Информационная безопасность. Курс лекций


ИБ(Информационная Безопасность)

Лекция №1

Безопасность информации – способность системы обработки обеспечивать заданный промежуток времени выполнения некоторых требований по обработке по величине вероятности наступления событий , выражающийся в утечке утраченной или не законной модификации данных, представляющих ту или иную ценность для их владельцев. При этом считается, что источником этих действий могут быть как случайные воздействия, так и воздействия человека разрушителя.

Автоматизированная система обработки информации(АС) – организационно-техническая система, представляющая собой совокупность взаимосвязанных компонентов:


  1. Средства вычислительной техники и связи.

  2. Методы и алгоритмы обработки данных(программное обеспечение(ПО)).

  3. Массивы и БД, представленные на каких либо носителях.

  4. Персонал и пользователи вычислительной техники.
Все эти компоненты объединены с целью совместной обработки информации.

  1. Субъекты информационных отношений:

  2. Государство и государственные органы.

  3. Государственные коммерческие организации(юридические лица).

  4. Граждане(физические лица).
Все они взаимодействуют с целью совместной обработки информации. По отношению к информации, обрабатываемой в АС каждый из этих субъектов может выполнять одну или несколько из следующих ролей:

  1. Источники информации.

  2. Пользователи(потребители) информации.

  3. Собственники(владельцы) информации.

  4. Физические или юридические лица, у которых собирают информацию.

  5. Владельцы АС и участники процесса обработки информации.
Три базовых свойства, защищаемой информации:

  1. Конфиденциальность. Свойство, указывающее на то, что доступ к информации могут иметь только имеющие на это право пользователи и обеспечиваемые системой обработки информации.

  2. Целостность. Свойство информации, заключающееся во первых, что информация может быть изменена только имеющими на это право пользователями и во вторых, то что информация не противоречива и отражает реальное положение вещей.

  3. Доступность. Свойство системы, в которой циркулирует информация, характеризующаяся способностью обеспечивать своевременный, беспрепятственный доступ к информации для пользователей, имеющих соответствующие полномочия для доступа к ней.
Уязвимость информации – подверженность информации к воздействию различных дестабилизирующих факторов, которые могут привести к нарушению ее конфиденциальности, целостность и доступности.

Доступ к информации:


  1. Ознакомление с информацией, включая копирование.

  2. Модификация информации.

  3. Уничтожение информации.
Правила разграничения доступа – правила, разграничивающие доступ субъектов к объектам в некоторой системе.

Субъект системы – активный компонент системы(пользователь или процесс), действия которого по отношению к объектам регламентируются правилами разграничения доступа.

Объект системы – пассивный компонент системы(устройство, диск, каталог, файл), доступ к которому регламентируется правилами разграничения доступа.

Несанкционированный доступ(НСД) – доступ субъекта к объекту в обход установленной в системе правил разграничения доступа.

Нарушитель – субъект, который предпринял или пытался предпринять попытку несанкционированного доступа к объектам системы по ошибке, незнанию или со злым умыслом.

Аутентификация – проверка подлинности субъекта или объекта.

Идентификация – присвоение имени субъекту или объекту системы.

Верификация – проверка целостности некоторой информации.

Прочность защиты – вероятность не преодоления защиты злоумышленником за определенный промежуток времени.

Лекция №2

Основные методы обеспечения ИБ

В “сервисе сетевой безопасности” представляют собой механизм защиты информации, обрабатываемой в распределенных вычислительных системах и сетях.

“Инжерено-технические” методы ставят своей целью обеспечение защиты информации по техническим каналам, например защиты от перехвата электромагнитного излучения или речевой информации.

“Правовые” и “организационные” методы защиты информации создают нормативную базу для организации различного рода деятельности , связанные с обеспечением информационной безопасности.

“Теоретические методы” обеспечения ИБ ставят перед собой 2 задачи:


  1. Формализация различного рода процессов, связанных с ИБ, например формальной моделью управления доступом в АС, позволяют описать все потоки информации, проходящие от субъектов к объектам и наоборот и тем самым эффективно защищать эту информацию.

  2. Строгое обоснование корректности и адекватности систем обеспечения ИБ. Такая задача, возникает, например при сертификации какой-либо системы по уровню ИБ.
Угрозы ИБ

Под угрозой принято понимать потенциально возможные события или действия, которые могут нанести вред чем-либо интересам.

Угроза ИБ – потенциально возможные действия, которые могут нарушить конфиденциальность, целостность или доступность информации, а так же возможность воздействия на компоненты АС, приводящие к их поломке, утрате или сбою функций.

Классификация угроз ИБ может быть произведена по следующим признакам:


  1. По степени преднамеренности :

    1. Случайные. Халатность персонала или случайные действия.

    2. Преднамеренные. Действия злоумышленника.

  2. В зависимости от источника угрозы :

    1. Угрозы природной среды.

    2. Угрозы, исходящие от человека.

    3. Угрозы, исходящие от санкционированных программ или аппаратных средств. Не правильное обращение.

    4. Угрозы, исходящие от не санкционированных программ или аппаратных средств. Вирусы, подслушивающие устройства, скрытые камеры и т.д.

  3. По положению источника угрозы :

    1. Угрозы, источник которых расположен вне контролируемой зоны. Дистанционная аудио или видео сьемка.

    2. Угрозы, источник которых расположен внутри контролируемой зоны.

  4. По степени воздействия на АС :

    1. Пассивные.

    2. Активные.
Пассивные в отличие от активных угроз при своей реализации не изменяют структуру и состав в АС, поэтому их сложнее обнаружить.

  1. По нарушению трех базовых свойств защищаемой информации :

    1. Конфиденциальность.

    2. Целостность.

    3. Доступность.
Построение систем защиты от угроз нарушения конфиденциальности информации

Модель системы защиты:


  1. Организационные меры и меры обеспечения физической безопасности.

  2. .

  3. Разграничение доступа.

  4. 4.1. Криптографические методы.

    1. Методы защиты периметра.

    2. Протоколирование и аудит.
Первичная защита достигается с помощью организационных методов, а последующие уровни с помощью методов сетевой безопасности. Параллельно должен быть развернут комплекс инженерно-технических средств, для защиты информации от утечки по техническим каналам.

В общем случае данные методы, применяемые на предприятии, включают в себя следующее:


  1. Развертывание системы контроля и разграничение физического доступа к элементам АС.

  2. Создание службы охраны и физической безопасности.

  3. Создание механизмов контроля над перемещением сотрудников и посетителей, например с помощью видеонаблюдения или карты доступа.

  4. Разработка и внедрение регламентов, должностных инструкций и других регламентирующих документов.

  5. Регламентация работы с носителями, содержащими конфиденциальную информацию.
Идентификация и аутентификация

Классификация методов аутентификации:


  1. Методы, основанные на знание субъектом некоторой секретной информации. Классический пример: Парольная аутентификация . Данные методы являются наиболее распространенными.

  2. Методы, основанные на обладании субъектом некоторого уникального предмета. Например: электронный ключ, карта доступа и т.д.

  3. Методы, основанные на сканировании биометрических характеристик человека. Например: сканирование отпечатка пальцев, радужной оболочки глаза, лица человека, простой и клавиатурный подчерк.
Так же существует комбинированные(многофакторные) методы аутентификации. Они сочетают в себе 2 или более видов простой аутентификации(например: подтверждение после смс или электронной почтой).

