Что принято в России как стандарт: PAL, SECAM, NTSC? Все о системах NTSC, PAL и SECAM.

| PAL (сокр. от Phase Alternating Line ) - стандарт аналогового телевидения. Система кодирования цвета, используемая в телевизионных систем многих стран мира. Данная система имеет разрешение в 625 линий при 25 кадрах (50 полей) в секунду.

История PAL

В 1950-х годах, при массовом производстве цветных телевизоров в странах Западной Европы, разработчики столкнулись с проблемой, обнаруженной в стандарте NTSC. Система демонстрировала ряд недостатков, главным из которых было смещение цвета изображения при плохих условиях приема сигнала. В последствии, для преодоления недостатков NTSC, были разработаны альтернативные стандарты PAL и SECAM. Новый стандарт был предназначен для цветного телевидения европейских стран, имел частоту 50 полей в секунду (50 герц), и не имел недостатков NTSC.

Стандарт PAL был разработан Уолтером Брухом в компании Telefunken в Германии. Первые трансляции в новом стандарте были выполнены в Великобритании в 1964 году, затем в Германии в 1967 году.

Позднее, компанию Telefunken приобрел французский производитель электроники Томсон. Также компания приобрела основателя европейского стандарта SECAM компанию Compagnie Générale de Télévision. Томсон (теперь называется Technicolor SA) владеет лицензией RCA принятой в Radio Corporation of America, основателя стандарта NTSC.

В системах телевидения, термин PAL часто интерпретируется как разрешение 576i (625 линий/50 Гц), система NTSC как 480i (525 линий/60 Гц). Обозначения на DVD-дисках PAL или NTSC стандарта, говорят о методе передачи цвета, хотя сам композитный цвет на них не записан.

Цветное кодирование

Как и в NTSC, в системе PAL используется амплитудная модуляция с поднесущей балансовой цветности, добавленной к яркости видео сигнала в виде композитного видео. Частота поднесущей для PAL сигнала составляет 4.43361875 МГц, по сравнению с 3.579545 МГц для NTSC. С другой стороны, в SECAM используется частотная модуляция с двумя линиями альтернативных цветов, поднесущие которых составляют 4.25000 и 4.40625 МГц.

Само название стандарта "Phase Alternating Line " говорит о том, что фазовая часть цветовой информации в видео сигнале восстанавливается с каждой строки, которая автоматически исправляет ошибки при передаче сигнала, отменив их, за счет вертикального разрешения. Строки, где восстанавливается цвет часто называют PAL или фазовым чередованием строк, в то время как другие линии называются NTSC линиями. Первые телевизоры со стандартом PAL сильно раздражали глаза человека из-за так называемого гребенчатого эффекта изображения, также известного как Ганноверские бары, возникающие при погрешностях в фазе. Таким образом, в большинстве приемников начали использовать линии задержки в цветности, сохраняющие информацию о полученном цвете в каждой строке кинескопа. Недостатком системы PAL является вертикальное цветное разрешение, которое более беднее, чем в NTSC, но поскольку человеческий глаз имеет такое же цветовое разрешение, то данного эффекта не видно.

Типичная частота поднесущей составляет 4.43361875 МГц и состоит из 283.75 цветных тактов в строке плюс смещение - 25 Гц для того, чтобы избежать помех. Поскольку частота строк составляет 15625 Гц (625 строк x 50 Гц / 2), цвет несущей частоты рассчитывается следующим образом: 4.43361875 МГц = 283.75* 15625 Гц + 25 Гц.

Первоначальная цветная поднесущая требуется для декодера, чтобы исправлять различия цветных сигналов. Поскольку цветная поднесущая не передается вместе с видеоинформацией, она должна быть сгенерирована в ресивере. Для того, что фаза генерируемого сигнала соответствовала передаваемой информации, к видеосигналу добавляется 10 циклов «цветных вспышек» поднесущей.

Преимущества PAL перед NTSC

В NTSC-приемниках регулировку цветности можно выполнить вручную. Если цветность отрегулирована неправильно, отображение цвета может быть ошибочным. Стандарт PAL автоматически изменяет цветность. Фазовые ошибки цветности в системе PAL были устранены, с помощью линии задержки 1H, что привело к снижению насыщенности цвета, которое не так заметно для глаз человека, чем в NTSC.

Однако, даже в PAL системах, чередование цвета (Ганноверские бары) - может привести к зернистости изображения из-за ошибок в фазе, если используются декодеры первого поколения. Зачастую, таких экстремальных фазовых сдвигов не происходит. Обычно, этот эффект наблюдается при возникновении препятствий при прохождении сигала, и наблюдается в сильно застроенных районах. Эффект более заметен на ультра высоких частотах (UHF), нежели на VHF.

