записывает передаваемые кадры в буфер повторной переда­чи и хранит их в буфере до получения положительного подтверждения их приема.

    Рассмотрим передачу информационных кадров с исправлением ошибок от терминала к сети (рис. 5.6). Все поступающие в сеть кадры проверяются на наличие ошибок, а затем в свободных от ошибок информационных кадрах про­веряется порядковый номер. Если значение N(S) выше (по модулю 128) на еди­ницу, чем N(S) последнего принятого информационного кадра, новый кадр счи­тается следующим по порядку и поэтому принимается, а его информационное поле пересылается конкретной функции сетевого уровня. После этого сеть под­тверждает прием информационного кадра своим исходящим кадром с номе­ром приема N(R), значение которого на единицу больше (по модулю 128), чем значение N(S) в последнем принятом информационном кадре. Предположим, что последний принятый информационный кадр имел номер N(S) = 5 и что информационный кадр с номером N(S) = 6 передан с ошибкой, в результате которой отбракован функциями LAPD на стороне сети. Следующий информационный кадр с N(S) = 7 успешно проходит проверку на ошибки, но поступает в сеть с нарушением очередности и отбрасывается ею при проверке порядка следования. Тоща сеть передает кадр отказа (REJ) с номером N(R) = 6, который запрашивает повторную передачу информационных кадров из буфера повторной передачи терминала, начиная с кадра с N(S) = 6. Сетевая сторона продолжает отбрасывать информационные кадры при проверке их на порядок следования, пока не примет повторно переданный кадр с номером N(S) = 6. Нумерация кадров при передаче с подтверждением - одна из важней­ших функций протокола LAPD. При выполнении этой процедуры важное значе­ние имеет параметр к- число неподтвержденных квитируемых кадров. Пере­датчик должен прекратить работу, когда разница между его собственным значением N(S) (числом переданных кадров I) и значением N(R) (числом под­твержденных кадров I) превысит параметр, обозначаемый к. Значение к уста­навливается в соответствии со спецификой использования звена и скоростью передачи в нем: к = 1 - для сигнализации базового доступа BRA при скорости.D-канала 16 кбит/с, к = 3 - для пакетной передачи при скорости 16 кбит/с, к - 7 - для сигнализации первичного доступа PRA при скорости D-канала 64 кбит/с. Два потока сообщений от терминала к сети и в обратном направлении для соединения «точка-точка» независимы друг от друга и от потоков сообщений в других соединениях «точка-точка» в том же D-канале. В D-канале с п соеди­нениями типа «точка-точка» могут присутствовать 2п независимых последо­вательностей N(S)/N(R). Процедура подтверждаемой передачи информации (рис. 5.7). Рассмот­рим случай, когда необходимо начать передачу информации уровня 3 от терми­нала пользователя к сети. Инициатором данной процедуры является уровень 3 на стороне пользователя, который выдает примитив запроса соединения DISESTABLISH. По этому запросу уровень 2 на стороне пользователя форми­рует управляющий кадр установки расширенного асинхронного балансного ре­жима (SABME - Set Asynchronous Balanced Mode Extended).

    Кадр SABME пересылается к сети через уровень 1. При получении кадра SABME уровнем 2 на стороне сети проверяются условия, необходимые для установки режима подтверждаемой передачи информации (например, чтобы убедиться, что соот-