Парольная аутентификация

Общая схема парольной аутентификации:


  1. Ввод идентификатора пользователя.

  2. Проверка существует ли такой идентификатор в системе.

    1. Если существует, то производится процедура аутентификации.

    2. Если успешно проведена процедура, то происходит авторизация.

    3. В случае не успеха процедуры аутентификации, дается несколько попыток на повторный ввод.
Часто процедуры идентификации и аутентификации совмещают для того, чтобы потенциальный злоумышленник не знал, где совершил ошибку.

Преимущества и недостатки парольной системы


  1. Относительная простота реализации. Как правило, парольные системы, не требуют привлечения дополнительного аппаратного обеспечения.

  2. Традиционность. Механизмы парольной защиты являются привычными для большинства пользователей.

  3. Стойкие ко взлому пароли, как правило, оказываются малопригодными для использования.
Угрозы безопасности парольной системы

Существует 3 типа угроз:

Рекомендации по практической реализации парольных систем


  1. Установка минимальной длинны пароля. Данная рекомендация усложняет полный перебор пароля.

  2. Увеличение мощности алфавита пароля. Данная рекомендация усложняет полный перебор.

  3. Проверка и отсеивание паролей по различным условиям. Данная рекомендация затрудняет подбор пароля по словарю.

  4. Установка максимального срока действия пароля(например каждые 2 недели сменять пароль). Срок действия пароля ограничивает промежуток времени, которое злоумышленник может потратить на подбор пароля.

  5. Отсеивание по журналу историй паролей. Данный механизм предотвращает повторное использование паролей, возможно ранее скомпрометированных.

  6. Ограничение числа попыток ввода пароля. Данная рекомендация затрудняет интерактивный подбор пароля.

  7. Тайм-аут при вводе не правильного пароля. Данный механизм так же затрудняет интерактивный подбор.

  8. Запрет на выбор пароля пользователем и автоматическая генерация пароля. Данная рекомендация гарантирует стойкость сгенерированных паролей, однако у пользователей могут возникнуть проблемы с их запоминанием.
Лекция №3

Оценка стойкости парольных систем

A – мощность алфавита параметров. Количество букв, из которых можно составить пароль.

L – длинна пароля.

S=A^L – количество паролей длинной L, которые можно составить зи алфавита A.

V – средняя скорость подбора паролей.

T – максимальный срок действия пароля.

P – вероятность подбора пароля за определенный промежуток времени.

P = (V*T)/S = (V*T)/(A^L)

Обычно средняя скорость подбора пароля V и время его действия в системе T считается известными величинами. В этом случае, задав максимальную вероятность подбора V, за время его действия, можно вычислить требуемую мощность пространства паролей.

S = A^L = (V*T)/P

Уменьшение скорости подбора паролей V уменьшает вероятность подбора пароля. Из этого в частности следует, что если подбор паролей осуществляется путем вычисления ХЭШ функций, то большую стойкость парольной системы обеспечит применение медленной для вычисления ХЭШ функции.

Методы хранения и передачи паролей


  1. В открытом виде. Не рекомендуемые вид хранения и передачи, даже с учетом наличия других механизмов защиты.

  2. В виде соответствующих ХЭШ значений. Данный механизм удобен для проверки паролей, так как ХЭШ значения практически однозначно связанны с паролем, но представляет малый интерес для злоумышленника.

  3. В зашифрованном виде. Пароли могут быть зашифрованы с использованием некоторого криптографического алгоритма, при этом ключ шифрования может храниться как на одном из постоянных элементов системы, так и на съемном носителе.
Наиболее удобным и часто используемым является хранение паролей в виде ХЭШ значений. Алгоритм проверки паролей следующий:

  1. При регистрации нового пользователя в системе или смене пароля у уже существующего пользователя от этого пароля вычисляется значение однонаправленной ХЭШ функции, которая затем заносится в базу(H = h(M)-> в базу).

  2. При попытке входа пользователя в систему рассчитывается ХЭШ значение от пароля , который он ввел(H’ = h(M’)), затем полученное значение сравнивается с тем, которое находится в базе. Если эти два значения равны, то пароль введен верно и пользователь авторизуется в системе(H = H’ – пароль верный).
Разграничение доступа

Под разграничением доступа принято понимать установление полномочий субъектов для последующего контроля санкционированного использования ресурсов(объектов), доступных в системе. Существует два основных вида разграничения доступа:


  1. Дискреционная . Д – разграничение доступа между именованными объектами и именованными субъектами в системе. На практике такое разграничение чаще всего реализовывается с помощью матрицы прав доступа.

  2. Мандатная . М – обычно реализуется, как разграничение доступа по уровням секретности. Полномочия каждого пользователя задаются в соответствии с максимальным уровнем секретности, к которому он допущен, при этом все ресурсы АС должны быть классифицированы в соответствии с этими же уровнями секретности.
В данной модели выполняются следующие правила:

  1. Простое правило безопасности(Simple Security). Субъект с уровнем секретности X(s) может читать информацию с объекта с уровнем секретности X(0) только в том случае, если X(0) не превосходит X(s). Называется: No Read Up.

  2. Дополнительное свойство(*-property). Субъект с уровнем секретности X(s) может записывать данные в объект с уровнем секретности X(0) только в том случае, когда X(s) не превосходит X(0).Называется: No Write Down.
Принципиальное различие между дискреционным и мандатным разграничением доступа состоит в следующем:

Если в случае дискреционного разграничения доступа права на доступ к ресурсу для пользователей определяет владелец этого ресурса, то в случае мандатного разграничения уровень секретности задаются извне системы. Мандатное разграничение понимают, как принудительное, оно является более строгим.

Лекция №4

Криптографическое преобразование информации

Основные определения:

Криптология – наука, изучающая математические методы защиты информации путем ее преобразования. Криптология разделяется на 2 направления:


  1. Криптография . Изучает методы преобразования информации, обеспечивающие ее конфиденциальность и аутентичность. Аутентичность информации состоит в подлинности ее авторства и целостности.

  2. Криптоанализ . Объединяет математические методы нарушения конфиденциальности и аутентичности без знаний секретных ключей.
Основные направления использования криптографических методов:

  1. Передачи конфиденциальной информации по не защищенным каналам связи.

  2. Установление подлинности передаваемых сообщений.

  3. Хранение информации на носителях в зашифрованном виде.
В качестве информации, подлежащей шифрованию и расшифрованию, а так же электронных подписи будут рассматриваться тексты(сообщения), построенные на некотором алфавите.

Алфавит – конечное множество используемых для кодирования информации символов.

Текст – упорядоченное множество символов из алфавитного набора.

Криптографическая система(шифр) представляет собой семейство T обратимых преобразований открытого текста в зашифрованный. Элементом этого семейства можно взаимно однозначно сопоставить некоторое числоk , называемое ключом шифрования. Преобразования Tk полностью определяется соответствующим алгоритмом(T ) и ключом k .

Ключ – некоторое, конкретное секретное состояние параметров алгоритма криптографического преобразования данных, обеспечивающее выбор одного варианта , из совокупности возможных состояний для данного алгоритма. Секретность ключа должна обеспечивать невозможность преобразования зашифрованного текста в открытый, при этом сам алгоритм может быть опубликован и широко известен.

