ПЗС. Физический принцип работы ПЗС

Что такое ПЗС-матрица?

Немного истории

В качестве приёмника света раньше использовались фотоматериалы: фотопластинки, фотоплёнка, фотобумага. Позже появились телевизионные камеры и ФЭУ (фото-электрический умножитель).
В конце 60-х - начале 70-х годов начали разрабатываться так называемые "Приборы с Зарядовой Связью", что сокращённо пишется как ПЗС. На английском языке это выглядит как "charge-coupled devices" или сокращённо - CCD. В принципе ПЗС-матриц лежал факт, что кремний способен реагировать на видимый свет. И этот факт привёл к мысли что этот принцип может использоваться для получения изображений светящихся объектов.

Астрономы были одними из первых, кто распознал экстраординарные способности ПЗС для регистрации изображений. В 1972 году группа исследователей из JPL (Лаборатория Реактивного Движения, США) основала программу развития ПЗС для астрономии и космических исследований. Три года спустя, совместно с учеными Аризонского университета, эта команда получила первое астрономическое ПЗС изображение. На снимке Урана в ближнем инфракрасном диапазоне с помощью полутораметрового телескопа были обнаружены темные пятна возле южного полюса планеты, свидетельствующие о наличии там метана...

Применение ПЗС-матриц на сегодняшний день нашло широкое применение: цифровые фотокамеры, видеокамеры; ПЗС-матрица как фотокамеры стало возможным встраивать даже в мобильные телефоны.

Устройство ПЗС

Типичное устройство ПЗС (рис.1): на полупроводниковой поверхности находится тонкий (0.1-0.15 мкм) слой диэлектрика (обычно окисла), на котором располагаются полоски проводящих электродов (из металла или поликристаллического кремния). Эти электроды образуют линейную или матричную регулярную систему, причем расстояния между электродами столь малы, что существенными являются эффекты взаимного влияния соседних электродов. Принцип работы ПЗС основан на возникновении, хранении и направленной передаче зарядовых пакетов в потенциальных ямах, образующихся в приповерхностном слое полупроводника при приложении к электродам внешних электрических напряжений.



Рис. 1. Принципиальное устройство ПЗС-матрицы.

На рис. 1 символами С1, С2 и С3 обозначены МОП-конденсаторы (металл-окисел-полупроводник).

Если к какому-либо электроду приложить положительное напряжение U, то в МДП-структуре возникает электрическое поле, под действием которого основные носители (дырки) очень быстро (за единицы пикосекунд) уходят от поверхности полупроводника. В результате у поверхности образуется обедненный слой, толщина которого составляет доли или единицы микрометра. Неосновные носители (электроны), генерированные в обедненном слое под действием каких-либо процессов (например, тепловых) или попавшие туда из нейтральных областей полупроводника под действием диффузии, будут перемещаться (под действием поля) к границе раздела полупроводник-диэлектрик и локализоваться в узком инверсном слое. Таким образом, у поверхности возникает потенциальная яма для электронов, в которую они скатываются из обедненного слоя под действием поля. Генерированные в обедненном слое основные носители (дырки) под действием поля выбрасываются в нейтральную часть полупроводника.
В течение заданного интервала времени каждый пиксель постепенно заполняется электронами пропорционально количеству попавшего в него света. По окончании этого времени электрические заряды, накопленные каждым пикселем, по очереди передаются на "выход" прибора и измеряются.

Размер светочувствительного пикселя матриц составляет от одного-двух до нескольких десятков микрон. Размер же кристаллов галоидного серебра в светочувствительном слое фотопленки колеблется от 0.1 (позитивные эмульсии) до 1 микрона (высокочувствительные негативные).

Одним из основных параметров матрицы является, так называемая, квантовая эффективность. Это название отражает эффективность преобразования поглощенных фотонов (квантов) в фотоэлектроны и схоже фотографическому понятию светочувствительности. Поскольку энергия световых квантов зависит от их цвета (длины волны), невозможно однозначно определить сколько электронов родится в пикселе матрицы при поглощении им например потока из ста разнородных фотонов. Поэтому квантовая эффективность обычно дается в паспорте на матрицу как функция от длины волны, и на отдельных участках спектра может достигать 80%. Это гораздо больше, чем у фотоэмульсии или глаза (примерно 1%).

Какие бывают ПЗС-матрицы?

Если пиксели выстроены в один ряд, то приемник называется ПЗС-линейкой, если же участок поверхности заполнен ровными рядами - тогда приемник называется ПЗС-матрицей.

ПЗС-линейка имела широкий круг применения в 80-х и 90-х годах для астрономических наблюдений. Достаточно было провести изображение по ПЗС-линейке и оно появлялось на мониторе компьютера. Но это процесс сопровождался многими трудностями и поэтому в настоящее время ПЗС-линейки всё больше вытесняются ПЗС-матрицами.

Нежелательные эффекты

Одним из нежелательных побочных эффектов переноса заряда на ПЗС-матрице, который может мешать наблюдениям, являются яркие вертикальные полосы (столбы) на месте ярких зон изображения небольшой площади. Также к возможным нежелательным эффектам ПЗС-матриц можно отнести: высокий темновой шум, наличие "слепых" или "горячих" пикселей, неравномерность чувствительности по полю матрицы. Для уменьшения темнового шума используют автономное охлаждение ПЗС-матриц до температур -20°С и ниже. Либо же снимается темновой кадр (например с закрытым объективом) с такой же длительностью (экспозицией) и температурой, с какими был произведён предыдущий кадр. Впоследствии специальной программой на компьютере вычитается темновой кадр из изображения.

Телевизионные камеры на базе ПЗС-матриц хороши тем, что они дают возможность получать изображения со скоростью до 25 кадров в секунду с разрешением 752 x 582 пикселей. Но непригодность нектороых камер этого типа для астрономических наблюдений состоит в том, что в них производителем реализуются внутренние предобработки изображения (читать - искажения) для лучшего восприятия получаемых кадров зрением. Это и АРУ (автоматизированная регулировка управления) и т.н. эффект "резких границ" и прочие.

Прогресс…

В целом, использование ПЗС-приемников значительно удобнее, чем использование нецифровых приемников света, поскольку полученные данные сразу оказываются в виде, пригодном для обработки на компьютере и, кроме того, скорость получения отдельных кадров очень высока (от нескольких кадров в секунду до минут).

В настоящий момент быстрыми темпами развивается и совершенствуется производство ПЗС-матриц. Увеличивается количество "мегапикселей" матриц - количества отдельных пикселей на единицу площади матрицы. Улучшается качество изображений получаемых с помощью ПЗС-матриц и т.д.

Использованные источники:
1. 1. Виктор Белов. С точностью до десятых долей микрона.
2. 2. С.Е.Гурьянов. Знакомьтесь - ПЗС.

Введение

В данной курсовой работе я рассмотрю общие сведения о приборах с зарядовой связью, параметры, историю создания, характеристики современных ПЗС-камер среднего инфракрасного диапазона.

В результате выполнения курсовой работы изучил литературу по созданию, принципу действия, технических характеристиках и применении ПЗС-камер среднего ИК диапазона.

