Коммутация каналов, сообщений и пакетов. Диаграмма обмена сигналами в системах коммутации

Комутація каналів і пакетів

Коммутация каналов является доминирующей технологией передачи речи и данных. Связь с коммутацией каналов предполагает, что имеется заранее определенный тракт связи между двумя станциями. Этот тракт - связанная последовательность каналов между узлами эти. В каждом физическом канале для данного соединения выделяется логический канал. Связь с коммутацией каналов включает три фазы, которые можно рассмотреть на примере (рис. 1.).

1. Установление соединения . Прежде чем можно будет передать какие-то сигналы, должно быть установлено сквозное соединение (от станции к станции). Например, станция А посылает узлу 4 запрос, требуя соединения со станцией Е . Как правило, канал от А до 4 является выделенным, т.е. часть соединения уже существует. Узел 4 должен найти следующий участок маршрута по направлению к узлу 6. На основе данных маршрутизации и сведений о доступности и, возможно, стоимости узел 4 выбирает канал к узлу 5, занимает в нем свободный логический канал (с использованием частотного или временного уплотнения) и посылает сообщение с требованием соединения с Е . Теперь, создан выделенный тракт от А через 4 до 5. Поскольку к узлу 4 может быть подключено много станций, этот узел должен быть способен создавать внутренние тракты от многих станций ко многим узлам . Остальная часть процесса выполняется подобным образом. Узел 5 выделяет канал к узлу 6 и внутри сети подключает этот канал к каналу от узла 4. Узел 6 завершает соединение, устанавливая канал к Е . В заключение определяется, занята станция Е или готова к приему соединения.

2. Передача данных . Теперь можно передать по сети информацию от А к Е . Данные могут быть аналоговыми или цифровыми, в зависимости от природы сети. Поскольку развитие средств связи происходит в направлении к полностью интегрированным цифровым сетям, господствующим методом, как для голоса, так и для данных становится цифровая (двоичная) передача. Тракт связи образуют: канал А-4 , внутренняя коммутация в узле 4; канал 4-5, внутренняя коммутация в 5; канал 5-6, внутренняя коммутация в 6; канал 6-Е . Как правило, соединение является дуплексным.

3. Разрыв соединения . После некоторого периода передачи данных соединение завершается, обычно это действие инициирует одна из двух станций. Узлам 4, 5 и 6 должны быть переданы сигналы на освобождение выделенных ресурсов .

Заметьте, что тракт соединения устанавливается до того, как начинается передача данных. Следовательно, канал между каждыми двумя узлами должен иметь резерв пропускной способности, а каждый узел должен иметь свободную коммутационную способность, чтобы обслужить требуемое соединение. Коммутаторы должны уметь самостоятельно выделять эти ресурсы и определять маршрут через сеть.


Коммутация каналов может быть довольно неэффективной . Ресурсы каналов выделяются на весь срок действия соединения, даже если данные фактически не передаются. При передаче голосовых данных степень использования может быть дольно высокой, но все же не достигает 100%.

При соединении терминала и компьютера канал большую часть времени может оставаться неиспользуемым . На степень использования влияет задержка начала передачи сигналов, требуемая для установления связи. Но как только соединение будет установлено, наличие сети становится практически незаметным для пользователей. Информация передается с постоянной скоростью без задержек, исключая лишь задержку при распространении по каналам. Задержка на каждом узле незначитель на.

Метод коммутации каналов был создан для обслуживания голосового обмена, но теперь он используется и при обмене данными. Наиболее известный пример сети с коммутацией каналов - телефонная сеть общего пользования (рис. 2). Она фактически представляет собой совокупность национальных сетей, которые соединяются для обслуживания международных звонков. Хотя эта сеть первоначально была разработана и построена для аналоговых абонентов-телефонов, она обслуживает значительный поток данных через модемы и постепенно превращается в цифровую сеть. Еще один известный пример использования коммутации каналов - ведомственные телефонные сети, применяемые для соединения телефонов в здании или офисе. Коммутация каналов также применяется в частных сетях. Как правило, такую сеть создает корпорация или другая большая организация для связи между своими филиалами. Такая сеть обычно состоит из ведомственных систем в каждом филиале, соединенных выделенными линиями, предоставленными каким-либо оператором связи. Последний распространенный пример использования коммутации каналов - коммутатор данных. Коммутатор данных подобен ведомственной телефонной станции, но предназначен для соединения устройств обработки цифровых данных, таких, как терминалы и компьютеры.

Рис. 2. Пример соединения через общедоступную сеть с коммутацией каналов

Общедоступную сеть связи можно описать с использованием четырех универсальных архитектурных компонентов.