    Рис. 5.7. Процедура подтверждаемой передачи

    ветствующее оборудование доступно). Если все условия выполнены, уровень 2 на стороне сети посылает уровню 3 примитив индикации запроса соединения, чтобы указать, что устанавливается режим подтверждаемой передачи инфор­мации. Средствами уровня 2 сеть возвращает пользователю ненумерованное подтверждение. При получении этого подтверждения терминалом пользовате­ля на уровень 3 передается примитив подтверждения установления соедине­ния, указывающий, что можно начинать подтверждаемую передачу информа­ции. Теперь между пользователем и сетью можно осуществить передачу информации с помощью 1-кадров. Эта информация направляется уровнем 3 к уровню 2 в примитиве запроса передачи данных DLJDATA. Данные помещаются в информационное поле 1-кадра и передаются от пользователя к сети через уровень 1. При получении уровнем 2 на стороне сети 1-кадра данные извлекаются из информационного поля и передаются к уровню 3 в примитиве индикации приема данных. В зави­симости от содержимого полученного 1-кадра сеть посылает в ответ пользова­телю либо 1-кадр, либо управляющий кадр готовности к приему. Оба кадра содержат подтверждение, что 1-кадр от пользователя был успешно принят. Каждый 1-кадр содержит в поле управления порядковые номера передачи и приема. Процедура обнаружения потерь работает в обоих направлениях. В ка­честве примера на рис. 5.6 была рассмотрена передача необходимого сетево­му уровню числа информационных кадров, включая передачу кадров 5, 6 и 7. Когда обмен 1-кадрами, показанный на рис. 5.6, заканчивается, происходит по­сылка команды разъединения DISC, за которой следует ответ DM, подтверж­дающий разъединение. На рис. 5.7 уровень 3 на стороне пользователя отправ­ляет уровню 2 примитив запроса освобождения DL_RELEASE, а уровень 2 формирует кадр разъединения, который передается через уровень 1 уровню 2 на стороне сети. При получении кадра разъединения уровнем 2 на стороне сети уровню 3 выдается примитив индикации освобождения, а пользователю воз­вращается кадр ненумерованного подтверждения. При получении кадра нену­мерованного подтверждения уровнем 2 на стороне пользователя уровню 3 вы­дается примитив подтверждения освобождения для завершения процедуры освобождения. Передача неподтверждаемых сообщений. Управляющие кадры S и не­нумерованные кадры U не содержат подполя N(S). Они принимаются получа­телем, если получены без ошибок, и на них не отправляется подтверждение. Управляющие кадры содержат поле N(R) для подтверждения принятых ин­формационных кадров. Ненумерованные информационные кадры UI не содержат ни поля N(S), ни поля N(R), поскольку они передаются в вещательном режиме с TEI = 127, а возможность координировать порядковые номера передачи и приема для груп­повых функций во всех терминалах, подключенных к одному S-интерфейсу, от­сутствует. Процедура неподтверждаемой передачи информации. Рассмотрим случай, когда необходима передача информации от функций уровня 3 на сторо­ не сети к функциям уровня 3 в терминале пользователя. Функции уровня 3 на стороне сети передают к уровню 2 примитив запроса передачи данных без подтверждения DL_UNIT DATA. Уровень 2 формирует кадр ненумерованной информации (UI - Unnumbered Information), содержащий в информационном поле информацию, которую надо передать. Этот кадр и передается через уро­вень I к функциям уровня 2 в терминале пользователя. Если необходима веща­тельная (циркулярная) передача кадра всем терминалам, TEI в адресном поле присваивается значение 127. Если же обращение происходит к одному опреде­ленному терминалу, т.е. необходим режим «точка-точка», тогда TEI присваи­вается значение от 0 до 126, совпадающее с TEI, назначенным для этого тер­минала, например, TEI = 7. При получении кадра UI терминалом пользователя информация, содержащаяся в информационном поле, доставляется из уровня 2 в уровень 3 с помощью примитива индикации приема данных без подтвержде­ния. При такой неподтверждаемой передаче информации в уровне 2 отсутствует процедура защиты от ошибок. Следовательно, решение о логическом восста­новлении кадра в случае его потери или искажения возложено на функции уровня 3.