ПЗС. Физический принцип работы ПЗС. ПЗС-матрица

Прибор с зарядовой связью (ПЗС) представляет собой ряд простых МДП-структур (металл -- диэлектрик-- полупроводник), сформированные на общей полупроводниковой подложке таким образом, что полоски металлических электродов образуют линейную или матричную регулярную систему, в которой расстояния между соседними электродами достаточно малы (рис. 1). Это обстоятельство обусловливает тот факт, что в работе устройства определяющим является взаимовлияние соседних МДП-структур .

Рисунок 1 - Структура ПЗС

Основные функциональные назначения фото-чувствительных ПЗС - преобразование оптических изображений в последовательность электрических импульсов (формирование видеосигнала), а также хранение и обработка цифровой и аналоговой информации.

ПЗС изготовляют на основе монокристаллического кремния. Для этого на поверхности кремниевой пластины методом термического окисления создаётся тонкая (0,1-0,15 мкм) диэлектрическая плёнка диоксида кремния. Этот процесс осуществляется таким образом, чтобы обеспечить совершенство границы раздела полупроводник - диэлектрик и минимизировать концентрацию рекомбинаций центров на границе. Электроды отдельных МДП-элементов производятся из алюминия, их длина составляет 3-7 мкм, зазор между электродами 0,2-3 мкм. Типичное число МДП-элементов 500-2000 в линейном и в матричном ПЗС; площадь пластины Под крайними электродами каждой строки изготовляют p- n - переходы, предназначенные для ввода - вывода порции зарядов (зарядовых пакетов) электрич. способом (инжекция p- n -переходом). При фотоэлектрич. вводе зарядовых пакетов ПЗС освещают с фронтальной или тыльной стороны. При фронтальном освещении во избежание затеняющего действия электродов алюминий обычно заменяют плёнками сильнолегированного поликристаллического кремния (поликремния), прозрачного в видимой и ближней ИК-областях спектра.

Принцип работы ПЗС

Общий принцип работы ПЗС заключается в следующем. Если к любому металлическому электроду ПЗС приложить отрицательное напряжение, то под действием возникающего электрического поля электроны, являющиеся основными носителями в подложке, уходят от поверхности вглубь полупроводника. У поверхности же образуется обедненная область, которая на энергетической диаграмме представляет собой потенциальную яму для неосновных носителей -- дырок. Попадающие каким-либо образом в эту область дырки притягиваются к границе раздела диэлектрик -- полупроводник и локализуются в узком приповерхностном слое.

Если теперь к соседнему электроду приложить отрицательное напряжение большей амплитуды, то образуется более глубокая потенциальная яма и дырки переходят в нее. Прикладывая к различным электродам ПЗС необходимые управляющие напряжения, можно обеспечить как хранение зарядов в тех или иных приповерхностных областях, так и направленное перемещение зарядов вдоль поверхности (от структуры к структуре). Введение зарядового пакета (запись) может осуществляться либо p-n-переходом, расположенным, например, вблизи крайнего ПЗС элемента, либо светогенерацией. Вывод заряда из системы (считывание) проще всего также осуществить с помощью p-n-перехода. Таким образом, ПЗС представляет собой устройство, в котором внешняя информация (электрические или световые сигналы) преобразуется в зарядовые пакеты подвижных носителей, определенным образом размещаемые в приповерхностных областях, а обработка информации осуществляется управляемым перемещением этих пакетов вдоль поверхности. Очевидно, что на основе ПЗС можно строить цифровые и аналоговые системы. Для цифровых систем важен лишь факт наличия или отсутствия заряда дырок в том или ином элементе ПЗС, при аналоговой обработке имеют дело с величинами перемещающихся зарядов.

Если на многоэлементный или матричный ПЗС направить световой поток, несущий изображение, то в объеме полупроводника начнется фотогенерация электронно-дырочных пар. Попадая в обедненную область ПЗС, носители разделяются и в потенциальных ямах накапливаются дырки (причем величина накапливаемого заряда пропорциональна локальной освещенности). По истечении некоторого времени (порядка нескольких миллисекунд), достаточного для восприятия изображения, в матрице ПЗС будет храниться картина зарядовых пакетов, соответствующая распределению освещенностей. При включении тактовых импульсов зарядовые пакеты будут перемещаться к выходному устройству считывания, преобразующему их в электрические сигналы. В результате на выходе получится последовательность импульсов с разной амплитудой, огибающая, которых дает видеосигнал.

Принцип действия ПЗС на примере фрагмента строки ФПЗС, управляемой трёхтактовой (трёхфазной) схемой, иллюстрируется на рисунке 2. В течение такта I (восприятие, накопление и хранение видеоинформации) к электродам 1, 4, 7 прикладывается т. н. напряжение хранения Uxp, оттесняющее основные носители - дырки в случае кремния р-типа - в глубь полупроводника и образующее обеднённые слои глубиной 0,5-2 мкм - потенциальные ямы для электронов. Освещение поверхности ФПЗС порождает в объёме кремния избыточные электронно-дырочные пары, при этом электроны стягиваются в потенциальные ямы, локализуются в тонком (0,01 мкм) приповерхностном слое под электродами 1, 4,7, образуя сигнальные зарядовые пакеты.

зарядовый связь камера инфракрасный

Рисунок 2 - схема работы трёхфазного прибора с зарядовой связью - сдвигового регистра

Величина заряда в каждом пакете пропорциональна экспозиции поверхности вблизи данного электрода. В хорошо сформированных МДП-структурах образующиеся заряды вблизи электродов могут относительно долго сохраняться, однако постепенно вследствие генерации носителей заряда примесными центрами, дефектами в объёме или на границе раздела эти заряды будут накапливаться в потенциальных ямах, пока не превысят сигнальные заряды и даже полностью заполнят ямы.

Во время такта II (перенос зарядов) к электродам 2, 5, 8 и так далее прикладывается, напряжение считывания, более высокое, чем напряжение хранения. Поэтому под электродами 2, 5 и 8 возникают более глубокие потенц. ямы, чем под электронами 1, 4 и 7, и вследствие близости электродов 1 и 2, 4 и 5,7 и 8 барьеры между ними исчезают и электроны перетекают в соседние, более глубокие потенциальные ямы.

Во время такта III напряжение на электродах 2, 5, 8 снижается до а с электродов 1, 4, 7 снимается.

Т. о. осуществляется перенос всех зарядовых пакетов вдоль строки ПЗС вправо на один шаг, равный расстоянию между соседними электродами.

Во всё время работы на электродах, непосредственно не подключённых к потенциалам или поддерживается небольшое напряжение смещения (1-3 В), обеспечивающее обеднение носителями заряда всей поверхности полупроводника и ослабление на ней рекомбинации эффектов.