Абоненты . Устройства, которые подключаются к сети. До сих пор большую часть абонентских устройств в общедоступных сетях связи составляют телефоны, но доля устройств передачи данных год от года растет.

Абонентская линия . Канал между абонентом и сетью. Называется также абонентским шлейфом или абонентским каналом. Почти во всех абонентских линиях используются витые пары. Длина абонентской линии обычно составляет от нескольких километров до нескольких десятков километров.

Коммутаторы . Центры коммутации в сети. Центр коммутации, который непосредственно обслуживает абонентов, называется конечной станцией . Как правило, конечная станция обслуживает тысячи абонентов в ограниченной области. Например, в США имеется более 19 000 конечных станций, поэтому нереально для каждой конечной станции иметь прямую линию к каждой из других конечных станций; потребовалось бы порядка 2×10 8 каналов. Взамен этого применяются промежуточные коммутаторы .

Магистрали . Каналы между коммутаторами. Магистрали, благодаря частотному или временному уплотнению, содержат множество каналов звуковой частоты. Раньше магистрали назывались многоканальными линиями связи.

Абоненты соединяются непосредственно с конечной станцией, которая коммутирует телефонный обмен между абонентами и между абонентом и другими коммутаторами. Другие коммутаторы отвечают за маршрутизацию и коммутацию телефонного обмена между конечными станциями. Это различие показано на рис. 3. Соединение между двумя абонентами, подключенными к одной и той же конечной станции, создается таким же образом, как описано выше. Если абоненты подключены к разным конечным станциям, соединение между ними стоит из цепи соединений через одну или более промежуточных станций. На рисунке соединение между абонентами а и b создается путем их простой коммутации через конечную станцию. Установка соединения между c и d более сложна. На конечной станции абонента с устанавливается соединение между линией абонента с и одним каналом магистрали с временным уплотнением к промежуточному коммутатору. В промежуточном коммутаторе этот канал соединяется с каналом с временным уплотнением, ведущим к конечной станции абонента d . На этой конечной станции канал соединяется с линией абонента d .

Рис. 3. Установка соединения

Технология коммутации каналов развивалась под воздействием тех же требований, которые предъявлялись к передаче голосовых сигналов.

Одно из таких требований - как можно меньшая задержка при передаче сигналов и, конечно, отсутствие изменений во время этой задержки . Должна была поддерживаться постоянная скорость передачи сигнала, поскольку передача и прием осуществляются при одной и той же скорости. Выполнение этих требований необходимо, чтобы происходил обычный разговор людей. Кроме того, качество принимаемого сигнала должно быть достаточно высоким, чтобы, как минимум, обеспечивать разборчивость речи.

Коммутация каналов стала широко распространенной и доминирующей потому, что она хорошо подходит для аналоговой передачи голосовых сигналов. В сегодняшнем цифровом мире ее неэффективность очевидна. Однако, несмотря на свою неэффективность, коммутация каналов остается привлекательной технологией как для локальных, так и для глобальных сетей. Одно из ее главных преимуществ - незаметность для пользователя. Когда соединение установлено, для подключенных станций оно кажется прямым, никакая дополнительная сетевая логика на этих станциях не требуется.

Глобальные связи на основе сетей с коммутацией каналов

Выделенные линии представляют собой наиболее надежное средство соединения локальных сетей через глобальные каналы связи, так как вся пропускная способность такой линии всегда находится в распоряжении взаимодействующих сетей. Однако это и наиболее дорогой вид глобальных связей - при наличии N удаленных локальных сетей, которые интенсивно обмениваются данными друг с другом, нужно иметь Nx(N-l)/2 выделенных линий. Для снижения стоимости глобального транспорта применяют динамически коммутируемые каналы, стоимость которых разделяется между многими абонентами этих каналов.

Наиболее дешевыми оказываются услуги телефонных сетей, так как их коммутаторы оплачиваются большим количеством абонентов, пользующихся телефонными услугами, а не только абонентами, которые объединяют свои локальные сети.