В начале 1970-х, некоторые японские производители разработали новые методы декодирования, для того чтобы избежать уплаты роялти компании Telefunken. Лицензия Telefunken предусматривала любой метод декодирования, который предполагал уменьшение фазовых искажений поднесущей фазы. Одна из разработок заключалась в использовании 1H линии задержки, чтобы декодировать только четные или нечетные строки. Например, цветность на нечетных строках включалась непосредственно на декодере, сохраняя линии задержки. Потом, на четных строках, хранимые нечетные линии декодировались снова. Этот метод эффективно преобразует PAL систему для NTSC. Такие системы имеют и свои недостатки, связанные с NTSC и требуют добавление ручного управления оттенками цвета.

Стандарты PAL и NTSC имеют несколько различных цветовых пространств, но разница в цвете игнорируются благодаря декодеру.

Преимущества PAL перед SECAM

Первые попытки совмещения с цветными телевизорами предпринималось в стандарте SECAM, который также имел проблему оттенков NTSC. Достигалось путем применения различных методов передачи цвета, а именно альтернативные передачи U и V векторов и частот модуляции.

Стандарт SECAM является более надежным для передачи сигнала на большие расстояния, нежели NTSC или PAL. Однако из-за природы, цветной сигнал сохраняется только в искаженном виде из-за снижения амплитуды, даже в черно-белой части изображения (возникает эффект перехлеста цвета). Также PAL и SECAM приемники нуждаются в линиях задержки.

Характеристики PAL сигнала

Сигнал PAL-B/G имеет следующие характеристики.

Типы систем PAL

PAL B PAL G, H PAL I PAL D/K PAL M PAL N
Полоса пропускания ОВЧ УВЧ УВЧ/ОВЧ* ОВЧ/УВЧ ОВЧ/УВЧ ОВЧ/УВЧ
Кол-во полей 50 50 50 50 60 50
Кол-во линий 625 625 625 625 525 625
Активных линий 576 576 582 576 480 576
Ширина полосы пропускания канала 7 МГц 8 МГц 8 МГц 8 МГц 6 МГц 6 МГц
Полоса пропускания видеосигнала 5,0 МГц 5,0 МГц 5,5 МГц 6,0 МГц 4,2 МГц 4,2 МГц
Цвет поднесущей 4.43361875 МГц 4.43361875 МГц 4.43361875 МГц 4.43361875 МГц 3.5756110 МГц 3.58205625 МГц
Частота звука 5,5 МГц 5,5 МГц 6,0 МГц 6,5 МГц 4,5 МГц 4,5 МГц

* Система PAL I никогда не использовалась на частотах УКВ в Великобритании

ОВЧ - Очень высокие частоты (VHF)

УВЧ - Ультра высокие частоты (UHF)

PAL-B/G/D/K/I

Большинство стран, использующих стандарты PAL, вещают с 625 строками и 25 кадрами в секунду. Системы различаются только по несущей частоте аудио сигнала и по полосе пропускания канала. Стандарты PAL B/G используются в большинстве стран Западной Европы, Австралии и Новой Зеландии, Великобритании, Ирландии, Гонконге, Южной Африке и Макао. Стандарты PAL D/K в большинстве стран Центральной и Восточной Европы, стандарт PAL D в Китае. Аналоговые камеры видеонаблюдения используют стандарт PAL D.

Системы PAL В и PAL G сильно совпадают. В системе B используется 7 МГц и широкие каналы на ОВЧ, в то время как система G использует 8 МГц и УВЧ. Также аналогичны системы D и К: система D используется только на ОВЧ, в то время система K используется только на УВЧ.

PAL-M (Бразилия)

В Бразилии, в системе PAL используется 525 строк и 29.97 кадр/с системы M, при этом используя поднесущую цвета NTSC частот. Точная частота поднесущей цвета PAL-M составляет 3,575611 МГц.

Цветная система PAL может соответствовать и NTSC, изображение с 525-линиями (480i) часто называют PAL-60 (иногда PAL-60/525, Quasi-PAL или Pseudo PAL). PAL - стандарт вещания, не следует путать с PAL-60.

PAL-N (Аргентина, Парагвай, Уругвай)

Данный вариант системы используется в Аргентине, Парагвае и Уругвае. В нем занято 625 линий/50 полей в секунду, сигнал из PAL-B/G, D/K, H, I. А канал 6 МГц с частотой цветовой поднесущей 3,582 МГц очень похож на NTSC.

VHS пленки записанные с PAL-N или PAL-B/G, D/K, H, I, не различаются из-за понижающего преобразования поднесущих на пленке. VHS записанный с телевизора в Европе будут воспроизводится в цвете PAL-N. Кроме того, любая лента, записанная в Аргентине или Уругвае с PAL-N телевизионного вещания, может быть воспроизведена в европейских странах, которые используют PAL (Австралия, Новой Зеландия и др.)