Повторяя процесс коммутации напряжений многократно, выводят через крайний r- h-переход последовательно все зарядовые пакеты, возбуждённые, напр., светом в строке. При этом в выходной цепи возникают импульсы напряжения, пропорциональные величине заряда данного пакета. Картина освещённости трансформируется в поверхностный зарядовый рельеф, который после продвижения вдоль всей строки преобразуется в последовательность электрических импульсов. Чем больше число элементов в строке или матрице (число 1- ИК приемники; 2- буферные элементы; 3 - ПЗС происходит неполная передача зарядового пакета от одного электрода к соседнему и усиливаются обусловленные этим искажением информации. Чтобы избежать искажений накопленного видеосигнала из-за продолжающегося во время переноса освещения, на кристалле ФПЗС создают пространственно разделённые области восприятия - накопления и хранения - считывания, причём в первых обеспечивают максимальную фоточувствительность, а вторые, наоборот, экранируют от света. В линейном ФПЗС (рис. 3, а) заряды, накопленные в строке 1 за один цикл, передаются в регистр 2 (из чётных элементов) и в регистр 3 (из нечётных). В то время, как по этим регистрам информация передаётся через выход 4 в схему объединения сигналов 5, в строке 1 накапливается новый видеокадр. В ФПЗС с кадровым переносом (рисунок 3) информация, воспринятая матрицей накопления 7, быстро "сбрасывается" в матрицу хранения 2, из которой последовательно считывается ПЗС-регистром 3; в это же время матрица 1 накапливает новый кадр.

Рисунок 3 - накопление и считывание информации в линейном (a), матричном (б) фоточувствительном приборе с зарядовой связью и в приборе с зарядовой инжекцией.

Кроме ПЗС простейшей структуры (рисунок 1) получили распространение и другие их разновидности, в частности приборы с поликремниевыми перекрывающимися электродами (рисунок 4), в которых обеспечиваются активное фотовоздействие на всю поверхность полупроводника и малый зазор между электродами, и приборы с асимметрией приповерхностных свойств (напр., слоем диэлектрика переменной толщины - рисунок 4), работающие в двухтактовом режиме. Принципиально отлична структура ПЗС с объёмным каналом (рисунок 4), образованным диффузией примесей. Накопление, хранение, перенос заряда происходят в объёме полупроводника, где меньше, чем на поверхности, рекомбинация центров и выше подвижность носителей. Следствием этого является увеличение на порядок значения и уменьшение по сравнению со всеми разновидностями ПЗС с поверхностным каналом.

Рисунок 4 - Разновидности приборов с зарядовой связью с поверхностным и объёмным каналами.

Для восприятия цветных изображений используют один из двух способов: разделение оптического потока с помощью призмы на красный, зелёный, синий, восприятие каждого из них специальным ФПЗС - кристаллом, смешение импульсов от всех трёх кристаллов в единый видеосигнал; создание на поверхности ФПЗС плёночного штрихового или мозаичного кодирующего светофильтра, образующего растр из разноцветных триад.

Общие сведения о ПЗС матрицах .

В настоящее время в качестве светочувствительного устройства в большинстве систем ввода изображений используются ПЗС (прибор с зарядовой связью, английский эквивалент CCD) матрицы.

Принцип работы ПЗС матрицы следующий: на основе кремния создается матрица светочувствительных элементов (секция накопления). Каждый светочувствительный элемент имеет свойство накапливать заряды, пропорционально числу попавших на него фотонов. Таким образом за некоторое время (время экспозиции) на секции накопления получается двумерная матрица зарядов, пропорциональных яркости исходного изображения. Накопленные заряды первоначально переносятся в секцию хранения, а далее строка за строкой и пиксел за пикселом на выход матрицы.

Размер секции хранения по отношению к секции накопления бывает разный:

  • на кадр (матрицы с кадровым переносом для прогрессивной развертки);
  • на полукадр (матрицы с кадровым переносом для черезстрочной развертки);

Существуют также матрицы, в которых отсутствует секция хранения, и тогда строчный перенос осуществляется прямо по секции накопления. Очевидно, что для работы таких матриц требуется оптический затвор.

Качество современных ПЗС матриц таково, что в процессе переноса заряд практически не изменяется.

Не смотря на видимое разнообразие телевизионных камер, ПЗС матрицы, используемые в них, практически одни и теже, поскольку массовое и крупносерийное производство ПЗС матриц осуществляется всего несколькими фирмами. Это SONY, Panasonic, Samsung, Philips, Hitachi Kodak.

Основными параметрами, ПЗС матриц являются:

  • размерность в пикселях;
  • физический размер в дюймах (2/3, 1/2, 1/3 и т.д.). При этом сами цифры не определяют точный размер чувствительной области, а, скорее, определяют класс прибора;
  • чувствительность.

Разрешающая способность ПЗС камер .

Разрешающая способность ПЗС камер в основном определяется размерностью ПЗС матрицы в пикселях и качеством обьектива. В какой-то степени на это может влиять электроника камеры (если она плохо сделана это может ухудшить разрешение, но откровенно плохо сейчас делают редко).

Здесь важно сделать одно замечание. В некоторых случаях для улучшения видимого разрешения в камерах устанавливаются высокочастотные пространственные фильтры. В этом случае изображение объекта, полученное с камеры меньшей размерности, может выглядеть даже более резким, чем изображение этого же объекта, полученное объктивно лучшей камерой. Конечно, это приемлемо, в том случае когда камера используется в системах визуального наблюдения, но совершенно не подходит для построения измерительных систем.

Разрешающая способность и формат ПЗС матриц .

В настоящее время различными компаниями выпускается ПЗС матрицы, охватывающие широчайший диапазон размерностей от нескольких сотен до нескольких тысяч. Так сообщалось о матрице с размерностью 10000х10000, причем в этом сообщении отмечалась не столько проблема стоимости этой матрицы, сколько проблемы хранения, обработки и передачи полученных изображений. Как нам известно, сейчас более или менее широко применяются матрицы с размерностью до 2000х2000.

К наиболее широко, точнее массово применяемым ПЗС матрицам, безусловно следует отнести матрицы с разрешением ориентированным на телевизионный стандарт. Это матрицы, в основном, двух форматов:

  • 512*576;
  • 768*576.
Матрицы 512*576 обычно используются в простых и дешевых системах видеонаблюдения.

Матрицы 768*576 (иногда чуть больше, иногда чуть меньше) позволяют получить максимальное разрешение для стандартного телевизионного сигнала. При этом, в отличии от матриц формата 512*576, они имеют близкую к квадрату сетку расположения светочувствительных элементов, а, следовательно, равную разрешающую способность по горизонтали и вертикали.

Часто фирмы-изготовители телекамер указывают разрешающую способность в телевизионных линиях. Это означает, что камера позволяет разглядеть N/2 темных вертикальных штрихов на светлом фоне, уложенных во вписанный в поле изображения квадрат, где N - заявленное число телевизионных линий. Применительно к стандартной телевизионной таблице это предполагает следующее: подбирая растояние и фокусируя изображение таблицы надо добиться того, чтобы верхний и нижний край изображения таблицы на мониторе совпал с внешним контуром таблицы, отмечаемым вершинами черных и белых призм; далее, после окончательной подфокусировки, считывается число в том месте вертикального клина, где вертикальные штрихи в первый раз перестают разрешаться. Последнее замечание очень важно т.к. и на изображении тестовых полей таблицы, имеющих 600 и более штрихов, часто видны перемежающиеся полосы, которые, на самом деле, являются муаром, образованным биением пространственных частот штрихов таблицы и сетки чувствительных элементов ПЗС матрицы. Такой эффект особенно ярко выражен в камерах с высокочастотными пространственными фильтрами (см. выше)!