Телефонные сети делятся на аналоговые и цифровые в зависимости от способа мультиплексирования абонентских и магистральных каналов. Более точно, цифровыми называются сети, в которых на абонентских окончаниях информация представлена в, цифровом виде и в которых используются цифровые методы мультиплексирования и коммутации, а аналоговыми - сети, которые принимают данные от абонентов аналоговой формы, то есть от классических аналоговых телефонных аппаратов, а мультиплексирование и коммутацию осуществляют как аналоговыми методами, так и цифровыми. В последние годы происходил достаточно интенсивный процесс замены коммутаторов телефонных сетей на цифровые коммутаторы, которые работают на основе технологии TDM. Однако такая сеть по-прежнему останется аналоговой телефонной сетью, даже если все коммутаторы будут работать по технологии TDM, обрабатывая данные в цифровой форме, если абонентские окончания у нее останутся аналоговыми, а аналого-цифровое преобразование выполняется на ближней к абоненту АТС сети. Новая технология модемов V.90 смогла использовать факт существования большого количества сетей, в которых основная часть коммутаторов являются цифровыми.

К телефонным сетям с цифровыми абонентскими окончаниями относятся так называемые службы Switched 56 (коммутируемые каналы 56 Кбит/с) и цифровые сети с интегральными услугами ISDN (Intergrated Services Digital Network). Службы Switched 56 появились в ряде западных стран в результате предоставления конечным абонентам цифрового окончания, совместимого со стандартами линий Т1. Эта технология не стала международным стандартом, и сегодня она вытеснена технологией ISDN, которая такой статус имеет.

Сети ISDN рассчитаны не только на передачу голоса, но и компьютерных данных, в том числе и с помощью коммутации пакетов, за счет чего они получили название сетей с интегральными услугами. Однако основным режимом работы сетей ISDN остается режим коммутации каналов, а служба коммутации пакетов обладает слишком низкой по современным меркам скоростью - обычно до 9600 бит/с. Поэтому технология ISDN будет рассмотрена в данном разделе, посвященном сетям с коммутацией каналов. Новое поколение сетей с интеграцией услуг, названное B-ISDN (от broadband - широкополосные), основано уже целиком на технике коммутации пакетов (точнее, ячеек технологии АТМ), поэтому эта технология будет рассмотрена в разделе, посвященном сетям с коммутацией пакетов.

Предельные расстояния для радиоканалов приводятся поставщиками в предположении, что в пределах первой зоны Френеля каких-либо физических помех нет. Абсолютное ограничение на дальность связи радиорелейных каналов накладывает кривизна земли, смотри рис. 7.15 . Для частот выше 100 МГц волны распространяются прямолинейно (рис. 7.15.А) и, следовательно, могут фокусироваться. Для высоких частот (ВЧ) и УВЧ земля поглощает волны, но для ВЧ характерно отражение от ионосферы (рис. 7.15Б) - это сильно расширяет зону вещания (иногда осуществляется несколько последовательных отражений), но этот эффект неустойчив и сильно зависит от состояния ионосферы.


Рис. 7.15.

При построении длинных радиорелейных каналов приходится ставить ретрансляторы. Если антенны размещены на башнях высотой 100 м расстояния между ретрансляторами может составлять 80-100 км. Стоимость антенного комплекса обычно пропорциональна кубу диаметра антенны .

Диаграмма излучения направленной антенны показана на рис. 7.16 (стрелкой отмечено основное направление излучения). Эту диаграмму следует учитывать при выборе места установки антенны, особенно при использовании большой мощности излучения. Иначе один из лепестков излучения может прийтись на места постоянного пребывания людей (например, жилье). Учитывая эти обстоятельства, проектирование такого рода каналов целесообразно поручить профессионалам.


Рис. 7.16.

4-го октября 1957 года в СССР был запущен первый искусственный спутник земли, в 1961 году в космос полетел Ю. А. Гагарин, а вскоре на орбиту был выведен первый телекоммуникационный спутник "Молния" - так началась космическая эра коммуникаций. Первый в РФ спутниковый канал для Интернет (Москва-Гамбург) использовал геостационарный спутник "Радуга" (1993). Стандартная антенна INTELSAT имеет диаметр 30 м и угол излучения 0,01 0 . Спутниковые каналы используют частотные диапазоны, перечисленные в таблице 7.6 .

Таблица 7.6. Частотные диапазоны, используемые для спутниковых телекоммуникаций
Диапазон Нисходящий канал ( Downlink )[ГГц] Восходящий канал ( Uplink )[ГГц] Источники помех
С 3,7-4,2 5,925-6,425 Наземные помехи
Ku 11,7-12,2 14,0-14,5 Дождь
Ka 17,7-21,7 27,5-30,5 Дождь

Передача всегда ведется на более высокой частоте, чем прием сигнала со спутника .