Как правило, люди в Уругвае, Аргентине и Парагвае, владеют телевизорами, которые также отображают стандарт NTSC-M, в дополнение к PAL-N. Прямая телевизионная трансляция также используется в NTSC-M для Северной, Центральной и Южной Америки. Большинство DVD-плееров продаваемые в Аргентине, Уругвае и Парагвае, воспроизводят только PAL диски (цветовая поднесущая частота 4,433618 МГц).

Некоторые DVD-плееры, использующие транскодер сигнала, могут кодировать NTSC-M, с некоторой потерей качества изображения за счет преобразования системы от 625/50 PAL DVD в формат NTSC-M (выход 525/60).

Расширенные возможности спецификации PAL, такие как телетекст, реализованы в PAL-N. PAL-N поддерживает изменение 608 скрытых субтитров, который разработаны для облегчения совместимости с NTSC.

PAL-L

Стандарт PAL L (измененная фаза звуковой системы L) использует ту же систему видео с качеством PAL-B/G/H (625 строк, 50 Гц, 15,625 кГц), но с пропускной способностью 6 МГц, а не 5,5 МГц. Это требует аудио поднесущая, составляющая 6,5 МГц. Разнос каналов используемый для PAL-L, составляет 8 МГц.

Совместимости PAL стандартов

Цветная система PAL обычно используется вместе с видео форматами, которые имеет 625 строк в кадре (576 видимых строк, остальные используются для служебной информации, синхронизации данных и субтитров) и частотой обновления 50 чересстрочных полей в секунду (то есть 25 полных кадров в секунду), таких как B, G, H, I, и N.
PAL гарантирует видео совместимость. Однако, некоторые из стандартов (B/G/H, I и D/K) используют различные частоты звука (5.5 МГц, 6.0MHz 6.5MHz соответственно). Это может привести к видеоизображению без аудио, если сигнал передается по кабельному телевидению. В некоторых странах Восточной Европы, ранее использовавших системы SECAM D и K, перешли на PAL, тем самым больше уделяя внимание видео сигналу. В результате этого возникла необходимость применять различные носители звука.

В отличие от стандарта передачи чёрно-белого изображения, который был более-менее единым во всём мире (различалось только расстояние между частотами передачи изображения и звука), существует несколько стандартов цветного телевидения. Основные системы цветного телевидения - это SECAM, PAL, NTSC . Система SECAM принята в странах бывшего СССР, а также во Франции. Система PAL принята в странах западной Европы, кроме Франции. Система NTSC принята на американском континенте и в Японии. Стандарты PAL и SECAM были разработаны на основе единого стандарта черно-белого изображения и с возможностью приема нового телесигнала старыми телевизорами, поэтому частично совместимы друг с другом (одинаково кодируется развертка изображение и яркость, но по разному кодируется баланс цвета). Стандарт NTSC разрабатывался независимо от старого стандарта. В настоящий момент идет доработка, а в некоторых страннах введение цифровых стандартов, преимущество которых увеличенное разрешение картинки, увеличиная частота картинка, а также помехозащищенность сигнала. В России переход на цифорвое вещание планируется осуществить в 2010 году.

Стандарт NTSC

NTSC (National Television System Color) - первая система цветного телевидения, нашедшая практическое применение. Она была разработана в США и уже в 1953 г. принята для вещания, а в настоящее время вещание по этой системе ведется также в Канаде, большинстве стран Центральной и Южной Америки, Японии, Южной Корее и Тайване. Именно при ее создании были выработаны основные принципы передачи цвета в телевидении. Данный cтандарт определяет метод кодирования информации в композитный видеосигнал. Согласно стандарту NTSC , каждый видеокадр состоит из 525 горизонтальных строк экрана, по которым каждую 1/30 секунды проходит электронный луч. При отрисовке кадра электронный луч делает два прохода по всему экрану: сначала по нечетным строкам, а потом по четным (чересстрочная развертка - interlacing). Обеспечивается поддержка 16 миллионов разных цветов. В настоящее время разрабатываются новые разновидности стандарта NTSC «Super NTSC» и «16 х 9», которые будут входить в состав стандарта MPEG и стандарта разработки DVD

Стандарт PAL

Стандарт SECAM

Система SECAM (SEquentiel Couleur A Memoire) , как и PAL использует изображение на экране в 625 строк с частотой 25 кадров в секунду. Эта система первоначально была предложена во Франции еще в 1954 г., но регулярное вещание после длительных доработок было начато только в 1967 одновременно во Франции и СССР. В настоящее время она принята также в Восточной Европе, Монако, Люксембурге, Иране, Ираке и некоторых других странах. Основная особенность системы - поочередная, через строку, передача цветоразностных сигналов с дальнейшим восстановлением в декодере путем повторения строк. При этом в отличие от PAL и NTSC используется частотная модуляция поднесущих. В результате цветовой тон и насыщенность не зависят от освещенности, но на резких переходах яркости возникают цветовые окантовки. Обычно после ярких участков изображения окантовка имеет синий цвет, а после темных - желтый. Кроме того, как и в системе PAL , цветовая четкость по вертикали снижена вдвое.
Источники:
http://www.videodata.ru/palsecam.htm
http://ru.wikipedia.org/wiki/%D0%92%D0%B8%D0%B4%D0%B5%D0%BE

Интерфейс IEEE1394

(FireWire, i-Link) - последовательная высокоскоростная шина, предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами.