Хочется заметить, что при прочих равных условиях (в основном на это может повлиять обьектив) разрешающая способность черно-белых камер однозначно определяется размерностью ПЗС матрицы. Так камера формата 768*576 будет иметь разрешающую способность 576 телевизионных линий, хотя в одних проспектах можно найти величину 550, а в других 600.

Обьектив.

Физический размер ПЗС ячеек является основным параметром, определящим требование к разрешающей способности обьектива. Другим таким параметром может явиться требование по обеспечению работы матрицы в условии световой перегрузки, которое будет рассмотрено ниже.

Для 1/2 дюймовой матрицы SONY ICX039 размер пикселя составляет 8.6мкм*8.3мкм. Следовательно обьектив должен иметь разрешение лучше чем:

1/8.3*10e-3= 120 линий (60 пар линий на миллиметр).

Для обьективов, сделанных под 1/3 дюймовые матрицы, это значение должно быть еще выше, хотя это, как ни странно, не отражается на стоимости и таком параметре как светосила, поскольку эти объективы делают с учетом необходимости формирования изображения на меньшем светочувствительном поле матрицы. Отсюда следует и то, что объективы для матриц меньшего размера не подходят к большим матрицам из-за существенно ухудшающихся характеристиках на краях больших матриц. В тоже время объективы для больших матриц могут ограничить разрешение изображений, получаемых с меньших матриц.

К сожалению, при всем современном изобилии обьективов для телекамер, информацию по их разрешающей способности получить очень тяжело.

Вообще, мы не часто занимаемся подбором объективов, поскольку почти все наши Заказчики устанавливают видеосистемы на уже имеющуюся оптику: микроскопы, телескопы и т.д., поэтому наши сведения о рынке объективов носят характер заметок. Можно только сказать, что разрешающая способность простых и дешевых обьективов находится в диапазоне 50-60 пар линий на мм, что вообще- то недостаточно.

С другой стороны у нас есть информация, что специальные объективы производства Zeiss с разрешением 100-120 пар линий на мм стоят более 1000$.

Так, что при покупке объектива необходимо провести предварительное тестирование. Надо сказать, что большинство Московских продавцов дают объективы на тестирование. Здесь ещё раз уместно вспомнить об эффекте муара, наличие которого, как отмечалось выше, может ввести в заблуждение относительно разрешающей способности матрицы. Так вот, наличие муара на изображении участков таблицы со штрихами выше 600 телевизионных линий в отношении объктива свидетельствует о некотором запасе разрешающей способности последнего, что, конечно, не помешает.

Еще одно, может быть, важное замечание для тех, кого интересуют геометрические измерения. Все объективы в той или иной степени имеют дисторсию (подушкообразное искажение геометрии изображения), причем чем короткофокуснее объектив, тем эти искажения, как правило, больше. По нашему представлению приемлимую дисторсиии для 1/3" и 1/2" камер имеют объективы с фокусными расстояниями больше 8-12 мм. Хотя уровень "приемлимости", конечно, зависит от задач, которые должна решать телекамера.

Разрешающая способность контроллеров ввода изображения

Под разрешающей способность контроллеров ввода изображений следует понимать частоту преобразований аналогово-цифрового преобразователя (АЦП) контроллера, данные которого затем записываются в память контроллера. Очевидно, что есть разумный предел повышения частоты оцифровки. Для устройств, имеющих непрерывную структуру фоточувствительного слоя, например, видиконов, оптимальная частота оцифровки равна удвоенной верхней частоте полезного сигнала видикона.

В отличии от таких светоприемников ПЗС матрицы имеют дискретную топологию, поэтому оптимальная частота оцифровки для них определяется как частота сдвига выходного регистра матрицы. При этом важно, что бы АЦП контроллера работал синхронно с выходным регистром ПЗС матрицы. Только в этом случае может быть достигнуто наилучшее качество преобразования как с точки зрения обеспечения "жесткой" геометрии получаемых изображений так и с точки зрения минимизации шумов от тактовых импульсов и переходных процессов.

Чувствительность ПЗС телекамер

Начиная с 1994 года мы используем в своих устройствах кард-камеры фирмы SONY на основе ПЗС матрицы ICX039. В описании SONY на это устройство указана чувствительность 0.25 лк на объекте при светосиле обьектива 1.4. Уже несколько раз, мы встречали камеры с похожими параметрами (размер 1/2 дюйма, разрешение 752*576) и с декларируемой чувствительностью в 10 а то и в 100 раз большей чем у "нашей" SONY.

Мы несколько раз проверяли эти цифры. В большинстве случаях в камерах разных фирм мы обнаруживали туже самую ПЗС матрицу ICX039. При этом все микросхемы "обвязки" были тоже SONY-вские. Да и сравнительное тестирование показало почти полную идентичность всех этих камер. Так в чем вопрос?

А весь вопрос в том, при каком соотношении сигнал/шум (с/ш) определяется чувствительность. В нашем случае компания SONY добросовестно показала чувствительность при с/ш=46 дб, а другие фирмы либо не указали это, либо указали так, что непонятно при каких условиях производились эти измерения.

Это, вообще, общий бич большинства фирм-изготовителей телекамер - не указывать условия проведения замеров параметров телекамер.

Дело в том, что при уменьшении требования к соотношению с/ш чувствительность камеры возрастает обратно пропорционально квадрату требуемого отношения с/ш:

где:
I - чувствительность;
K - коэффициент пересчета;
с/ш - отношение с/ш в линейных единицах,

поэтому у многих фирм появляется соблазн указывать чувствительность камер при заниженном отношении с/ш.

Можно сказать, что способность матриц лучше или хуже "видеть" определяется количеством зарядов, преобразованных из падающих на её поверхность фотонов и качеством доставки этих зарядов на выход. Количество накопленных зарядов зависит от площади светочувствительного элемента и квантовой эффективности ПЗС матрицы, а качество траспортировки определяется множеством факторов, которые часто сводят к одному - шуму считывания. Шум считывания для современных матриц составляет величину порядка 10-30 электронов и даже менее!

Площади элементов ПЗС матриц различны, но типовое значение для 1/2 дюймовых матриц для телекамер - 8.5мкм*8.5мкм. Увеличение размеров элементов ведет к увеличению размером самих матриц, что повышает их стоимость не столько за счет собственно увеличения цены производства, сколько за счет того, что серийность таких устройств на несколько порядков меньше. Кроме того на площадь светочувствительной зоны влияет топология матрицы в той степени сколько процентов к общей поверхности кристалла занимает чувствительная площадка (фактор заполнения). В некоторых специальных матрицах фактор заполнения заявляется 100%.

Квантовая эффективность (на сколько в среднем изменяется заряд чувствительной ячейки в электронах при падении на её поверхность одного фотона) у современных матриц равна 0.4-0.6 (у отдельных матриц без антиблюминга она достигает 0.85).