Диапазон пока еще "заселен" не слишком плотно, кроме того, для этого диапазона спутники могут отстоять друг от друга на 1 градус. Чувствительность к помехам от дождей может быть обойдена использованием двух наземных приемных станций, разнесенных на достаточно большое расстояние (размер ураганов ограничен). Спутник может иметь много антенн, направленных на разные регионы поверхности земли. Размер пятна "засветки" такой антенны на земле может иметь размер несколько сот километров. Обычный спутник обладает 12-20 транспондерами (приемопередатчиками), каждый из которых имеет полосу 36-50МГц, что позволяет сформировать поток данных 50 Мбит/с. Два транспондера могут использовать разную поляризацию сигнала, работая при одной и той же частоте. Такая пропускная способность достаточна для получения 1600 высококачественных телефонных каналов (32кбит/c). Современные спутники используют узкоапертурную технологию передачи VSAT ( Very Small Aperture Terminals). Диаметр пятна "засветки" на земной поверхности для этих антенн равен примерно 250 км. Наземные терминалы используют антенны диаметром 1 метр и выходную мощность около 1 Вт. При этом канал к спутнику имеет пропускную способность 19,2 Кбит/с, а со спутника - более 512 Кбит/c. Непосредственно такие терминалы не могут работать друг с другом через телекоммуникационный спутник. Для решения этой проблемы используются промежуточные наземные антенны с большим усилением, что существенно увеличивает задержку (и удорожает систему), смотри рис. 7.17 .


Рис. 7.17.

Для создания постоянных каналов телекоммуникаций служат геостационарные спутники, висящие над экватором на высоте около 36000 км.

Теоретически три таких спутника могли бы обеспечить связью практически всю обитаемую поверхность Земли (см. рис. 7.18).


Рис. 7.18.

Реально геостационарная орбита переполнена спутниками различного назначения и национальной принадлежности. Обычно спутники помечаются географической долготой мест, над которыми они висят. При существующем уровне развития технологии неразумно размещать спутники ближе, чем 2 0 . Таким образом, сегодня нельзя разместить более 360/2=180 геостационарных спутников.

Система геостационарных спутников выглядит как ожерелье, нанизанное на невидимую глазу орбиту. Один угловой градус для такой орбиты соответствует ~600 км. Может показаться, что это огромное расстояние . Плотность спутников на орбите неравномерна – на долготе Европы и США их много, а над Тихим океаном – мало, там они просто не нужны. Спутники не вечны, время их жизни обычно не превосходит 10 лет, они выходят из строя главным образом не из-за отказов оборудования, а из-за нехватки горючего для стабилизации их положения на орбите. После выхода из строя спутники остаются на своих местах, превращаясь в космический мусор. Таких спутников уже сейчас немало, со временем их станет еще больше. Конечно, можно предположить, что точность вывода на орбиту со временем станет выше и люди научатся выводить их с точностью в 100 м. Это позволит размещать в одной "нише" 500-1000 спутников (что сегодня представляется почти невероятным, ведь нужно оставить пространство для их маневров). Человечество может таким образом создать нечто похожее на искусственное кольцо Сатурна, состоящее целиком из мертвых телекоммуникационных спутников. До этого дело вряд ли дойдет, так как будет найден способ удаления или восстановления неработающих спутников, хотя с неизбежностью это существенно удорожит услуги таких коммуникационных систем.

К счастью, спутники, использующие разные частотные диапазоны, не конкурируют друг с другом. По этой причине в одной и той же позиции на орбите может находиться несколько спутников с разными рабочими частотами. На практике геостационарный спутник не стоит на месте, а выполняет движение по траектории, имеющей (при наблюдении с Земли) вид цифры 8. Угловой размер этой восьмерки должен укладываться в рабочую апертуру антенны, в противном случае антенна должна иметь сервопривод, обеспечивающий автоматическое слежение за спутником. Из-за энергетических проблем телекоммуникационный спутник не может обеспечить высокого уровня сигнала. По этой причине наземная антенна должна иметь большой диаметр , а приемное оборудование - низкий уровень шума. Это особенно важно для северных областей, в которых угловое положение спутника над горизонтом невысоко (настоящая проблема для широт более 70 0), а сигнал проходит довольно толстый слой атмосферы и заметно ослабляется. Спутниковые каналы могут быть рентабельны для областей, отстоящих друг от друга более чем на 400-500 км (при условии, что других средств не существует). Правильный выбор спутника (его долготы) может заметно снизить стоимость канала.

Число позиций для размещения геостационарных спутников ограничено. В последнее время для телекоммуникаций планируется применение так называемых низколетящих спутников (<1000 км; период обращения ~1 час ). Эти спутники движутся по эллиптическим орбитам, и каждый из них по отдельности не может гарантировать стационарный канал, но в совокупности эта система обеспечивает весь спектр услуг (каждый из спутников работает в режиме "запомнить и передать"). Из-за малой высоты полета наземные станции в этом случае могут иметь небольшие антенны и малую стоимость .