Различные компании продвигают стандарт под своими торговыми марками:

    Apple - FireWire

История

    в 1986 году членами Комитета по Стандартам Микрокомпьютеров (Microcomputer Standards Committee) принято решение объединить существовавшие в то время различные варианты последовательной шины (Serial Bus)

    в 1992 году разработкой интерфейса занялась Apple

    в 1995 году принят стандарт IEEE 1394

Преимущества

    Цифровой интерфейс - позволяет передавать данные между цифровыми устройствами без потерь информации

    Небольшой размер - тонкий кабель заменяет груду громоздких проводов

    Простота в использовании - отсутствие терминаторов, идентификаторов устройств или предварительной установки

    Горячее подключение - возможность переконфигурировать шину без выключения компьютера

    Небольшая стоимость для конечных пользователей

    Различная скорость передачи данных - 100, 200 и 400 Мбит/с (800, 1600Мбит/с IEEE 1394b)

    Гибкая топология - равноправие устройств, допускающее различные конфигурации (возможность «общения» устройств без компьютера)

    Высокая скорость - возможность обработки мультимедиа-сигнала в реальном времени

    Открытая архитектура - отсутствие необходимости использования специального программного обеспечения

    Наличие питания прямо на шине (маломощные устройства могут обходиться без собственных блоков питания). До полутора ампер и напряжение от 8 до 40 вольт.

    Подключение до 63 устройств.

Шина IEEE 1394 может использоваться с:

    Компьютерами

    Аудио и видео мультимедийными устройствами

    Принтерами и сканерами

    Жёсткими дисками, массивами RAID

    Цифровыми видеокамерами и видеомагнитофонами

Организация устройств IEEE 1394

Устройства IEEE 1394 организованы по 3 уровневой схеме - Transaction, Link и Physical, соответствующие трем нижним уровням модели OSI.

Transaction Layer - маршрутизация потоков данных с поддержкой асинхронного протокола записи-чтения.

Link Layer - формирует пакеты данных и обеспечивает их доставку.

Physical Layer - преобразование цифровой информации в аналоговую для передачи и наоборот, контроль уровня сигнала на шине, управление доступом к шине.

Связь между шиной PCI и Transaction Layer осуществляет Bus Manager. Он назначает вид устройств на шине, номера и типы логических каналов, обнаруживает ошибки.

Данные передаются кадрами длиной 125 мксек. В кадре размещаются временные слоты для каналов. Возможен как синхронный, так и асинхронный режимы работы. Каждый канал может занимать один или несколько временных слотов. Для передачи данных устройство-передатчик просит предоставить синхронный канал требуемой пропускной способности. Если в передаваемом кадре есть требуемое количество временных слотов для данного канала, поступает утвердительный ответ и канал предоставляется.

Спецификации FireWire

IEEE 1394

В конце 1995 года IEEE принял стандарт под порядковым номером 1394. В цифровых камерах Sony интерфейс IEEE 1394 появился раньше принятия стандарта и под названием iLink.

Интерфейс первоначально позиционировался для передачи видеопотоков, но пришёлся по нраву и производителям внешних накопителей, обеспечивая высокую пропускную способность для современных высокоскоростных дисков. Сегодня многие системные платы, а также почти все современные модели ноутбуков поддерживают этот интерфейс.

Скорость передачи данных - 100, 200 и 400 Мбит/с, длина кабеля до 4,5 м.

IEEE 1394a

В 2000 году был утверждён стандарт IEEE 1394а. Был проведён ряд усовершенствований, что повысило совместимость устройств.

Было введено время ожидания 1/3 секунды на сброс шины, пока не закончится переходной процесс установки надёжного подсоединения или отсоединения устройства.

IEEE 1394b

В 2002 году появляется стандарт IEEE 1394b c новыми скоростями: S800 - 800 Мбит/с и S1600 - 1600 Мбит/с. Также увеличивается максимальная длина кабеля до 50, 70 а при использовании высококачественных оптиковолоконных кабелей до 100 метров.

Соответствующие устройства обозначаются FireWire 800 или FireWire 1600, в зависимости от максимальной скорости.

Изменились используемые кабели и разъёмы. Для достижения максимальных скоростей на максимальных расстояниях предусмотрено использование оптики, пластмассовой - для длины до 50 метров, и стеклянной - для длин до 100 метров.

Несмотря на изменение разъёмов, стандарты остались совместимы, чего можно добиться, используя переходники.