Пространство ключей K – набор возможных значений ключа(K = A^L).

Ключ и пароль – некоторая секретная информация, различие заключается в использовании этих терминов. Пароль используется при аутентификации, а ключ для шифрования информации.

Различие понятий кодирование и шифрование :

Термин кодирование более общий, он подразумевает преобразование информации из одной формы в другую, например из аналоговой в цифровую. Шифрование – частный случай кодирования, использующийся в первую очередь для обеспечения конфиденциальности информации.

Зашифрованием данных называется процесс преобразования открытых данных в закрытые(зашифрованные), а расшифрованием – обратный процесс.

Дешифрование – преобразование закрытых данных в открытые без знания секретного ключа.

Криптостойскость – характеристика шифра, определяющая его стойкость к дешифрованию. Обычно, это характеристика определяется периодом времени, необходимым для шифрования.

Процесс криптографического закрытия данных может осуществляться, как аппаратно, так и программно. Аппаратная реализация обладает большей скоростью вычисления, но, как правило, большей стоимостью. Преимущества программной реализации заключается в гибкости настроек алгоритмов. Не зависимо от способа реализации, для современных криптографических систем защиты информации, существуют следующие требования:

Лекция №6

Три критических свойства шифра Вернама(шифр блокнотом):


  1. Ключ должен быть истинно случайным.

  2. Совпадать по размеру с заданным открытым текстом.

  3. Применяться только 1 раз, а после применения уничтожаться.
В 1949 году Клод Шенон показал, что при строгом соблюдении все 3 условий, применяемых к гамме(ключ шифрования) данный шифр является единственным шифром с абсолютной криптографической стойкостью, т.к. зашифрованный текст не дает абсолютно никакой информации об открытом тексте.

На практике можно 1 раз физически передать носитель информации с длинным истинно случайным ключом, а потом по мере необходимости пересылать сообщения, на этом основана идея шифр блокнотов. Шифровальщик при личной встрече снабжается блокнотом, каждая страница которого содержит ключ, точно такой же блокнот есть и у принимающей стороны. Использованные страницы уничтожаются, если есть два независимых канала, в которых вероятность перехвата информации низка, но отлична от нуля, такой шифр так же полезен. По одному каналу может передаваться зашифрованное предложение, а по-другому ключ, чтобы расшифровать сообщение необходимо прослушивать оба канала одновременно.

Шифра Вернама является самой безопасной криптосистемой из всех возможных, при этом ограничения, которые должны удовлетворять ключ, настолько сильны, что практическое использование этого шифра становится трудно осуществимым, поэтому он используется только для передачи сообщений наивысшей секретности.

DES ( Data Encryption Standard )

В 1972 году Национальное Бюро Стандартов США выступила инициатором в программе защиты линии связи и компьютерных данных. Одной из целей программы была разработка единого криптографического стандарта. В 1973 году Бюро опубликовало требования к криптографическому алгоритму:


  1. Алгоритм должен обеспечить высокий уровень безопасности.

  2. Алгоритм должен быть полностью определен и легко понятен.

  3. Безопасность алгоритма должна основываться только на секретности ключа и не должна зависеть от сохранения в тайне деталей самого алгоритма.

  4. Алгоритм должен быть доступен всем пользователям.

  5. Алгоритм должен позволять адаптацию к различным применениям.

  6. Алгоритм должен позволять экономичную реализацию в виде электронных приборов.

  7. Алгоритм должен предоставлять возможность проверки.

  8. Алгоритм должен быть разрешен для экспорта.
Данный стандарт был заменен в 2001 году: Advanced Encryption Standard(AES).

DES представляет собой комбинированный блочный шифр и шифрует данные 64 битовыми блоками(по 8 байт). С одной стороны алгоритма вводится 64 бита открытого текста, с другой выходит 64 бита зашифрованного текста , DES – является симметричным алгоритмом. Длина ключа составляет 56 бит. На простейшем уровне алгоритм представляет собой только комбинацию 2 основных методов шифрования:


  1. Перестановки.

  2. Подстановки.
Фундаментальным блоком DES является применение к тексту единичной комбинации этих методов, зависящих от секретного ключа, такой блок называется Round(Этап), DES состоит из 16 этапов, т.е. такая комбинация применяется к тексту 16 раз.

Многократное применение одного этапа обуславливается достижением определенного уровня лавинного эффекта(примерно 50%).

Примеры: Трехкратный DES, DES с независимыми под ключами, DES X, GDES(обобщенный DES).

Лекция №7

Алгоритмы с открытыми ключами

Концепция криптографии с открытыми ключами была выдвинута Диффе и Хэлменом и независимо от них Мерклом в 1976 году. Их вкладом в криптографию было убеждение, что ключи можно использовать парами(ключ зашифрования и ключ расшифрования), и что может быть не возможно получить один ключ из другого.

С 1976 года было предложено множество крипто алгоритмов с открытыми ключами, многие из них не безопасны и многие не годятся для практической реализации, либо они используют слишком длинный ключ, либо длина шифр-текста намного превышает длину открытого текста.

Рейтинг: / 3

Вступительная лекция, в которой описываются основные понятия из области информационной безопасности, решаемые там задачи, а также дан ответ на очень важный вопрос: почему вообще стоит заниматься защитой информации? Какая реальная практическая польза на реальных примерах из нашей жизни.

Кроме того, в лекции описаны базовые свойства систем защиты информации, жизненный цикл процессов ИБ (СЗИ), а также способы исследования бизнес-структуры объекта защиты. Вы узнаете, что такое доступность, целостность, конфиденциальность, аутентичность и многие другие понятия. Поймёте, какие бывают виды и источники угроз.

Предлагайте в комментариях свои идеи / мысли по улучшению курса, ставьте оценки (чтобы скачать лекцию и / или написать комментарий, нажмите на заголовок материала-лекции или на ссылку "Подробнее"). Буду рад.

Построение модели угроз и модели нарушителя (лекция 5)

Рейтинг: / 0

Данная лекция призвана систематизировать понимание процесса построения системы обеспечения информационной безопасности на предприятии и подробно описывает процесс построения модели угроз для коммерческих и государственных предприятий, а также построение модели нарушителя. Данные модели оказывают непосредственное влияние на выбор защитных мер и реальную эффективность Вашей системы защиты информации.

Защита информации должна быть основана на системном подходе. Системный подход заключается в том, что все средства, используемые для обеспечения информационной безопасности должны рассматриваться как единый комплекс взаимосвязанных мер. Одним из принципов защиты информации является принцип «разумной достаточности», который заключается в следующем: стопроцентной защиты не существует ни при каких обстоятельствах, поэтому стремиться стоит не к теоретически максимально достижимому уровню защиты информации, а к минимально необходимому в данных конкретных условиях и при данном уровне возможной угрозы.

Защиту информации можно условно разделить на защиту:

    от потери и разрушения;

    от несанкционированного доступа.

2. Защита информации от потери и разрушения

Потеря информации может произойти по следующим причинам:

    нарушение работы компьютера;

    отключение или сбои питания;

    повреждение носителей информации;

    ошибочные действия пользователей;

    действие компьютерных вирусов;

    несанкционированные умышленные действия других лиц.