Таким образом видно, что чувствительность ПЗС камер, отнесенная к определенному значению с/ш, вплотную подошла к физическому пределу. По нашему заключению типичные значения чувствительности камер общего применения при с/ш=46 лежат в диапазоне 0.15-0.25 лк освещенности на обьекте при светосиле обьектива 1.4.

В связи с этим мы не рекомендуем слепо доверять цифрам чувствительности, указанным в описаниях телекамер, тем более, когда не приведены условия определения этого параметра и, если вы видите в паспорте камеры ценой до 500 $ чувствительность 0.01-0.001 лк в телевизионном режиме, то перед вами образец, мягко говоря, некорректной информации.

О способах повышения чувствительности ПЗС камер

Что же делать, если вам надо получить изображение очень слабого объекта, например, удаленной галактики?

Один из путей решения - накопление изображения во времени. Реализация этого способа позволяет существенно увеличить чувствительность ПЗС. Разумеется этот метод может быть применен для неподвижных обьектов наблюдения или в том случае, когда движение может быть компенсировано, как это делается в астрономии.

Рис1 Планетарная туманность М57.

Телескоп: 60 см, экспозиция - 20 сек., темпеpатуpа во вpемя экспозиции - 20 С.
В центре туманности звездный объект 15 звездной величены.
Изобpажение получено В. Амиpханяном в САО РАH.

Можно утверждать с достаточной точностью, что чувствительность ПЗС камер прямо пропорциональна времени экспозиции.

Например, чувствительность при выдержке 1 сек по отношению к исходной 1/50с увеличится в 50 раз т.е. будет лучше - 0.005 лкс.

Конечно на этом пути есть проблемы, и это, прежде всего, темновой ток матриц, который приносит заряды, накапливаемые одновременно с полезным сигналом. Темновой ток определяется во-первых, технологией изготовления кристалла, во-вторых, уровнем технологии и, конечно, в очень большой степени рабочей температурой самой матрицы.

Обычно для достижения больших времен накопления, порядка минут или десятков минут, матрицы охлаждают до минус 20-40 град. С. Сама по себе задача охлаждения матриц до таких температур решена, но сказать, что это сделать просто нельзя, поскольку всегда есть конструктивные и эксплуатационные проблемы, связанные с запотеванием защитных стекол и сброса тепла с горячего спая термоэлектрического холодильника.

В тоже время технологический прогресс производства ПЗС матриц коснулся и такого параметра, как темновой ток. Здесь достижения весьма значительны и темновой ток некоторых хороших современных матриц очень невелик. По нашему опыту камеры без охлаждения позволяют при комнатной температуре делать экспозиции в пределах десятков секунд, а при компенсации темнового фона и до нескольких минут. Для примера здесь приведена фотография планетарной туманности М57, полученная видеоситемой VS-a-tandem-56/2 без охлаждения с экспозицией 20с.

Второй способ увеличения чувствительности это применение электронно-оптических преобразователей (ЭОП). ЭОПы - это устройства которые усиливают световой поток. Современные ЭОПы могут иметь очень большие величины усиления, однако, не вдаваясь в подробности, можно сказать, что применение ЭОПов может улучшить лишь пороговую чувствительность камеры, а посему его усиление не следует делать слишком большим.

Спектральная чувствительность ПЗС камер


Рис.2 Спектральные характеристики различных матриц

Для некоторых областей применения, важным фактором является спектральная чувствительности ПЗС матриц. Поскольку все ПЗС изготавливаются на основе кремния, то в "голом" виде спектральная чувствительность ПЗС соответствует этому параметру у кремния (см. рис. 2).

Как можно заметить, при всем разнообразии характеристик ПЗС матрицы обладают максимумом чувствительности в красном и ближнем инфракрасном (ИК) диапазоне и совершенно ничего не видят в сине-фиолетовой части спектра. Чувствительность ПЗС в ближнем ИК используется в системах скрытного наблюдения с подсветкой ИК источниками света, а таже при измерении тепловых полей высокотемпературных объектов.


Рис. 3 Типичная спектральная характеристика черно-белых матриц SONY.

Фирма SONY все свои черно-белые матрицы выпускает со следующей спектральной характеристикой (см рис. 3). Как видно их этого рисунка чувствительность ПЗС в ближнем ИК значительно уменьшена, но зато матрица стала воспринимать синюю область спектра.

Для различных специальных целей разрабатываются матрицы чувствительные в ультрафиолетовом и даже рентгеновском диапазоне. Обычно эти устройства уникальны и их цена довально высока.

О прогрессивной и черезстрочной развертке

Стандартный телевизионный сигнал, разрабатывался для системы вещательного телевидения, и имеет с точки зрения современных систем ввода и обработки изображения один большой недостаток. Хотя в телесигнале содержится 625 строк (из них около 576 с видеоинформацией), показываются последовательно 2 полукадра состоящие из четных строк (четный полукадр) и нечетных строк (нечетный полукадр). Это приводит к тому, что если вводится движущееся изображение, то при анализе нельзя использовать разрешение по Y более чем число строк в одном полукадре (288). Кроме этого в современных системах, когда изображение визуализируется на компьютерном мониторе (который имеет прогрессивную развертку), изображение, введенное с черезстрочной телекамеры при движении обьекта наблюдения, вызывает неприятный визуальный эффект раздвоения.

Все методы борьбы с этим недостатком приводят к ухудшению разрешения по вертикали. Единственный способ преодолеть этот недостаток и добиться разрешения, соответствующего разрешению ПЗС матрицы - перейти на прогресивную развертку в ПЗС. Фирмы-изготовители ПЗС выпускают такие матрицы, но из-за малой серийности цена подобных матриц и камер значительно выше чем у обычных. Например цена матрицы SONY с прогрессивной разверткой ICX074 в 3 раза выше чем ICX039 (черезстрочная развертка).

Другие параметры камер

К этим другим можно отнести такой параметр как "блюминг" т.е. расплывание заряда по поверхности матрицы при пересветке отдельных ее элементов. На практике такой случай может встретиться, например, при наблюдении объектов с бликами. Это довольно неприятный эффект ПЗС матриц, поскольку несколько ярких точек могут исказить все изображение. По-счастию, многие современные матрицы содержат антиблюминговые устройсва. Так в описаниях некоторых последних матриц SONY мы нашли 2000, характеризующую допустимую световую перегрузку отдельных ячеек, не приводящую еще к растеканию зарядов. Это достаточно высокое значение, тем более, что добиться этого результата можно, как показал наш опыт, только при специальной подстройке драйверов, управляющих непосредственно матрицей и канала предварительного усиления видеосигнала. Кроме того свой вклад в "растекание" ярких точек вносит и объектив, поскольку при таких больших световых перегрузках даже малое рассеяние за пределы основного пятна дает заметную световую подставку для соседних элементов.

Здесь также необходимо отметить и то, что по некоторым данным, которые мы сами не проверяли, матрицы с антиблюмингом имеют в 2 раза более низкую квантовую эффективность, чем матрици без антиблюминга. В связи с этим, в системах, требующих очень высокой чувствительности, возможно имеет смысл применять матрицы без антиблюминга (обычно это специальные задачи типа астрономических).