12 декабря 2007 года была представлена спецификация S3200 c максимальной скоростью - 3,2 Гбит/с.

IEEE 1394.1

В 2004 году увидел свет стандарт IEEE 1394.1. Этот стандарт был принят для возможности построения крупномасштабных сетей и резко увеличивает количество подключаемых устройств до гигантского числа - 64 449.

IEEE 1394c

Появившийся в 2006 году стандарт 1394с позволяет использовать кабель Cat 5e от Ethernet. Возможно использовать параллельно с Gigabit Ethernet, то есть использовать две логические и друг от друга не зависящие сети на одном кабеле. Максимальная заявленная длина - 100 м, Максимальная скорость соответствует S800 - 800 Мбит/с.

Разъёмы FireWire

Существуют три вида разъёмов для FireWire:

    4pin (IEEE 1394a без питания) стоит на ноутбуках и видеокамерах. Два провода для передачи сигнала (информации) и два для приема.

    6pin (IEEE 1394a). Дополнительно два провода для питания.

    9pin (IEEE 1394b). Дополнительные провода для приема и передачи информации.

Интеграция

Аудио- и видеооборудование (проигрыватели цифровых CD-, MD-, VideoCD- и DVD-дисков, цифровые STB и Digital VHS) уже сейчас можно интегрировать с компьютерами и таким образом управлять ими. Из этого оборудования можно составлять системы - простым соединением устройств друг с другом с помощью одного кабеля. После этого при помощи персонального компьютера, выступающего в качестве контроллера, можно производить следующие операции: записывать с CD-проигрывателя на мини-диск, запоминать цифровые радиопередачи, принятые через STB, вводить цифровое видео в персональный компьютер для последующего монтажа и редактирования. Разумеется, при этом сохраняется возможность и прямого обмена данными между аудио- и видеооборудованием без использования компьютера или, напротив, обмена данными между двумя компьютерами безотносительно к аудио или видео, как в локальных сетях на базе традиционных Ethernet-технологий.

Недавно корпорация NEC объявила о разработке чипа, предназначенного для поддержки аппаратной маршрутизации между двумя сетями на базе IEEE-1394 и для обеспечения их взаимодействия в будущих широкополосных домашних мультимедиа-сетях стандарта IEEE-1394. Этот двухпортовый чип оснащен также микропрограммным ПО, которое осуществляет автоматическую конфигурацию сети и позволяет устанавливать соединения с другими сетевыми устройствами, в том числе с устройствами мобильной связи. Таким образом, домашняя сеть может быть расширена за пределы конкретного дома на расстояние до одного километра. Тем временем фирма Sony продолжает развивать концепцию домашней сети, основанной на стандарте IEEE-1394, и собирается поддерживать разработки, имеющие практическую направленность, выпуском еще более емких, высокоскоростных, компактных компонентов с низким энергопотреблением для широкого диапазона применений и последующей интеграции в системные чипсеты. Сегодня Sony демонстрирует новые образцы бытовой электроники, способные образовывать домашнюю сеть на базе i.Link. Вся эта архитектура носит гордое название Home Audio/Video Interoperability (HAVi ). Похоже, усилиями Sony скоро мы действительно будем жить если не в цифровом доме, то по крайней мере в цифровой квартире. Однако стандарт IEEE-1394, все больше привлекающий внимание не только изготовителей аудио- и видеоустройств, но и разработчиков оборудования для персональных компьютеров, без сомнения, вскоре станет новым сетевым стандартом, приближающим грядущую цифровую эпоху.

В вышедшей осенью 2000 года операционной системе Microsoft Windows Millennium Edition впервые появилась встроенная поддержка локальных сетей на базе контроллеров IEEE-1394. Такая сеть имеет скорость передачи данных в четыре раза большую, чем Fast Ethernet, и очень удобна для дома или малого офиса. Единственное неудобство при построении такой сети заключается в малой предельной длине одного сегмента (длина кабеля до 4,2 м). Для устранения подобного недостатка выпускаются усилители сигнала - репитеры, а также размножители-концентраторы на несколько портов (до 27). С интерфейсом IEEE-1394 в последнее время активно конкурирует новый USB-интерфейс (версии 2.0), который обеспечивает передачу данных со скоростью до 480 Мбит/с против старых 12 Мбит/с, то есть в 40 раз быстрее существующего USB-стандарта! Шина USB получила широкое распространение благодаря своей дешевизне и мощной поддержке в виде контроллера, встраиваемого непосредственно в чипсеты для материнских плат. При этом заявлялось, что высокоскоростной USB 2.0 также будет реализован в виде встроенного в чипсет контроллера (Intel ICH3). Однако фирма Microsoft объявила о приоритетности поддержки интерфейса IEEE-1394, а не USB 2.0, и, кроме того, асинхронность передачи по USB не позволяет ему всерьез конкурировать с FireWire в области цифрового видео.