    Рассмотрим подробнее использование управляющих кадров: кадр готовно­сти к приему RR, сообщающий о готовности принимать информационные кад­ры; кадр неготовности к приему RNR, сообщающий о том, что принимать ин­формационные кадры временно нельзя, но прием управляющих кадров возможен; кадр отказа REJ, указывающий, что поступивший информационный кадр от­брошен. На рис. 5.8 показаны несколько примеров, которые иллюстрируют ис­пользование битов C/R, Р и F. На рис. 5.8, а уровень 2 на стороне сети получил информационный кадр с нарушением порядка очередности и отбрасывает его с помощью команды RE J, в которой бит Р имеет значение 0 (подтверждения не требуется). N(R) = М указывает, что последний принятый информационный кадр имел N(S) = М - 1. Терминал повторяет передачу информационных кадров из своего буфера по­вторной передачи, начиная с кадра, для которого N(S) = М. На рис. 5.8, б рассмотрена та же ситуация, за исключением того, что в командном кадре REJ бит Р =1. Этим передается указание терминалу пользо­вателя подтвердить кадр. Терминал пользователя сначала передает кадр от­вета RR или RNR (C/R = 1, F = 1), а затем начинает повторную передачу ин­формационных кадров. На рис. 5.8, в сетевая сторона указывает с помощью командного кадра RNR, что она не может принимать информационные кадры. Сторона пользователя приостанавливает передачу информационных кадров и запускает таймер. Если терминал получает кадр RR до срабатывания таймера, то он возобновляет передачу или повторную передачу информационных кадров. Если таймер сра­ботал, а кадр RR не получен, терминал пользователя передает кадр команды (C/R = 1) с Р = 1. Этим дается указание сетевой стороне передать, в свою очередь, командный кадр. В данном примере сетевая сторона отвечает кад­ром RR, указывая, что она готова снова принимать информационные кадры и что номер последнего принятого кадра N(S) = М -1. Затем сторона терминала возобновляет передачу информационных кадров, начиная ее кадром с номером N(S) = М. Если ответом сетевой стороны будет кадр RNR, то сторона пользо­вателя перезапустит свой таймер и снова будет ожидать кадр RR. Если сете­вая сторона остается неготовой к приему после нескольких срабатываний тай­мера, то сторона пользователя передает решение вопроса в более высокую инстанцию - к соответствующей функции сетевого уровня. Процедуры управления TEI. Для протокола LAPD определены процеду­ры управления TEI, т. е. процедуры его назначения, контроля и отмены. Для соединений «точка-точка» в терминале запоминается «свой» TEI и проверяет­ся TEI в поле адреса принимаемых кадров, чтобы определить, не предназна­чен ли кадр этому терминалу. Терминал также вводит свой TEI в адресные поля передаваемых им кадров. Терминалы (ТЕ) подразделяются на терминалы с неавтоматическим и ав­томатическим механизмом назначения TEI. ТЕ первого типа ориентированы на длительное подключение к одной цифровой абонентской линии, с постоянно активным физическим уровнем. Эти терминалы имеют ряд переключателей, положение которых определяет значение TEI. Переключатели устанавливает технический персонал при инсталляции ТЕ, и их положение не меняется, пока ТЕ подключен к этой цифровой абонентской линии. ТЕ такого типа имеют зна­чения от 0 до 63.каждом перемещении неудобно, поэтому для мобильных ТЕ применяется ав­томатическое назначение TEI (в диапазоне 64-126), а также его проверка и отмена, для чего и используются упомянутые выше процедуры управления TEI. Этими процедурами предусмотрены сообщения следующих типов:


    Запрос ID. Сообщение передается мобильным ТЕ, когда необходимо, что­бы сеть назначила для него TEI. ID назначен. Это ответ сети на запрос ГО. Он содержит назначенный TEI. Отказ в назначении ID. Это ответ сети, отвергающий запрос ГО. Запрос проверки ID. Это команда от сети для проверки назначенного зна­чения TEI. Ответ проверки ID. Это ответ мобильного ТЕ на запрос-проверки ГО. Отмена ID. Эта команда передается от сети к ТЕ, чтобы отменить назна­ченный ранее TEI. Все сообщения передаются в кадрах UI с SAPI = 63. Информационное поле кадров UI показано на рис. 5.9. Код в байте 1 указывает, что это сообщение управления TEI. Код типа сообщения находится в байте 4 (табл. 5.5). Сообще­ние содержит параметры R1 (ссылочный номер) и Ai (индикатор действия).