О цветных телекамерах

Материалы этого раздела несколько выходят за установленные нами же рамки рассмотрения измерительных систем, тем не менее широкое распространение цветных камер (даже большее чем черно-белых) вынуждает нас внести ясность и в этот вопрос, тем более, что Заказчики часто пытаются использовать с нашими черно-белыми фраймграберами цветные телекамеры, и очень удивляются, когда на полученных изображениях они обнаруживают какие-то разводы, а разрешение изображений оказывается недостаточным. Поясним в чем тут дело.

Существуют 2 способа формирования цветного сигнала:

  • 1. использование одноматричной камеры.
  • 2. использование системы из 3 ПЗС матриц с цветоделительной головкой для получения R, G, B компоненов цветного сигнала на этих матрицах.

Второй путь обеспечивает наилучшее качество и только он позволяет получить измерительные системы, однако камеры, работающие на этом приципе достаточно дороги (более 3000$).

В большинстве случаев используются одноматричные ПЗС камеры. Рассмотрим их принцип работы.

Как явствует из достаточно широкой спектральной характиристики ПЗС матрицы, она не может определить "цвет" фотона, попавшего на поверхность. Поэтому для того, чтобы вводить цветное изображение перед каждым элементом ПЗС матрицы устанавливается светофильтр. При этом общее число элементов матрицы остается прежним. Фирма SONY, например, выпускает совершенно одинаковые ПЗС матрицы для черно-белого и цветного варианта, которые отличаются только наличием у цветной матрицы сетки светофильтров, нанесенных непосредственно на чувствительные площадки. Существуют несколько схем раскраски матриц. Вот одна из них.

Здесь используются 4 разных светофильтра (см рис. 4 и рис. 5).


Рис 4. Распредение светофильтров на элементах ПЗС матрицы



Рис 5. Спектральная чувствительность элементов ПЗС с различными светофильтрами.

Y=(Cy+G)+(Ye+Mg)

В строке A1 получают "красный" цветоразностный сигнал как:

R-Y=(Mg+Ye)-(G+Cy)

а в строке A2 получают "голубой" цветоразностный сигнал:

-(B-Y)=(G+Ye)-(Mg+Cy)

Отсюда ясно, что пространственное разрешение цветной ПЗС матрицы по сравнению с такой же черно-белой обычно в 1.3-1.5 раза хуже по горизонтали и по вертикали. За счет применения светофильтров чувствительность цветной ПЗС также хуже, чем у черно-белой. Таким образом можно сказать, что, если имеется одноматричный приемник 1000*800, то реально можно получить около 700*550 по яркостному сигналу и 500*400 (возможен вариант 700*400) по цветному.

Отвлекаясь от технических вопросов хочется заметить, что с рекламными целями многие фирмы-изготовители электронных фотоаппаратов сообщают совершенно непонятные данные по своей технике. Например, фирма "Кодак" обьявляет разрешение у своего электронного фотоаппарата DC120 1200*1000 при матрице 850х984 пикселей. Но господа - информация из пустого места не возникает, хотя визуально смотрится и неплохо!

О постранственном разрешении цветового сигнала (сигнала который несет информацию о цвете изображения) можно сказать, что она как минимум в 2 раза хуже, чем разрешение по черно-белому сигналу. Кроме того "вычисленный" цвет выходного пиксела не есть цвет соответствующего элемента исходного изображения, а лишь результат обработки яркостей различных элементов исходной картинки. Грубо говоря, за счет резкого различия яркостей соседних элементов объекта может быть вычислен цвет, которого вовсе здесь и нет, при этом незначительное смещение камеры приведет к резкому изменению выходного цвета. Для примера: граница темного и светлого поля серого цвета будет выглядеть, состоящей из разноцветных квадратиков.

Все эти рассуждения касаются только физического принципа получения информации на цветных ПЗС матрицах, при этом надо учесть, что обычно видеосигнал на выходе цветных камер представлен в одном из стандартных форматов PAL, NTSC, реже S-video.

Форматы PAL и NTSC хороши тем, что могут сразу быть воспроизведены на стандартных мониторах с видеовходом, но при этом надо помнить, что этими стандартами для сигнала цветности предусмотрена существенно более узкая полоса, поэтому правильнее здесь говорить о раскрашенном, а не о цветном изображении. Ещё одной неприятной особенностью камер с видеосигналами, несущими цветовую компоненту, является появление, упомянутых выше, разводов на изображении, полученных черно-белыми фраймграберами. И дело здесь в том, что сигнал цветности находится почти в середине полосы видеосигнала, создавая помеху при вводе кадра изображения. Мы же не видим эту помеху на телевизионном мониторе потому, что фаза этой "помехи" через четыре кадра изменяется на противоположную и усредняется глазом. Отсюда недоумении Заказчика, получающего изображение с помехой, которую он не видит.

Из этого следует, что, если вам необходмо проводить какие-то измерения или дешифровку объектов по цвету, то к этом у вопросу надо подойти с учетом, как сказанного выше, так и других особенностей вашей задачи.

О CMOS матрицах

В мире электроники все меняется очень быстро и хотя область фотоприемников одна из наиболее консервативных, но и тут в последнее время на подходе новые технологии. В первую очередь это относится к появлению CMOS телевизионных матриц.

Действительно, кремний является светочувствитерным элементом и любое полупроводниковое изделие можно использовать как датчик. Использование CMOS технологии дает несколько очевидных преимуществ по сравнению с традиционной.

Во-первых, технология CMOS хорошо освоена и позволяет выпускать элементы с большим выходом годных изделий.

Во-вторых технология CMOS позволяет разместить на матрице кроме светочувствительной области и различные устройства обрамления (вплоть до АЦП), которые раньше устанавливались "снаружи". Это позволяет выпускать телекамеры с цифровым выходом "на одном кристале".

Благодаря этим преимуществам становиться возможен выпуск значительно более дешевых телевизионных камер. Кроме этого значительно расширяется круг фирм производящих матрицы.

В настоящий момент выпуск телевизионных матриц и камер на CMOS технологии только налаживается. Информация о параметрах таких устройств весьма скудна. Можно лишь отметить, что параметры этих матриц не превосходят достигнух сейчас, что же касается цены, то тут их преимущества неоспоримы.

Приведу в качестве примера однокристальную цветную камеру фирмы Photobit PB-159. Камера выполнена на одном кристале и имеет следующие технические параметры:

  • разрешение - 512*384;
  • размер пикселя - 7.9мкм*7.9мкм;
  • чувствительность - 1люкс;
  • выход - цифровой 8-ми битный SRGB;
  • корпус - 44 ноги PLCC.

Таким образом камера проигрывает в чувствительности раза в четыре, кроме того из информации по другой камере ясно, что в этой технологии есть проблемы со сравнительно большим темновым током.

О цифровых фотоаппаратах

В последние время появился и стремительно растет новый сегмент рынка, использующий ПЗС и CMOS матрицы - цифровые фотоаппараты. Причем в настояший момент происходит резкое повышение качества этих изделий одновременно с резким понижением цены. Действительно еще 2 года назад одна только матрица с разрешением 1024*1024 стоила около 3000-7000$ , а сейчас фотоаппараты с такими матрицами и кучей прибамбасов (ЖК экран, память, вариообьектив, удобный корпус и т.д.) можно купить дешевле 1000$. Это можно обьяснить только переходом на крупносерийное производство матриц.