Таким образом, IEEE-1394 остается международным стандартом недорогого интерфейса, который позволяет объединять всевозможные цифровые устройства для развлечений, коммуникации и вычислительную технику в бытовой мультимедийный цифровой комплекс. Иными словами, все IEEE-1394-устройства, такие как цифровые фото- и видеокамеры, DVD-устройства и другие приборы, прекрасно стыкуются как с персональными компьютерами, оснащенными подобным интерфейсом (его поддерживают и Maс, и PC-компьютеры), так и между собой. Это означает, что теперь пользователи могут передавать, обрабатывать и сохранять данные (в том числе изображения, звук и видео) с высокой скоростью и практически без ухудшения качества. Все эти отличительные особенности IEEE-1394 делают его наиболее привлекательным универсальным цифровым интерфейсом будущего.

http://www.videodive.ru/scl/ieee1394.shtml http://www.youtube.com/watch?v=3fLggMWeiVQ (ролик о том как переделать разъём IEEE 1394) http://www.youtube.com/watch?v=xrJA54IdREc (ролик о ноутбуке с раъзёмами IEEE 1394)

Сигнал цветности в стандарте SECAM передается в частотной модуляции (ЧМ), по одной цветовой составляющей в одной телевизионной строке, поочередно. В качестве недостающих строк используют предыдущий сигнал R-Y или B-Y соответственно, получая его из памяти. Так, когда передатчик передаёт только сигнал R-Y , служащий для воздействия на красные люминофоры одной строки, память приводит в действие синие люминофоры, передавая на них те же цветовые изменения, что были в предыдущей строке, когда принимался сигнал B-Y . Длительность запоминания равна времени передачи одной строки. Следовательно, в телевидении с разложением на 625 строк длительность запоминания составляет 64 мкс.

В аналоговых телевизионных приемниках для реализации памяти используется линия задержки . Во время обратного хода луча после каждой строки производится двойная коммутация, чтобы направить приходящий сигнал на соответствующую электронную пушку, а сигнал, выходящий из линии задержки, направить на электронную пушку, которая непосредственно получала прямой сигнал во время передачи предыдущей строки. Поскольку создание линии задержки, по которой проходил бы электрический сигнал затруднительно в силу слишком большого промежутка времени - 64 мкс, вместо электрических сигналов используется ультразвук . Сигналы с частотой, изменяющейся от нуля до 1,5 МГц, порождают на входе линии задержки соответствующие механические колебания, которые на прохождение затрачивают 64 мкс. Затем они вновь преобразуются в электрические сигналы. Первые линии задержки представляли собой стержень из твердого материала, на концах которого находились пьезоэлементы. Следующее поколение линий задержки было выполнено в виде прямоугольной пластины, а пьезоэлементы располагались по углам. Это позволяло уменьшить габариты за счет многократного отражения колебаний от ребер прямоугольника. Электромеханическое преобразование основано на явлении пьезоэлектричества (возникновение колебаний в некоторых кристаллах, таких как кварц или титанат при приложении изменяющихся электрических напряжений и наоборот, возникновение электрических напряжений при колебании таких кристаллов). Т.о. в линии задержки к каждому концу стального стержня прикреплен пьезоэлектрический кристалл. Установленный на входе кристалл преобразует электрические сигналы в механические колебания. Эти колебания распространяются вдоль стержня и через 64 мкс достигают второго пьезоэлектрического кристалла, где порождают электрические сигналы той же формы, какие были приложены на вход. В современной технике используется цифровая обработка сигналов, включающая задержку сигнала путем сохранения в оперативной памяти сигнального процессора.

Объективно, цветное телевизионное изображение в стандарте SECAM имеет в два раза меньшее разрешение по вертикали, чем монохромное изображение. Субъективно, в силу большей чувствительности глаза к яркостной составляющей, на среднестатистических картинках такое ухудшение почти не заметно. Применение цифровой обработки сигнала ещё больше сглаживает этот недостаток.

Применение частотной модуляции, поочередной передачи цветового сигнала и цветовой модели YDbDr является отличительной особенностью SECAM от других телевизионных аналоговых стандартов. То, что в SECAM, в отличие от систем PAL и NTSC , сигналы цветности передаются поочередно, модулируя поднесущую по частоте, позволяет сохранить цветовой фон изображения без изменений при фазовых или амплитудных искажениях.

Согласно всесторонним исследованиям, проведённым в 1965–66 г. г. в ОСЦТ-2 (Опытная станция цветного телевидения ) той и другой систем, при выборе лучшей для широкого внедрения её в СССР, ни одна из двух систем не показала решающих технических или экономических преимуществ перед другой . Преимуществом системы SECAM была меньшая чувствительность к искажениям при передаче по междугородным линиям и при видеозаписи; недостатком - усложнение аппаратуры при микшировании сигналов.