Предотвратить указанные причины можно резервированием данных , т.е. созданием их резервных копий. К средствам резервирования относятся:

    программные средства для создания резервных копий, входящие в состав большинства операционных систем. Например, MS Backup, Norton Backup;

    создание архивов на внешних носителях информации.

В случае потери информация может быть восстановлена. Но это возможно только в том случае, если:

    после удаления файла на освободившееся место не была записана новая информация;

    если файл не был фрагментирован, т.е. (поэтому надо регулярно выполнять операцию дефрагментации с помощью, например, служебной программы «Дефрагментация диска», входящей в состав операционной системы Windows).

Восстановление производится следующими программными средствами:

    Undelete из пакета служебных программ DOS;

    Unerase из комплекта служебных программ Norton Utilites.

Если данные представляют особую ценность для пользователя, то можно применять защиту от уничтожения :

    присвоить файлам свойство Read Only (только для чтения);

    использовать специальные программные средства для сохранения файлов после удаления, имитирующие удаление. Например, Norton Protected Recycle Bin (защищенная корзина). .

Большую угрозу для сохранности данных представляют нарушения в системе подачи электропитания - отключение напряжения, всплески и падения напряжения и т.п. Практически полностью избежать потерь информации в таких случаях можно, применяя источники бесперебойного питания. Они обеспечивают нормальное функционирование компьютера даже при отключении напряжения за счет перехода на питание от аккумуляторных батарей.

    Защита информации от несанкционированного доступа

Несанкционированный доступ - это чтение, изменение или разрушение информации при отсутствии на это соответствующих полномочий.

Основные типовые пути несанкционированного получения информации:

    хищение носителей информации;

    копирование носителей информации с преодолением мер защиты;

    маскировка под зарегистрированного пользователя;

    мистификация (маскировка под запросы системы);

    использование недостатков операционных систем и языков программирования;

    перехват электронных излучений;

    перехват акустических излучений;

    дистанционное фотографирование;

    применение подслушивающих устройств;

    злоумышленный вывод из строя механизмов защиты.

Для защиты информации от несанкционированного доступа применяются:

    Организационные мероприятия.

    Технические средства.

    Программные средства.

    Криптография.

1. Организационные мероприятия включают в себя:

    пропускной режим;

    хранение носителей и устройств в сейфе (дискеты, монитор, клавиатура);

    ограничение доступа лиц в компьютерные помещения.

2. Технические средства включают в себя различные аппаратные способы защиты информации:

    фильтры, экраны на аппаратуру;

    ключ для блокировки клавиатуры;

    устройства аутентификации - для чтения отпечатков пальцев, формы руки, радужной оболочки глаза, скорости и приемов печати и т.п.

3. Программные средства защиты информации заключаются в разработке специального программного обеспечения, которое бы не позволяло постороннему человеку получать информацию из системы. Программные средства включают в себя:

    парольный доступ;

    блокировка экрана и клавиатуры с помощью комбинации клавиш;

    использование средств парольной защиты BIOS (basic input-output system - базовая система ввода-вывода).

4. Под криптографическим способом защиты информации подразумевается ее шифрование при вводе в компьютерную систему. Суть данной защиты заключается в том, что к документу применяется некий метод шифрования (ключ), после чего документ становится недоступен для чтения обычными средствами. Чтение документа возможно при наличии ключа или при применении адекватного метода чтения. Если в процессе обмена информацией для шифрования и чтения используется один ключ, то криптографический процесс является симметричным. Недостаток – передача ключа вместе с документом. Поэтому в INTERNET используют несимметричные криптографические системы, где используется не один, а два ключа. Для работы применяют 2 ключа: один – открытый (публичный – public), а другой - закрытый (личный - private). Ключи построены так, что сообщение, зашифрованное одной половинкой, можно расшифровать только другой половинкой. Создав пару ключей, компания широко распространяет публичный ключ, а закрытый ключ сохраняет надежно.

Оба ключа представляют собой некую кодовую последовательность. Публичный ключ публикуется на сервере компании. Любой желающий может закодировать с помощью публичного ключа любое сообщение, а прочесть после кодирования может только владелец закрытого ключа.

Принцип достаточности защиты . Многие пользователи, получая чужой публичный ключ, желают получить и использовать их, изучая, алгоритм работы механизма шифрования и пытаются установить метод расшифровки сообщения, чтобы реконструировать закрытый ключ. Принцип достаточности заключается в проверке количества комбинаций закрытого ключа.

Понятие об электронной подписи . С помощью электронной подписи клиент может общаться с банком, отдавая распоряжения о перечислении своих средств на счета других лиц или организаций. Если необходимо создать электронную подпись, следует с помощью специальной программы (полученной от банка) создать те же 2 ключа: закрытый (остается у клиента) и публичный (передается банку).

Защита от чтения осуществляется:

    на уровне DOS введением для файла атрибутов Hidden (скрытый);

    шифрованием.

Защита то записи осуществляется:

    установкой для файлов свойства Read Only (только для чтения);

    запрещением записи на дискету путем передвижения или выламывания рычажка;

    запрещением записи через установку BIOS - «дисковод не установлен»

При защите информации часто возникает проблема надежного уничтожения данных, которая обусловлена следующими причинами:

    при удалении информация не стирается полностью;

    даже после форматирования дискеты или диска данные можно восстановить с помощью специальных средств по остаточному магнитному полю.

Для надежного удаления используют специальные служебные программы, которые стирают данные путем многократной записи на место удаляемых данных случайной последовательности нулей и единиц.

    Защита информации в сети INTERNET

При работе в Интернете следует иметь в виду, что насколько ресурсы Всемирной сети открыты каждому клиенту, настолько же и ресурсы его компьютерной системы могут быть при определенных условиях открыты всем, кто обладает необходимыми средствами. Для частного пользователя этот факт не играет особой роли, но знать о нем необходимо, чтобы не допускать действий, нарушающих законодательства тех стран, на территории которых расположены серверы Интернета. К таким действиям относятся вольные или невольные попытки нарушить работоспособность компьютерных систем, попытки взлома защищенных систем, использование и распространение программ, нарушающих работоспособность компьютерных систем (в частности, компьютерных вирусов). Работая во Всемирной сети, следует помнить о том, что абсолютно все действия фиксируются и протоколируются специальными программными средствами и информация, как о законных, так и о незаконных действиях обязательно где-то накапливается. Таким образом, к обмену информацией в Интернете следует подходить как к обычной переписке с использованием почтовых открыток. Информация свободно циркулирует в обе стороны, но в общем случае она доступна всем участникам информационного процесса. Это касается всех служб Интернета, открытых для массового использования.

Однако даже в обычной почтовой связи наряду с открытками существуют и почтовые конверты. Использование почтовых конвертов при переписке не означает, что партнерам есть, что скрывать. Их применение соответствует давно сложившейся исторической традиции и устоявшимся морально-этическим нормам общения. Потребность в аналогичных «конвертах» для защиты информации существует и в Интернете. Сегодня Интернет является не только средством общения и универсальной справочной системой - в нем циркулируют договорные и финансовые обязательства, необходимость защиты которых как от просмотра, так и от фальсификации, очевидна. Начиная с 1999 года INTERNET становится мощным средством обеспечения розничного торгового оборота, а это требует защиты данных кредитных карт и других электронных платежных средств.