Поскольку эти фотоаппараты основаны на ПЗС и CMOS матрицах, то все рассуждения в этой статье о чувствительности, о принципах формирования цветного сигнала действительны и для них.

Вместо заключения

Накопленый нами практический опыт позволяет сделать следующие выводы:

  • технология производства ПЗС матриц с точки зрения чувствительности и шумов весьма близка к физическим пределам;
  • на рынке телевизионных камер можно найти камеры приемлемого качества, хотя для достижения более высоких параметров возможно потребуется подрегулировка;
  • не следует обольщаться цифрам высокой чувствительности, приведенным в проспектах на камеры;
  • и ещё, цены на абсолютно одинаковые по качеству и даже на просто одинаковые камеры у разных продавцов могут отличаться более чем в два раза!

ПЗС-ма́трица (сокр. от «п рибор с з арядовой с вязью») или CCD-ма́трица (сокр. от англ. CCD , «Charge-Coupled Device») - специализированная аналоговая интегральная микросхема , состоящая из светочувствительных фотодиодов , выполненная на основе кремния , использующая технологию ПЗС - приборов с зарядовой связью.

ПЗС-матрицы выпускаются и активно используются компаниями Nikon , Canon , Sony , Fuji , Kodak , Matsushita , Philips и многими другими. В России ПЗС-матрицы сегодня разрабатывает и выпускает ЗАО "НПП «ЭЛАР», С.-Петербург.

    1 История ПЗС-матрицы

    2 Общее устройство и принцип работы

    • 2.1 Пример субпикселя ПЗС-матрицы с карманом n-типа

    3 Классификация по способу буферизации

    • 3.1 Матрицы с полнокадровым переносом

      3.2 Матрицы с буферизацией кадра

      3.3 Матрицы с буферизацией столбцов

    4 Классификация по типу развёртки

    • 4.1 Матрицы для видеокамер

    5 Размеры фотографических матриц

    6 Некоторые специальные виды матриц

    • 6.1 Светочувствительные линейки

      6.2 Координатные и угловые датчики

      6.3 Матрицы с обратной засветкой

    7 Светочувствительность

    8 См. также

    9 Примечания

История ПЗС-матрицы

Прибор с зарядовой связью был изобретен в 1969 году Уиллардом Бойлом и Джорджем Смитом в Лабораториях Белла (AT&T Bell Labs ). Лаборатории работали над видеотелефонией (англ. picture phone ) и развитием «полупроводниковой пузырьковой памяти» (англ. semiconductor bubble memory ). Приборы с зарядовой связью начали свою жизнь как устройства памяти, в которых можно было только поместить заряд во входной регистр устройства. Однако способность элемента памяти устройства получить заряд благодаря фотоэлектрическому эффекту сделала данное применение ПЗС устройств основным.

В 1970 году исследователи Bell Labs научились фиксировать изображения с помощью простых линейных устройств.

Впоследствии под руководством Кацуо Ивама (Kazuo Iwama ) компания Sony стала активно заниматься ПЗС, вложив в это крупные средства, и сумела наладить массовое производство ПЗС для своих видеокамер.

Ивама умер в августе 1982 года . Микросхема ПЗС была установлена на его надгробной плите для увековечения его вклада.

В январе 2006 года за работы над ПЗС У. Бойл и Дж. Смит были удостоены награды Национальной Инженерной Академии США (англ. National Academy of Engineering ).

В 2009 году эти создатели ПЗС-матрицы были награждены Нобелевской премией по физике .

Общее устройство и принцип работы

ПЗС-матрица состоит из поликремния , отделённого от кремниевой подложки, у которой при подаче напряжения через поликремневые затворы изменяются электрические потенциалы вблизи электродов .

До экспонирования обычно подачей определённой комбинации напряжений на электроды происходит сброс всех ранее образовавшихся зарядов и приведение всех элементов в идентичное состояние.

Далее комбинация напряжений на электродах создаёт потенциальную яму, в которой могут накапливаться электроны, образовавшиеся в данном пикселе матрицы в результате воздействия света при экспонировании. Чем интенсивнее световой поток во время экспозиции , тем больше накапливается электронов в потенциальной яме, соответственно тем выше итоговый заряд данного пикселя .

После экспонирования последовательные изменения напряжения на электродах формируют в каждом пикселе и рядом с ним распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным элементам матрицы.

Пример субпикселя ПЗС-матрицы с карманом n-типа

Архитектура пикселей у производителей разная.

Схема субпикселей ПЗС-матрицы с карманом n-типа (на примере красного фотодетектора)

Обозначения на схеме субпикселя ПЗС :

    1 - Фотоны света, прошедшие через объектив фотоаппарата;

    2 - Микролинза субпикселя;

    3 - R - красный светофильтр субпикселя, фрагмент фильтра Байера ;

    4 - Прозрачный электрод из поликристаллического кремния или оксида олова ;

    5 - Изолятор (оксид кремния);

    6 - Кремниевый канал n-типа. Зона генерации носителей (зона внутреннего фотоэффекта);

    7 - Зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей;

    8 - Кремниевая подложка p-типа;

Классификация по способу буферизации

[Матрицы с полнокадровым переносом

Матрицы с буферизацией кадра

Матрицы с буферизацией столбцов

Размеры фотографических матриц

Координатные и угловые датчики

Матрицы с обратной засветкой

В классической схеме ПЗС-элемента, при которой используются электроды из поликристаллического кремния, светочувствительность ограничена по причине частичного рассеивания света поверхностью электрода. Поэтому при съёмке в особых условиях, требующих повышенной светочувствительности в синей и ультрафиолетовой областях спектра, применяются матрицы с обратной засветкой (англ. back - illuminated matrix ). В сенсорах такого типа регистрируемый свет падает на подложку, но для требуемого внутреннего фотоэффекта подложка шлифуется до толщины 10-15 мкм . Данная стадия обработки существенно увеличивала стоимость матрицы, устройства получались весьма хрупкими и требовали повышенной осторожности при сборке и эксплуатации. А при использовании светофильтров, ослабляющих световой поток, все дорогостоящие операции по увеличению чувствительности теряют смысл. Поэтому матрицы с обратной засветкой применяются в основном в астрономической фотографии .

Светочувствительность

Светочувствительность матрицы складывается из светочувствительности всех её фотодатчиков (пикселей) и в целом зависит от:

    интегральной светочувствительности , представляющей собой отношение величины фотоэффекта к световому потоку (в люменах) от источника излучения нормированного спектрального состава;

    монохроматической светочувствительности" - отношения величины фотоэффекта к величине световой энергии излучения (в миллиэлектронвольтах), соответствующей определённой длине волны;

    набор всех значений монохроматической светочувствительности для выбранной части спектра света составляет спектральную светочувствительность - зависимость светочувствительности от длины волны света;

| ПЗС-матрица (Прибор с зарядовой связью ) или CCD-матрица (на англ. Charge-Coupled Device ) – это аналоговая интегральная микросхема, в состав которой входят светочувствительные фотодиоды, выполненные на основе кремния или оксида олова. Данная микросхема использует технологию ПЗС (Приборов с зарядовой связью).