Существует несколько способов работы совокупности наземных терминалов со спутником. При этом может использоваться мультиплексирование по частоте ( FDM ), по времени ( TDM ), CDMA (Code Division Multiple Access ), ALOHA или метод запросов.

Схема запросов предполагает, что наземные станции образуют логическое кольцо , вдоль которого двигается маркер. Наземная станция может начать передачу на спутник, лишь получив этот маркер.

Простая система ALOHA (разработана группой Нормана Абрамсона из Гавайского университета в 70-х годах) позволяет каждой станции начинать передачу тогда, когда она этого захочет. Такая схема с неизбежностью приводит к столкновениям попыток. Связано это отчасти с тем, что передающая сторона узнает о столкновении лишь спустя ~270 мсек. Достаточно последнему биту пакета одной станции совпасть с первым битом другой станции, потеряны будут оба пакета и их придется послать повторно. После столкновения станция ожидает некоторое псевдослучайное время и совершает повторную попытку передачи еще раз. Такой алгоритм доступа обеспечивает эффективность использования канала на уровне 18%, что совершенно недопустимо для таких дорогостоящих каналов, как спутниковые. По этой причине чаще используется доменная версия системы ALOHA , которая удваивает эффективность (предложена в 1972 году Робертсом). Временная шкала делится на дискретные интервалы, соответствующие времени передачи одного кадра.

В этом методе машина не может посылать кадр , когда захочет. Одна наземная станция (эталонная) периодически посылает специальный сигнал, который используется всеми участниками для синхронизации. Если длина временного домена равна , тогда домен с номером начинается в момент времени по отношению к упомянутому выше сигналу. Так как часы разных станций работают по -разному, необходима периодическая ресинхронизация. Другой проблемой является разброс времени распространения сигнала для разных станций. Коэффициент использования канала для данного алгоритма доступа оказывается равным (где – основание натурального логарифма). Не слишком большая цифра, но все же в два раза выше, чем для обычного алгоритма ALOHA .

Метод мультиплексирования по частоте (FDM ) является старейшим и наиболее часто используемым. Типичный транспондер с полосой 36 Мбит/с может быть применен для получения 500 64кбит/с ИКМ-каналов (импульсно-кодовая модуляция ), каждый из которых работает со своей уникальной частотой. Чтобы исключить интерференцию, соседние каналы должны отстоять по частоте на достаточном расстоянии друг от друга. Кроме того, необходимо контролировать уровень передаваемого сигнала, так как при слишком большой выходной мощности могут возникнуть интерференционные помехи в соседнем канале. Если число станций невелико и постоянно, частотные каналы могут быть распределены стационарно. Но при переменном числе терминалов или при заметной флуктуации загрузки приходится переходить на динамическое распределение ресурсов .

Одним из механизмов такого распределения имеет название SPADE , он применялся в первых версиях систем связи на базе INTELSAT . Каждый транспондер системы SPADE содержит 794 симплексных ИКМ-каналов по 64-кбит/c и один сигнальный канал с полосой 128 кбит/c. ИКМ-каналы используются попарно для обеспечения полнодуплексной связи. При этом восходящий и нисходящий каналы имеют полосу по 50 Мбит/с. Сигнальный канал делится на 50 доменов по 1 мсек (128 бит ). Каждый домен принадлежит одной из наземных станций, число которых не превышает 50. Когда станция готова к передаче, она произвольным образом выбирает неиспользуемый канал и записывает номер этого канала в очередной свой 128-битный домен . Если один и тот же канал попытаются занять две или более станции, происходит столкновение, и они вынуждены будут повторить попытку позднее.

Метод мультиплексирования по времени сходен с FDM и довольно широко применяется на практике. Здесь также необходима синхронизация для доменов. Это делается, как и в доменной системе ALOHA , с помощью эталонной станции. Присвоение доменов наземным станциям может выполняться централизовано или децентрализовано . Рассмотрим систему ACTS ( Advanced Communication Technology Satellite ). Система имеет 4 независимых канала ( TDM ) по 110 Мбит/c (два восходящих и два нисходящих). Каждый из каналов структурирован в виде 1-милисекундных кадров, которые имеют по 1728 временных доменов. Все временные домены несут в себе 64-битовое поле данных, что позволяет реализовать голосовой канал с полосой 64 Кбит/c. Управление временными доменами с целью минимизации времени на перемещения вектора излучения спутника предполагает знание географического положения наземных станций. Управление временными доменами осуществляется одной из наземных станций (MCS - Master Control Station ). Работа системы ACTS представляет собой трехшаговый процесс. Каждый из шагов занимает 1 мсек. На первом шаге спутник получает кадр и запоминает его в 1728-ячеечном буфере. На втором - бортовая ЭВМ копирует каждую входную запись в выходной буфер (возможно для другой антенны). И, наконец, выходная запись передается наземной станции.