Принципы защиты информации в Интернете опираются на определение информации, сформулированное нами в первой главе этого пособия. Информация - это продукт взаимодействия данных и адекватных им методов . Если в ходе коммуникационной процесса данные передаются через открытые системы (а Интернет относится именно к таковым), то исключить доступ к ним посторонних лиц невозможно даже теоретически. Соответственно, системы защиты сосредоточены на втором компоненте информации - на методах. Их принцип действия основан на том, чтобы исключить или, по крайней мере, затруднить возможность подбора адекватного метода для преобразования данных в информацию.

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ

Пожиткова Татьяна Александровна

студент 5 курса, кафедра «Товароведение и организация управления торговыми предприятиями» ТГУ, г. Тольятти

Е- mail : Kykyha 1@ yandex . ru

Харламова Валентина Владимировна

ст. преподаватель кафедры «Товароведение и организация управления торговыми предприятиями» ТГУ, г. Тольятти

Информация (от латинского informatio - разъяснение, изложение) - с середины ХХ века общенаучное понятие, включающее обмен сведениями между людьми, человеком и автоматом, автоматом и автоматом, обмен сигналами в животном и растительном мире, передачу признаков от клетки к клетке, от организма к организму; одно из основных понятий кибернетики .

Защита информации - это комплекс мероприятий, направленных на обеспечение информационной безопасности.

Согласно стандартам по обеспечению информационной безопасности главное в любой компании является:

·Определить цель для обеспечения защиты информации компьютерных систем;

·Получить максимально эффективную систему управления информационной безопасностью;

·Произвести вычисления совокупности как количественных, так и качественных показателей, насколько они подходят под поставленные цели;

·Применение всех мер для обеспечения информационной безопасности, постоянное наблюдение за текущим состоянием системы;

·Применять инструкции по управлению безопасностью, которые позволяют правдиво оценить имеющуюся защиту информации.

Для субъектов, использующих информационные системы, важны следующие признаки информационных ресурсов: конфиденциальность, доступность и целостность.

Конфиденциальность - это защита информации от несанкционированного доступа. Иначе говоря, есть полномочия на доступ - есть информация . Примером может служить неразглашение организацией информации о зарплате рабочих.

Доступность - критерий, характеризующийся быстрым нахождением нужной информации.

Целостность - это правдивость и актуальность информации, её защита от недозволенного доступа и разрушения (изменения). Целостность является самым важным аспектом информационной безопасности, когда речь идет о, например, рецептуре лекарств, предписанных медицинских процедур, ходе технологического процесса –– если нарушить целостность информации всех перечисленных примеров, это может привести к непоправимым последствиям.

Проанализировав основные признаки информационных ресурсов, самым важным для пользователей ИС является доступность.

На полшага позади по важности стоит целостность - потому как нет смысла в информации, если она не правдива или искажена .

Помимо трех основных признаков моделей безопасности выделяют также другие, не всегда обязательные:

· апеллируемость - невозможность отказа от авторства;

· подотчётность - распознование субъекта доступа и регистрации его действий;

· аутентичность или подлинность - свойство, гарантирующее, что субъект или ресурс идентичны заявленным. Признак, гарантирующий, что информация идентична заявленной.

Информационной безопасности в разной степени могут наносить ущерб действия, называемые угрозами. Делят их на следующие категории:

2.Действия, осуществляемые хакерами. Имеются в виду, люди, профессионально занимающиеся компьютерными преступлениями. Хакеры используют метод DOS_атаки. Эта угроза несанкционированного проникновения может быть инструментом для уничтожения данных, использования конфиденциальной информации в незаконных целях, а также для кражи со счетов денежных средств и др. Атака типа DOS (сокр. от Denial of Service - «отказ в обслуживании») - атака извне на сетевые узлы организации, которые отвечают за её эффективную работу (почтовые сервера). Хакеры массово посылают пакеты данных на эти узлы, что влечет за собой их перегрузку, тем самым выводит на некоторое время из рабочего состояния. Что, в последствие, ведет за собой нарушения в бизнес-процессах, потере клиентов, репутации и др.

3.Компьютерные вирусы, вредоносные программы. Широко используются для проникновения на электронную почту, узлы корпоративной сети, на сам носитель и хранитель информации, что может повлечь за собой утрату данных, кражу информации. Из-за вирусов приостанавливается рабочий процесс, теряется рабочее время. Важно указать, что вирус может дать возможность злоумышленникам частичный или полный контроль над деятельностью организации.

4.Спам. Еще недавно спам можно было отнести к незначительным раздражающим факторам, но сейчас он превратился в одну из главных угроз для информации: спам вызывает у работников чувство психологического дискомфорта, отнимает массу времени на удаление его с электронных почтовых ящиков, что может повлечь за собой и удаление важной корреспонденции. А это, в свою очередь, потеря информации, потеря клиентов.

5.«Естественные угрозы». Помимо внутренних факторов, на безопасность информации могут влиять и внешние: неправильное хранение информации, кража носителей, форс-мажорные обстоятельства и др.

Можно подвести своеобразный итог: в современном мире наличие хорошо развитой системы по защите информации является одним из главных условий конкурентоспособности и даже жизнеспособности любой компании.

Чтобы обеспечить максимально полную информационную безопасность, различные средства защиты должны работать в системе, т. е. применяться одновременно и под централизованным управлением.

На настоящее время существуют множество методов для обеспечения информационной безопасности:

· средства шифрования информации, хранящейся на компьютерах и передаваемой по сетям;

· средства зашифровки важной информации, хранящейся на ПК;

· межсетевые экраны;

· средства контентной фильтрации;

· средства антивирусной защиты;

· системы обнаружения уязвимостей сетей и анализаторы сетевых атак.

Любое из перечисленных средств может применяться как индивидуально, так и в соединении с другими. Это делает спектр защиты информации более обширным, что, несомненно, является положительным фактором.

«Комплекс 3А». Идентификация и авторизация - это ведущие элементы информационной безопасности. При попытке доступа к любой защищенной информации идентификация устанавливает: являетесь ли вы авторизованным пользователем сети. Цель авторизации, выявить к каким информационным ресурсам данный пользователь имеет доступ. Функция администрирования заключается в наделении пользователя отдельными расширенными возможностями, определения объема возможных для него действий в рамках данной сети.

Системы зашифровки информации позволяют снизить к минимуму потери в случае попытки несанкционированного доступа к данным, а также перехвата информации при пересылке или передачи по сетевым протоколам. Главная цель данного метода защиты - это обеспечение сохранение конфиденциальности. К системам шифрования применяются требования, такие как высокий уровень секретности замка (т. е. криптостойкость) и легальность использования.

Межсетевой экран действует как защитный барьер между сетями, контролирует и защищает от несанкционированного попадания в сеть или, наоборот, выведения из неё пакетов данных. Межсетевые экраны подвергают проверке каждый пакет данных на соответствие входящего и исходящего IP_адреса базе адресов, которые разрешены.

Важно контролировать и фильтровать поступающую и исходящую электронную почту, для сохранения и защиты конфиденциальной информации. Проверка вложений и самих почтовых сообщений на основе установленных в организации правил, позволяет защитить работников от спама, а организацию от ответственности по судебным искам.