Версии SECAM

В мире используются несколько модификаций стандарта SECAM. Способ передачи цветоразностных сигналов во всех случаях одинаковый, включая так называемые предыскажения, а отличаются только методом кодирования монохромного видеосигнала, кодирования звука и шириной спектра. На самом деле, мог отличаться ещё и способ опознавания цвета - поскольку в каждой строке передаётся только один сигнал, декодер должен правильно определять, какой именно. Для этого мог применяться способ, аналогичный «вспышкам» в системах PAL и NTSC - в невидимой части строки, в конце гасящего импульса передавалась немодулированная поднесущая, в случае SECAM либо 4,406 МГц, либо 4,25 МГц, по значению частоты и происходило опознавание. Другой способ - передача специально модулированных сигналов в конце кадрового гасящего импульса, где поднесущие принимали крайние возможные значения через строку, что упрощало опознавание, особенно, в условиях помех. В настоящее время этот способ либо не используется, либо является резервным, например, в России передаются оба сигнала одновременно, а во Франции - только первый вариант. Но исходно основным был второй вариант, и когда-то в СССР и странах северной Африки использовался только он.

В настоящее время эфирное вещание телевизионных каналов в России ведётся в системе SÉCAM, однако в сетях кабельного вещания подавляющее большинство аналоговых телевизионных каналов, в том числе и представленных в открытом эфире, передаётся в системе PAL, что делает невозможным их просмотр на старых советских телевизорах в цвете.

Бэкронимы

В шутку принято расшифровывать аббревиатуру SECAM как «System Essentially Contrary to American Method» (система, существенно противоположная американской).

Примечания

PAL, SECAM и NTSC - это системы, в которых идёт трансляция сигнала (с антенны, кабельного, спутникового ресивера или DVD). Самое важное, что нужно знать о них и немного истории в нашей статье

О том, что такое ПАЛ или СЕКАМ большинство из нас узнало только в конце 80-х годов, когда привозили с собой из-за границы или покупали в фирменных магазинах первые импортные видеомагнитофоны, видеоплееры и видеокассеты с фильмами или музыкой. Каково же было разочарование, когда оказывалось, что их не так просто подключить к нашим, советским телевизорам, а подключив, оказывалось, что картинка была чёрно-белой Вот тогда, обратившись к мастеру, хозяин "видика" узнавал, что его телевизор принимает только систему цвета "SECAM ", а все купленные им видеокассеты записаны в "PAL " или, ещё хуже, в одном из стандартов "NTSC "

Говоря простым языком, PAL, SECAM и NTSC - это системы "цветности" или передачи цвета. При их несовпадении (у источника сигнала и телевизора) картинка на экране будет черно-белой (а ещё может быть зауженной или вообще полоски, вместо картинки). Сам сигнал, который обрабатывает схема телевизора, содержит в себе информацию о яркости (черно-белой картинке) и цветности (о том, как ч/б картинку нужно раскрасить). Так вот, информация о цветности "красках" как раз и закодирована в одну из систем ПАЛ, СЕКАМ...

В девяностые годы прошлого века, в тогда еще Советский Союз, хлынул широкий поток импортной видеотехники. Видеомагнитофон "Электроника ВМ-12" перестал быть единственной возможностью приобщиться к увлекательному миру видео. И тут многие обнаружили, что SECAM не только не единственная система цветности в мире, но и не самая распространенная. На видеокассетах с "импортным" видеоконтентом - художественными фильмами и шоу-программами иностранного производства - сигнал был чаще всего системы PAL, а иногда даже и NTSC. И если первые еще можно было увидеть, хотя бы в черно-белом варианте, со вторыми дело обстояло хуже.

Решали эту проблему - каждый в меру своих сил. Не стесненные в средствах и "связях" - просто закупали импортную мультисистемную технику, поддерживающую все системы цветности сразу. Остальные бросились комплектовать декодерами отечественные телевизоры. К счастью, сегодня эта проблема практически решена - подавляющее большинство видеотехники поддерживает все три системы. Ведь во всех них, сигналы, несущие информацию о цвете, передаются на вспомогательных поднесущих в спектре сигнала яркости. Главное различие систем - в способах модуляции поднесущей (частотная или квадратурная) и особенностях кодирования сигналов цветности. Так в чем же было дело и почему три системы сосуществуют до сих пор? Рассмотрим, чем они различаются.

NTSC
Американская система. National Television System Committee - Национальный комитет телевизионных систем. Два цветоразностных сигнала передаются одновременно в одной телевизионной строке развертки. Этого результата достигают применяя квадратурную модуляцию, при которой результирующий сигнал цветовой поднесущей изменяется по амплитуде и фазе. Амплитуда несет информацию о насыщенности цвета, а фаза - о цветовом тоне.