В исходный момент каждой наземной станции ставится в соответствие один временной домен . Для получения дополнительного домена, например, для организации еще одного телефонного канала, станция посылает запрос MCS . Для этих целей выделяется специальный управляющий канал емкостью 13 запросов в сек. Существуют и динамические методы распределения ресурсов в TDM (методы Кроузера , Биндера [ Binder ] и Робертса ).

Метод CDMA (Code Division Multiple Access ) является полностью децентрализованным. Как и другие методы, он не лишен недостатков. Во-первых, емкость канала CDMA в присутствии шума и отсутствии координации между станциями обычно ниже, чем в случае TDM . Во-вторых, система требует быстродействующего и дорогого оборудования.

Технология беспроводных сетей развивается довольно быстро. Эти сети удобны в первую очередь для подвижных средств. Наиболее перспективным представляется проект IEEE 802.11, который должен играть для радиосетей такую же интегрирующую роль, как 802.3 для сетей Ethernet и 802.5 для Token Ring. В протоколе 802.11 используется тот же алгоритм доступа и подавления столкновений, что и в 802.3, но здесь вместо соединительного кабеля используются радиоволны (Рис. 7.19.). Применяемые здесь модемы могут работать и в инфракрасном диапазоне, что бывает привлекательно, если все машины размещены в общем зале.


Рис. 7.19.

Стандарт 802.11 предполагает работу на частоте 2.4-2.4835 ГГц при использовании модуляции 4FSK/2FSK

Рассмотрим электронные цифровые автоматические телефонные станции, выпускаемые предприятиями Республики Беларусь. Это такие станции, как ЦСФ "Неман", ЭАТС "Ф - 50/1000" (обе - производство ОАО"Связьинвест"), АТС "Бета" (производитель - МПОВТ).

Все представленные выше станции обладают типичными достоинствами цифровых АТС (повышение качества передачи и коммутации, расширение спектра предоставляемых услуг, уменьшение объема работ при монтаже и обслуживании и т.д.), но по сравнению с зарубежными аналогами они имеют одно неоспоримое преимущество - цену. Стоимость одного номера в 2-4 раза меньше, чем на аналогичных импортных АТС, а если учесть значительное снижение эксплуатационных расходов в течение 25 лет эксплуатации, то экономический выигрыш будет еще более ощутим. Поэтому неудивительно, что предпочтение на ввод абонентской емкости на местных сетях отдается продукции именно белорусских производителей. Этому также способствует и то обстоятельство, что Государственная Программа импортозамещения предписывает использовать исключительно отечественное оборудование.

Основные технические характеристики ЦАТС, производимых в Республике Беларусь, приведены в таблице 2.1. В то же время нельзя не отметить тот факт, что зарубежные ЦАТС предоставляют абонентам гораздо больший перечень оказываемых услуг. Еще один недостаток ЦАТС, производимых в нашей республике, состоит в малой емкости (до 10000 портов) выпускаемых станций. Отсюда следует вывод: для успешного решения задачи, поставленной в моем дипломном проекте, продукция белорусских предприятий, к сожалению, не подходит .

Таблица 2.1 - Техническая характеристика ЦАТС, производимых в Республике Беларусь

Соединительные;

Абонентские

Наименование параметров

Максимальная абонентская емкость, номеров

Максимальное количество СЛ

Максимальное количество вызовов в ЧНН

Максимальный трафик в ЧНН (Эрл)

Потребляемая мощность на один номер (Вт)

Число портов на 1 плате

Обзор импортных систем коммутации

Для моего дипломного проекта наиболее подходят следующие коммутационные системы: DX-200 фирмы "Telenokia" (Финляндия), SI 2000 фирмы "Iskratel" (Словения), AXE-10 фирмы "Ericsson" (Швеция), EWSD фирмы "Siemens" (Германия), S12 Alkatel фирмы "Alkatel" (Германия).