Администратор, как и другой авторизованный пользователь, может иметь право на слежение за всеми изменениями информации на сервере благодаря технологии проверки целостности содержимого жесткого диска (integrity checking). Это даёт возможность обнаружить несанкционированный доступ, проконтролировать любые действия над информацией (изменение, удаление и др.), а также идентифицировать активность вирусов. Контроль осуществляется на основе анализа контрольных сумм файлов (CRC_сумм).

В настоящее время антивирусные технологии позволяют выявить почти все вирусные и вредоносные программы с помощью метода сравнения кода образца в антивирусной базе с кодом подозрительного файла. Подозрительные файлы могут помещаться в карантин, подвергаться лечению либо удаляться. Антивирусные программы могут быть установлены на файловые и почтовые сервера, межсетевые экраны, на рабочие станции, функционирующие под распространенными операционными системами (Windows, Unix- и Linux_системы, Novell) на процессорах различных типов.

Фильтры спама основательно снижают непроизводительные трудозатраты, связанные с отчисткой файлов от спама, снижают нагрузку серверов, способствуют улучшению психологического фона в коллективе. К тому же фильтры спама снижают риск заражения новыми вирусами, потому как они часто схожи по признакам со спамом и удаляются.

Для защиты от естественных угроз в организации должен быть создан и реализован план по предупреждению и устранению чрезвычайных ситуаций (пожар, потоп). Основным методом защиты данных является резервное копирование.

Существует множество средств технической защиты информации от несанкционированного доступа (НСД): замки разового пользования, пластиковые идентификационные карты, пломбы, оптические и инфракрасные системы, лазерные системы, замки (механические, электромеханические, электронные), видео системы охраны и контроля .

Политика информационной безопасности представляет собой набор правил, законов, рекомендаций и практического опыта, определяющих управленческие и проектные решения в области защиты информации. ПИБ является инструментом, с помощью которого происходит управление, защита, распределение информации в системе. Политика должна определять поведение системы в различных ситуациях.

Программа политики безопасности содержит в себе следующие этапы создания средств защиты информации:

1. Нахождение информационных и технических ресурсов, которые необходимо защитить;

2. Раскрытие полного множества потенциально возможных угроз и каналов утечки информации;

3. Оценивание уязвимости и рисков информации при имеющемся множестве угроз и каналов утечки;

4. Диагностирование требований к системе защиты;

5. Подборка средств защиты информации и их характеристик;

6. Внедрение и организация использования выбранных мер, способов и средств защиты;

7. Осуществление контроля целостности и управление системой защиты.

Оценка текущей ситуации подразделяется на две системы: это «исследование снизу вверх» и «исследование сверху вниз». Первая построена на том, что служба информационной безопасности, основываясь на всех известных видах атак, применяет их на практике, чтобы проверить, возможна ли данная атака со стороны реального правонарушителя.

Метод «сверху вниз» представляет собой подробное изучение всех существующих схем хранения и обработки информации. Первой ступенью метода является определение, какие информационные потоки следует защитить. Затем анализируется настоящее состояние системы информационной безопасности, для определения реализованных методик защиты, в каком объеме, и на каком уровне они реализованы. На третьей ступени осуществляется классификация всех информационных объектов на группы в соответствии с ее конфиденциальностью.

После этого необходимо выяснить насколько серьезный ущерб может быть нанесен, если информационный объект атакуют. Эта ступень именуется как «вычисление рисков». Рассчитывают возможный ущерб от атаки, вероятность такой атаки и их произведение. Полученный ответ и есть возможный риск.

На самом главном и ответственном этапе происходит сама разработка политики безопасности предприятия, которая обеспечит максимально полную защиту от возможных рисков. Но необходимо учитывать проблемы, которые могут возникнуть на пути инициации политики безопасности. К подобным проблемам можно отнести законы страны и международного сообщества, этические нормы, внутренние требования организации .

После создания как таковой политики информационной безопасности производится расчет её экономической стоимости.

В финале разработки программа утверждается у руководства фирмы и детально документируется. После этого должна следовать активная реализация всех компонентов, указанных в плане. Перерасчет рисков, и впоследствии модификация политики безопасности компании чаще всего проводится раз в два года .

Сама ПИБ оформляется в виде документированных требований на информационную систему. Существует три уровня таких документов (еще это называют детализация):

Документы верхнего уровня политики информационной безопасности показывают позицию организации к деятельности в области защиты информации, её готовность соответствовать государственным и международным требованиям в этой области. Например, они могут быть названы: «Концепция ИБ», «Политика ИБ», «Технический стандарт ИБ» и т. п. Документы верхнего уровня могут выпускаться в двух формах - для внешнего и внутреннего пользования.

Документы среднего уровня касаются отдельных сторон информационной безопасности. Здесь описаны требования на создание и эксплуатацию средств защиты информации по конкретной стороне защиты информации.

Документы нижнего уровня содержат правила и нормы работ, руководства по администрированию, инструкции по эксплуатации частных сервисов информационной безопасности .

Этапы жизненного цикла информационной системы делятся на: стратегическое планирование, анализ, проектирование, реализацию, внедрение (инициацию) и эксплуатацию. Рассмотрим каждый этап детально:

1. Начальная стадия (стратегическое планирование).

На первой стадии определяется область применения системы, и ставят граничные условия. Для этого необходимо опознать все внешние объекты, с которыми будет взаимодействовать разрабатываемая система, определить характер этого взаимодействия. На стадии стратегического планирования определяются все функциональные возможности, а также приводятся описания наиболее важных из них.

2. Стадия уточнения.

На стадии уточнения анализируется прикладная область, происходит разработка архитектурной основы информационной системы. Необходимо описать большую часть функциональных возможностей системы и учесть связь между отдельными составляющими. В конце стадии уточнения анализируются архитектурные решения и способы устранения ведущих рисков в программе.

3. Стадия конструирования.

На данной стадии создаётся законченное изделие, готовое к передаче пользователю. По окончании конструирования определяется работоспособность полученного программного обеспечения.

4. Стадия передачи в эксплуатацию (инициация).

Стадия представляет собой непосредственную передачу программного обеспечения пользователю. При использовании разработанной системы часто выявляются различного плана проблемы, которые требуют дополнительных работ и внесения корректировок в продукт. В конце данной стадии выясняют: достигнуты ли цели, поставленные перед разработчиками или нет.

5. Выведение из эксплуатации и утилизация. В результате этого этапа данные переносятся в новую ИС.

Любая информационная система может оставаться максимально полезной в течение 3-7 лет. Далее требуется её модернизация. Следовательно, можно прийти к выводу, что с проблемой модернизации устаревших информационных систем сталкивается практически каждый создатель .

Для решения проблемы обеспечения информационной безопасности важно применение законодательных, организационных и программно-технических мер. Невнимательность хотя бы к одному из аспектов этой проблемы может привести к утрате или утечке информации, стоимость и роль которой в жизни современного общества приобретает все более важное значение.

Список литературы:

1.В.А. Игнатьев, Информационная безопасность современного коммерческого предприятия / В.А. Игнатьев - М: Старый Оскол: ТНТ, 2005. - 448 с.