Преимущество этой системы в том, что каждая телевизионная строка содержит информацию о двух цветоразностных сигналах. А главный недостаток - система очень чувствительна к фазовым искажениям, приводящим к тому, что цветовой тон начинает передаваться с искажениями. Это может выглядеть как малиновый цвет лиц людей, зеленое небо или синяя листва. Кроме того, амплитудно-частотные искажения вызывают изменение насыщенности цвета.

Западногерманская система. Phase Alternation Line - изменение фазы от строки к строке. Это усовершенствованная система NTSC с квадратурной модуляцией поднесущей, в которой устранена чувствительность к фазовым искажениям. Для этого фаза поднесущей одного цветоразностного сигнала меняется от строки к строке на 180 градусов. В телевизорах такой системы сигналы цветности запоминаются в линии задержки на время передачи строки, а затем оба сигнала складываются, устраняя фазовую ошибку.

SECAM
Советско-французская система. Sequentiel couleur a memoire - последовательная передача цветов с запоминанием. В этой системе используется частотная модуляция поднесущих. Так как модулировать по частоте одну поднесущую двумя сигналами одновременно невозможно, сигналы передаются поочередно - через строку. Чтобы получить два цветоразностных сигнала одновременно используется линия задержки на одну строку. Если в какой либо момент времени поступает один цветоразностный сигнал, то второй берется с выхода линии задержки.

Основной недостаток этой системы в том, что цветовая четкость по вертикали снижается вдвое - так как цветоразностные сигналы передаются через строку. Но тут на помощь приходит особенность человеческого зрения - информацию о яркости человек различает лучше, чем о цветности (различные диаметры палочек и колбочек в сетчатке глаза). Иными словами, полное число строк яркостного сигнала приводит к тому, что существенного ухудшения изображения не происходит.

Прочие различия
Телевизионное вещание кроме систем цветности, отличается еще и стандартами вещания. Сегодня в мире используется десять стандартов, которые обозначаются B, D, G, I, H, K, K1, L, M, N. Если системы цветности определяют только методы передачи цветоразностных сигналов, то стандарты телевизионного вещания содержат все характеристики и параметры, определяющие особенности как самих сигналов, так и каналов вещания. Сочетание систем цветного телевидения и стандартов дают несколько вариантов телевещания. Так, в странах организации OIRT (Organisation internationale de rediodiffusion et television - Международная организация радиовещания и телевидения) действует система SECAM-D/K. В большинстве европейских стран организации CCIR (Comite consultatif international des radiocommunications - Международный консультативный комитет по радиосвязи) используется PAL-B/G. В США, где телевещание регламентирует FCC (Federal Communications Commission - Федеральная комиссия по связи), принят стандарт NTSC-M.

Что же регламентируют стандарты телевещания? Ну, во-первых - число строк в кадре. Для систем B/G и D/K (PAL и SECAM соответственно) это 625 строк, тогда как для M (NTSC) это всего 525 строк. Во-вторых, частота развертки полей составляет 50 для B/G и D/K и 60 для M. В-третьих, разностная частота между частотами несущих звука и изображения составляет 6,5МГц для D/K, 5,5МГц для B/G и 4,5МГц для M. Есть, разумеется, еще ряд параметров, но часть из них вытекает из уже описанных, часть - совпадает для рассматриваемых стандартов.Из приведенных различий можно видеть, что системы PAL и SECAM легче совместить в одном аппарате, что поначалу и было сделано - многие телевизоры или видеомагнитофоны поддерживали обе системы цветности. Это и количество строк разложения видеосигнала, и частота следования полей/кадров, и частота строчной развертки (15,625 кГц). В системе NTSC отличались все эти параметры, начиная от частоты кадровой развертки (ввиду того, что частота в электросетях составляет 60 Гц, в отличие от европейских 50 Гц) и заканчивая размерами самого кадра. Не все так просто было и со стандартами B/G и D/K. Различия в 1 МГц в разностных частотах между "звуком" и "изображением" приводили к тому, что ввезенные в Советский Союз "западные" телевизоры B/G (без поддержки D/K) не могли быть использованы для приема телевизионного эфира даже в черно-белом варианте - звук попросту отсутствовал.

Говорить об однозначном преимуществе одной из систем цветности затруднительно. Если в стандартах вещания D/K и B/G, использующих системы цветности SECAM и PAL, кадр большего разрешения, чем в стандарте M с системой NTSC, то в последнем частота кадров на двадцать процентов выше, что позволяет лучше передавать быстрые движения. Некоторые эксперты говорили, что "с эфира" лучше смотрится SECAM, то они же признавали, что на видеокассету записывать лучше в PAL. И если парк телевизионных приемников зрителей, где быстрее, где медленнее, но заменяется на полностью мультисистемные аппараты (с поддержкой всех систем цветности), то замена всего оборудования для производства, вещания и трансляции дело очень не простое. К тому же - отягощенное законодательствами стран, их взаимными обязательствами и участием в международных организациях по теле- и радиовещанию.