История CCD-матрицы

Первый прибор с зарядовой связью был разработан в 1969 году Джорджем Смитом (George Smith) и Уиллардом Бойлом (Willard Boyle) в Лабораториях Белла (AT&T Bell Labs) в США. Разработки велись в области видеотелефонии (Picture Phone) и развитии актуальной в то время, «полупроводниковой пузырьковой памяти» (Semiconductor Bubble Memory). Вскоре приборы с зарядовой связью начали использоваться как устройства памяти, в которых можно было поместить заряд во входной регистр микросхемы. Но позднее способность элемента памяти устройства получать заряд за счет фотоэлектрического эффекта сделала применение CCD устройств основным.

В 1970 году исследователи Лаборатории Белла научились фиксировать изображения с помощью простейших линейных устройств.

Вскоре, под руководством Кадзуо Ивамы, компания Sony стала активно разрабатывать и заниматься CCD технологиями, вложив в это огромные средства, и сумела наладить массовое производство ПЗС-матриц для своих видео камер.

Кадзуо Ивама скончался в августе 1982 года. Для увековечения его вклада, микросхема ПЗС-матрицы была установлена на его надгробной плите.

В 2006 году за работы над CCD, Уиллард Бойл и Джордж Смит были награждены Национальной Инженерной Академией США (USA National Academy of Engineering).

Позднее, в 2009 году создатели были награждены Нобелевской премией по физике.

Принцип работы ПЗС-матрицы

CCD-матрица в основном состоит из поликремния, отделённого от кремниевой подложки мембраной, у которой при подаче напряжения питания через поликремневые затворы сильно изменяются электрические потенциалы вблизи электродов проводника.

До экспонирования и подачей определённой комбинации напряжений на электроды, происходит сброс всех зарядов образовавшихся ранее и преобразование всех элементов в идентичное или первоначальное состояние.

Затем комбинация напряжений на электродах создаёт потенциальный запас или яму, в которой накапливаться электроны, образовавшиеся в определенном пикселе матрицы в результате воздействия световых лучей при экспонировании. Чем интенсивней сила светового потока во время экспозиции, тем больше накапливается запас электронов в потенциальной яме, соответственно тем выше мощность итогового заряда определенного пикселя.

После экспонирования, последовательные изменения напряжения питания на электродах формируются в каждом отдельно взятом пикселе и рядом с ним происходит распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным пикселям ПЗС-матрицы.

Пример пикселя CCD-матрицы с карманом n-типа

Примечание: архитектура субпикселей у каждого производителя своя.

Обозначения пикселя CCD на схеме:

1 - Частицы света (фотоны), прошедшие через объектив видеокамеры;
2 - Микролинза субпикселя;
3 - Красный светофильтр субпикселя (является фрагментом фильтра Байера);
4 - Светопропускающий электрод из оксида олова или поликристаллического кремния;
5 - Изолятор (состоит из оксида кремния);
6 - Специальный кремниевый канал n-типа. Зона внутреннего фотоэффекта (зона генерации носителей);
7 - Зона возможного запаса или ямы (карман n-типа). Место где собираются электроны из зоны генерации носителей;
8 - Кремниевая подложка p-типа.

Полнокадровый перенос CCD-матрицы

Полностью сформированное объективом видео изображение попадает на CCD-матрицу, то есть световые лучи падают на светочувствительную поверхность CCD-элементов, цель которых - преобразовать энергию частиц (фотонов) в электрический заряд.
Данный процесс протекает следующим образом.
Для фотона, попавшего на CCD-элемент, есть три варианта развития событий - он либо «отлетит» от поверхности, либо поглотится толщей полупроводника (состав материала матрицы), либо пробьет его поверхность. Поэтому от разработчиков требуется создать такой сенсор, в котором потери от отражения и поглащения были бы минимизированы. Те же частицы, которые были поглощены CCD-матрицей, образуют пару электрон-дырка, если произошло слабое взаимодействие с атомом кристаллической решётки полу проводника, или взаимодействие было с атомами донорских, либо акцепторных примесей. Оба из вышеперечисленных явлений называются - внутренним фотоэффектом. Но, внутренним фотоэффектом работа сенсора не ограничивается – главное необходимо сохранить «отнятые» у полупроводника носители заряда в специализированном хранилище, а потом их считать.

Строение элементов CCD-матрицы

В общем виде конструкция CCD-элемента выглядит примерно так: кремниевая подложка p-типа снабжается каналами из полу проводника n-типа. Над этими каналами размещаются электроды из поликристаллического кремния с изолирующей мембраной из оксида кремния. После подачи на этот электрод электрического потенциала, в ослабленной зоне под каналом n-типа создаётся потенциальная ловушка (яма), задача которой - сохранить электроны. Частица света, проникающая в кремний, приводит к генерации электрона, который притягивается потенциальной ловушкой и «застревает» в ней. Огромное количество фотонов или яркий свет обеспечивает больший заряд ловушки. Потом надо считать значение полученного заряда, также именуемого фототоком, и затем усилить его.

Считывание фототоков CCD-элементов происходит с так называемыми последовательными регистрами сдвига, которые конвертируют строку зарядов на входе в серию импульсов на выходе. Созданная серия импульсов – это и есть аналоговый сигнал, который в дальнейшем поступает на усилитель.

Так, при помощи регистра возможно преобразовать в аналоговый сигнал заряды строки из CCD-элементов. Практически, последовательный регистр сдвига в CCD-матрицах реализуется с помощью тех же CCD-элементов, объединённых в одну строку. Работа данного устройства базируется на умении приборов с зарядовой связью обмениваться зарядами своих потенциальных ловувшек. Этот обмен происходит благодаря наличию специализированных электродов переноса (по англ. Transfer Gate), расположенных между соседними CCD-элементами. При подаче повышенного потенциала на ближайший электрод, заряд «мигрирует» под него из потенциальной ловушки. Между CCD-элементами обычно располагаются от двух до четырёх электродов переноса, и от их количества зависит фазность регистра сдвига, который также называется двухфазным, трёхфазным или четырёхфазным.

Подача разных потенциалов на электроды переноса синхронизирована так, что перетекание зарядов потенциальных ловушек всех CCD-элементов регистра происходит практически одновременно. Так за один цикл переноса, CCD-элементы передают по цепочке заряды справа налево или слева направо. А крайний CCD-элемент отдаёт свой заряд усилителю, размещенного на выходе регистра.

Итак, последовательный регистр сдвига это и есть устройство с последовательным выходом и параллельным входом. После считывания абсолютно всех зарядов из регистра возникает возможность подать на его вход новую строку, потом следующую и так сформировать непрерывный аналоговый сигнал в основе которых лежит двумерный массив фототоков. Затем, входной параллельный поток для последовательного регистра сдвига обеспечивается совокупностью вертикально ориентированных последовательных регистров сдвига, которая называется параллельным регистром сдвига, а вся конструкция в сборе как раз и является устройством, называемое CCD-матрицей.