Электронная цифровая коммутационная система DX-200.Система DX-200 активно используется во всем мире уже в течение многих лет и за это время заслужила уважение своей надежной и качественной работой. Система DX-200 характеризуется временным разделением каналов в коммутационном поле и цифровым способом передачи информации на основе системы передачи ИКМ-30/32. Управление осуществляется по записанной программе с применением распределенных функциональных управляющих устройств, реализованных на микропроцессорах. Система построена по модульному принципу, как аппаратных средств, так и программного обеспечения. Все функциональные блоки и программные средства подразделяются на независимые друг от друга модули. Модули взаимодействуют посредством стандартизированных сигналов.

Cистема DX-200 может использоваться в качестве опорной станции, транзитной станции, а также абонентских концентраторов.Опорная станция обеспечивает установление оконечных соединений между телефонными аппаратами абонентов местных сетей, а также выход на зоновые, междугородние и международние сети. Станции предназначены также для работы на районированных сетях с узлами входящего и исходящего сообщения, а также на сетях без узлообразования. На сетях может использоваться 5-, 6- и 7- значная нумерация, а также смешенная нумерация.

Транзитная станция предназначена для коммутации каналов, пропуска транзитной нагрузки на городскую телефонную станцию и обеспечивает организацию узлов входящего сообщения, узлов исходящего сообщения, узлов входящего междугороднего сообщения, узлов заказно-соединительных линий, совмещенных узлов, объединяющих вышеперечисленные узлы, узлов учрежденческих сетей.

Система DX-200 обеспечивает взаимодействие с существующими на сетях станциями: декадно-шаговыми, координатными, квазиэлектронными автоматическими телефонными станциями, а также со специальными информационными службами городской телефонной станции.

Для абонентов DX-200 предусмотрен целый ряд дополнительных видов услуг:

1) сокращенный набор номера;

3) повторный вызов без нового набора номера;

5) передача вызова в случае занятости вызываемого абонента на другой телефонный аппарат;

6) передача вызова на автоинформатор или телефонистке;

7) определение номера вызываемого абонента.

В системе DX-200 повременной учет стоимости разговора осуществляется при исходящей связи с учетом категории абонентов.

В состав системы DX-200 входят два типа автоматических телефонных станций: DX-210 и DX-220. Станция DX-210 в основном испольуется в качестве автоматической телефонной станции малой емкости . Основные характеристики системы DX-200 приведены в таблице 2.2.

Электронная цифровая коммутационная система SI 2000.Система SI 2000 предназначена для обслуживания телефонных сетей пригородной и сельской местности. Передовая концепция организации сети SI 2000 является базовой стратегией. В противоположность другим решениям данная концепция обеспечивает несравнимую экономическую выгоду и гибкость. Сети связи многих стран большей частью являются еще аналоговыми, и осуществить немедленную цифровизацию всех путей передачи практически невозможно. Наряду со стандартными возможностями система SI 2000 имеет еще некоторые специфические особенности, служащие для оптимизации решений, связанных с созданием цифровой сети связи.

Во всех телефонных станциях SI 2000 интегрированы аналоговые линейные комплекты. Такое решение для имеющегося аналогового оборудования передачи является экономически наиболее выгодным.

Разработка оптимизированной сети, ориентированной на пригородную и сельскую местность, требует создания цифровых островов. Способность SI 2000 синхронизироваться от цифровой сети позволяет выполнить цифровизацию подчиненных оконечных автоматических телефонных станций и трактов передачи. Для обеспечения беспрепятственного развития сети связи узловая SI 2000 будет выполнять в целом коммутацию и аналого-цифровое преобразование. Если будет смонтирована главная цифровая городская автоматическая телефонная станция, синхронизация SI 2000 будет выполняться от нее без какого-либо дополнительного оборудования.

Абонентом системы SI 2000 предоставляет следующие услуги:

декадный или частотный набор номера;

наличие контрольного счетчика у абонента;

наблюдение;

запрет некоторых видов исходящей связи;

переадресация вызова;

сокращенный набор номера (прямой вызов);

установка на ожидание

и многие другие со всей необходимой поддержкой по учету их стоимости.

Выносные модули в SI 2000 оптимизированы в соответствии с передовой концепцией организации сети. При возникновении потребности в больших емкостях используется автономные автоматические телефонные станции семейства SI 2000. Автономная автоматическая телефонная станция может быть преобразована в выносной модуль или, наоборот, без каких-либо изменений в аппаратных средствах.

Передача по маршрутам большой протяженности в сельской местности является более дорогостоящей, чем в городских зонах. Для того, чтобы сэкономить на оборудовании передачи, в систему SI 2000 интегрировано, в качестве обязательного, устройство ответвления каналов тракта ИКМ-30. В одном тракте ИКМ поток может быть разделен максимально по 15 станциям. Оборудование передачи данных может вводить или выделять свыше двух потоков данных со скоростью 64 килобит в секунду.