2.Домарев В.В., Безопасность информационных технологий. Методология создания систем защиты (гл. 8) / ТИД Диа Софт / - 2002. [Электронный ресурс]. - Режим доступа. - URL: http://www.kpnemo.ws/ebook/2010/08/10/domarev_vv_bezopasnost_informatsionnyih_tehnologiy_metodologiya_sozdaniya_sistem_zaschityi (дата обращения 15.11.2012)

3.Жук Е.И., Концептуальные основы информационной безопасности [Электронный ресурс] // Электронное научно-техническое издание «Наука и образование», 2010. - № 4. - Режим доступа. - URL:http://techno-new.developer.stack.net/doc/143237.html (дата обращения 20.11.2012)

4.Медведев Н.В., Стандарты и политика информационной безопасности автоматизированных систем // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. - 2010. - № 1. - С. 103-111.

5.Основы информационной безопасности: Учебное пособие / О.А. Акулов, Д.Н. Баданин, Е.И. Жук и др. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2008. - 161 с.

6.Филин С.А., Информационная безопасность / С.А. Филин. - Альфа-Пресс, 2006. - 412 с.

7.Ярочкин В.И. Информационная безопасность: Учебник для студентов вузов. - 3-е изд. - М.: Академический Проект: Трикста, 2005 - 544 с.


Понятие информационной безопасности Под информационной безопасностью понимается защищенность информации и поддерживающей инфраструктуры от случайных или преднамеренных воздействий естественного или искусственного характера, которые могут нанести неприемлемый ущерб субъектам информационных отношений, в том числе владельцам и пользователям информации и поддерживающей инфраструктуры. Защита информации – комплекс мероприятий, направленных на обеспечение информационной безопасности.


Проблемы информационной безопасности Информационная безопасность является одним из важнейших аспектов интегральной безопасности. Иллюстрациями являются следующие факты: В Доктрине информационной безопасности РФ защита от НСД к информационным ресурсам, обеспечение безопасности информационных и телекоммуникационных систем выделены в качестве важных составляющих национальных интересов; В период гг. были предприняты почти 500 попыток проникновения в компьютерную сеть ЦБ РФ. В 1995 году было похищено 250 миллиардов рублей. По сведениям ФБР ущерб от компьютерных преступлений в США в 1997 г. составил 136 миллионов долларов.


Проблемы информационной безопасности По данным отчета «Компьютерная преступность и безопасность – 1999: проблемы и тенденции» 32% респондентов – обращались в правоохранительные органы по поводу компьютерных преступлений 30% респондентов – сообщили, что их ИС были взломаны злоумышленниками; 57% - подверглись атакам через Интернет; 55% - отметили случаи нарушений ИБ со стороны собственных сотрудников; 33 % - не смогли ответить не вопрос «были ли взломаны Ваши веб-серверы и системы электронной коммерции?».


Проблемы информационной безопасности Глобальное исследование по информационной безопасности 2004 г., проведенное консалтинговой фирмой Ernst&Young выявило следующие основные аспекты: Лишь 20% опрошенных убеждены в том, что их организации рассматривают вопросы информационной безопасности на уровне высшего руководства; По мнению респондентов «недостаточная осведомленность в вопросах ИБ» является главным препятствием для создания эффективной системы ИБ. Лишь 28% отметили в качестве приоритетных задач «повышение уровня обучения сотрудников в области ИБ»; «Неправомерные действия сотрудников при работе с ИС» были поставлены на второе место по распространенности угроз ИБ, после вирусов, «троянов» и Интернет-червей. Менее 50% респондентов проводят обучения сотрудников в области ИБ; Лишь 24% опрошенных считают, что их отделы ИБ заслуживают наивысшей оценки за удовлетворение бизнес потребностей своих организаций своих организаций; Лишь 11% респондентов считают, что принятые государственными органами нормативные акты в области безопасности позволили существенно улучшить состояние их информационной безопасности.


Угрозы информационной безопасности Угроза информационной безопасности (ИБ) – потенциально возможное событие, действие, процесс или явление, которое может привести к нанесению ущерба чьим-либо интересам. Попытка реализации угрозы называется атакой. Классификация угроз ИБ можно выполнить по нескольким критериям: по аспекту ИБ (доступность, целостность, конфиденциальность); по компонентам ИС, на которые угрозы нацелены (данные, программа, аппаратура, поддерживающая инфраструктура); по способу осуществления (случайные или преднамеренные действия природного или техногенного характера); по расположению источника угроз (внутри или вне рассматриваемой ИС).


Свойства информации Вне зависимости от конкретных видов угроз информационная система должна обеспечивать базовые свойства информации и систем ее обработки: доступность – возможность получения информации или информационной услуги за приемлемое время; целостность – свойство актуальности и непротиворечивости информации, ее защищенность от разрушения и несанкционированного изменения; конфиденциальность – защита от несанкционированного доступа к информации.


Примеры реализации угрозы нарушения конфиденциальности Часть информации, хранящейся и обрабатываемой в ИС, должна быть сокрыта от посторонних. Передача данной информации может нанести ущерб как организации, так и самой информационной системе. Конфиденциальная информация может быть разделена на предметную и служебную. Служебная информация (например, пароли пользователей) не относится к определенной предметной области, однако ее раскрытие может привести к несанкционированному доступу ко всей информации. Предметная информация содержит информацию, раскрытие которой может привести к ущербу (экономическому, моральному) организации или лица. Средствами атаки могут служить различные технические средства (подслушивание разговоров, сети), другие способы (несанкционированная передача паролей доступа и т.п.). Важный аспект – непрерывность защиты данных на всем жизненном цикле ее хранения и обработки. Пример нарушения – доступное хранение резервных копий данных.


Примеры реализации угрозы нарушения целостности данных Одними из наиболее часто реализуемых угроз ИБ являются кражи и подлоги. В информационных системах несанкционированное изменение информации может привести к потерям. Целостность информации может быть разделена на статическую и динамическую. Примерами нарушения статической целостности являются: ввод неверных данных; несанкционированное изменение данных; изменение программного модуля вирусом; Примеры нарушения динамической целостности: нарушение атомарности транзакций; дублирование данных; внесение дополнительных пакетов в сетевой трафик.


Вредоносное программное обеспечение Одним из способов проведения атаки является внедрение в системы вредоносного ПО. Данный вид программного обеспечения используется злоумышленниками для: внедрения иного вредоносного ПО; получения контроля над атакуемой системой; агрессивного потребления ресурсов; изменение или разрушение программ и/или данных. По механизму распространения различают: вирусы – код, обладающий способностью к распространению путем внедрения в другие программы; черви – код, способный самостоятельно вызывать распространение своих копий по ИС и их выполнение.


Вредоносное программное обеспечение В ГОСТ Р «Защита информации. Объект информатизации. Факторы воздействующие на информацию. Общие положение» вводится следующее понятие вируса: Программный вирус – это исполняемый или интерпретируемый программный код, обладающий свойством несанкционированного распространения и самовоспроизведения в автоматизированных системах или телекоммуникационных сетях с целью изменить или уничтожить программное обеспечение и/или данные, хранящиеся в автоматизированных системах.


Примеры реализации угрозы отказа в доступе Отказ служб (отказа в доступе к ИС) относится к одним из наиболее часто реализуемых угроз ИБ. Относительно компонент ИС данный класс угроз может быть разбит на следующие типы: отказ пользователей (нежелание, неумение работать с ИС); внутренний отказ информационной системы (ошибки при переконфигурировании системы, отказы программного и аппаратного обеспечения, разрушение данных); отказ поддерживающей инфраструктуры (нарушение работы систем связи, электропитания, разрушение и повреждение помещений).


Понятие атаки на информационную систему Атака – любое действие или последовательность действий, использующих уязвимости информационной системы и приводящих к нарушению политики безопасности. Механизм безопасности – программное и/или аппаратное средство, которое определяет и/или предотвращает атаку. Сервис безопасности - сервис, который обеспечивает задаваемую политикой безопасность систем и/или передаваемых данных, либо определяет осуществление атаки. Сервис использует один или более механизмов безопасности.


Классификация атак Классификация атак на информационную систему может быть выполнена по нескольким признакам: По месту возникновения: Локальные атаки (источником данного вида атак являются пользователи и/или программы локальной системы); Удаленные атаки (источником атаки выступают удаленные пользователи, сервисы или приложения); По воздействию на информационную систему Активные атаки (результатом воздействия которых является нарушение деятельности информационной системы); Пассивные атаки (ориентированные на получение информации из системы, не нарушая функционирование информационной системы);


Сетевые атаки I. Пассивная атака Пассивной называется такая атака, при которой противник не имеет возможности модифицировать передаваемые сообщения и вставлять в информационный канал между отправителем и получателем свои сообщения. Целью пассивной атаки может быть только прослушивание передаваемых сообщений и анализ трафика.


Сетевые атаки Активной называется такая атака, при которой противник имеет возможность модифицировать передаваемые сообщения и вставлять свои сообщения. Различают следующие типы активных атак: Отказ в обслуживании - DoS-атака (Denial of Service) Отказ в обслуживании нарушает нормальное функционирование сетевых сервисов. Противник может перехватывать все сообщения, направляемые определенному адресату. Другим примером подобной атаки является создание значительного трафика, в результате чего сетевой сервис не сможет обрабатывать запросы законных клиентов. Классическим примером такой атаки в сетях TCP/IP является SYN-атака, при которой нарушитель посылает пакеты, инициирующие установление ТСР- соединения, но не посылает пакеты, завершающие установление этого соединения. В результате может произойти переполнение памяти на сервере, и серверу не удастся установить соединение с законными пользователями.


Сетевые атаки Модификация потока данных - атака "man in the middle" Модификация потока данных означает либо изменение содержимого пересылаемого сообщения, либо изменение порядка сообщений.




Сетевые атаки Повторное использование Повторное использование означает пассивный захват данных с последующей их пересылкой для получения несанкционированного доступа - это так называемая replay-атака. На самом деле replay-атаки являются одним из вариантов фальсификации, но в силу того, что это один из наиболее распространенных вариантов атаки для получения несанкционированного доступа, его часто рассматривают как отдельный тип атаки.


Подходы к обеспечению информационной безопасности Для защиты АИС могут быть сформулированы следующие положения: Информационная безопасность основывается на положениях и требованиях существующих законов, стандартов и нормативно-методических документов; Информационная безопасность АИС обеспечивается комплексом программно-технических средств и поддерживающих их организационных мероприятий; Информационная безопасность АИС должна обеспечиваться на всех этапах технологической обработки данных и во всех режимах функционирования, в том числе при проведении ремонтных и регламентных работ;


Подходы к обеспечению информационной безопасности Для защиты АИС могут быть сформулированы следующие положения: Программно-технические средства защиты не должны существенно ухудшать основные функциональные характеристики АИС; Неотъемлемой частью работ по информационной безопасности является оценка эффективности средств защиты, осуществляемая по методике, учитывающей всю совокупность технических характеристик оцениваемого объекта, включая технические решения и практическую реализацию; Защита АИС должна предусматривать контроль эффективности средств защиты. Этот контроль может быть периодическим или инициируемым по мере необходимости пользователем АИС.




Системность средств защиты информации Системность при выработке и реализации систем защиты информации предполагает определение возможных угроз информационной безопасности и выбор методов и средств, направленных на противодействие данного комплексу угроз. Решения должны иметь системный характер, то есть включать набор мероприятий противодействующий всему комплексу угроз.




Непрерывность защиты Непрерывность защиты предполагает, что комплекс мероприятий по обеспечению информационной безопасности должен быть непрерывен во времени и пространстве. Защита информационных объектов должна обеспечиваться и при выполнении регламентных и ремонтных работ, во время настройки и конфигурирования информационных систем и сервисов.


Разумная достаточность Построение и обслуживание систем информационной безопасности требует определенных, подчас значительных, средств. Вместе с тем невозможно создание все объемлемой системы защиты. При выборе системы защиты необходимо найти компромисс между затратами на защиту информационных объектов и возможными потерями при реализации информационных угроз.


Гибкость управления и применения Угрозы информационной безопасности многогранны и заранее не определены. Для успешного противодействия необходимо наличие возможности изменения применяемых средств, оперативного включения или исключения используемых средств защиты данных, добавления новых механизмов защиты.


Открытость алгоритмов и механизмов защиты Средства информационной безопасности сами могут представлять собой угрозу информационной системе или объекту. Для предотвращения такого класса угроз требуют, чтобы алгоритмы и механизмы защиты допускали независимую проверку на безопасность и следование стандартов, а также на возможность их применение в совокупности с другими средствами защиты данных.


Простота применения защитных мер и средств При проектировании систем защиты информации необходимо помнить, что реализация предлагаемых мер и средств будет проводится пользователями (часто не являющихся специалистами в области ИБ). Поэтому для повышения эффективности мер защиты необходимо, чтобы алгоритм работы с ними был понятен пользователю. Кроме того, используемые средства и механизмы информационной безопасности не должны нарушать нормальную работу пользователя с автоматизированной системой (резко снижать производительность, повышать сложность работы и т.п.).


Методы обеспечения ИБ Рассмотрим пример классификации методов, используемых для обеспечения информационной безопасности: препятствие – метод физического преграждения пути злоумышленнику к информации; управление доступом – метод защиты с помощью регулирования использования информационных ресурсов системы; маскировка – метод защиты информации путем ее криптографического преобразования; регламентация – метод защиты информации, создающий условия автоматизированной обработки, при которых возможности несанкционированного доступа сводится к минимуму; принуждение – метод защиты, при котором персонал вынужден соблюдать правила обработки, передачи и использования информации; побуждение – метод защиты, при котором пользователь побуждается не нарушать режимы обработки, передачи и использования информации за счет соблюдения этических и моральных норм.


Средства защиты информационных систем Такие средства могут быть классифицированы по следующим признакам: технические средства – различные электрические, электронные и компьютерные устройства; физические средства – реализуются в виде автономных устройств и систем; программные средства – программное обеспечение, предназначенное для выполнения функций защиты информации; криптографические средства – математические алгоритмы, обеспечивающие преобразования данных для решения задач информационной безопасности; организационные средства – совокупность организационно- технических и организационно-правовых мероприятий; морально-этические средства – реализуются в виде норм, сложившихся по мере распространения ЭВМ и информационных технологий; законодательные средства – совокупность законодательных актов, регламентирующих правила пользования ИС, обработку и передачу информации.