Основными достоинствами системы SI 2000 является надежность (менее 0,5 отказов на 100 линий в год), простота, распределенность и модульность, экономичность [ 7 ].

Основные характеристики системы SI 2000 приведены в таблице 2.2.

Электронная автоматическая коммутационная система AXE-10.Система коммутации AXE-10 может использоваться в качестве опорной автоматической телефонной станции, в качестве различных узлов связи (включая международние), а также в качестве центральных, узловых и оконечных автоматических телефонных станций малой емкости на сельских телефонных сетях.

В зависимости от варианта предлагаемого использования различают:

1) местную станцию AXE;

2) транзитную станцию;

3) станцию мобильной (подвижной) связи для создания сотовой сети связи.

Максимальная емкость AXE-10, используемой в качестве местной автоматической телефонной станции, составляет 200000 абонентских линий при средней продолжительности разговора 100 секунд и нагрузке на одну абонентскую линию до 0,1 эрланга.

Транзитная станция типа AXE-10 рассчитана до 2048 цифровых соединительных линий, позволяет пропускать нагрузку транзита до 200 тысяч абонентских линий, включаемых в местные автоматические телефонные станции. Допустимая нагрузка на один канал соединительной цифровой линии установлена равной 0,8 Эрланга.

Для аналого-цифрового преобразования используется импульсно-кодовая модуляция со скоростью передачи информации 2048 килобит в секунду.

Обмен управляющими сигналами с координатными автоматическими телефонными станциями осуществляется на базе системы сигнализации R2 посредством многочастотного кода "2 из 6".

При междугородней связи используется преимущественно одночастотная система сигнализации, применяется также система сигнализации по общему каналу сигнализации №7.

Посредством системы эксплуатации и технического обслуживания обеспечивается постоянное и всестороннее наблюдение за порядком и результатами установления соединений, контроль поступающей нагрузки.

Основные услуги, предоставляемые абонентам:

1) сокращенный набор номера;

3) наведение справки во время разговора;

4) переадресация вызова к телефону или на автоинформатор;

5) автоматическая конференц-связь;

6) установка на ожидание в случае занятости абонента с уведомлением;

7) вызов абонента по заказу;

8) сопровождающий вызов;

9) переключение на другой аппарат при занятости или при не ответе абонента;

10) ограничение исходящей связи;

11) определение номера вызывающего абонента при наличии заявки от вызывающего абонента;

12) автоматическая побудка.

Система коммутации может быть использована для планирования и разработки сетей связи в сельской местности. При этом должны учитываться большие расстояния, низкая телефонная плотность. В основе системы AXE-10 для сельской местности лежит тот же состав оборудования, что и для цифровой сети города. Дополнительно включается в поставку удаленный абонентский мультиплексор, позволяющий подключить до 128 абонентских линий. Предусмотрено использование кабельных цифровых линий связи или линий радиосвязи для соединения удаленных абонентских мультиплексоров с опорной автоматической телефонной станцией. Разработаны варианты размещения оборудования в специальных контейнерах, содержащих необходимые устройства для включения в сеть электропитания немедленного ввода в эксплуатация.

Для абонентов учрежденческого сектора специально разработаны такие услуги, как Центрекс и передача данных по специально выделенным каналам. С помощью этой услуги часть абонентов системы коммутации объединяется в группы с закрытой нумерацией и общим вызовом со стороны телефонной сети по выделенному номеру. Практически могут создаваться учрежденческие автоматические телефонные станции на базе одного и того же оборудования коммутации.

Система коммутации AXE-10 рассчитана на использование в качестве центральной станции сотовой сети связи типа NMT-450. Разработка специальной подсистемы для включения подвижной телефонной связи позволила организовать сопряжение системы AXE-10 с базовыми станциями сотовой связи .

Основные характеристики системы AXE-10 приведены в таблице 2.2.

Электронная автоматическая коммутационная система EWSD.Система EWSD приобрела прекрасную репутацию во многих странах мира благодаря своей надежности, экономической эффективности и многообразию предоставляемых услуг.

Цифровая электронная станция EWSD применяется: с использованием удаленного цифрового блока для оптимизации абонентской сети или для внедрения в зоне новых услуг, в качестве местной телефонной станции, в качестве транзитной телефонной станции, в качестве городской и транзитной междугородней станции, в качестве коммутационного центра для подвижных объектов, в качестве сельской станции, станции малой емкости, как контейнерная станция, в качестве коммутационной системы, в качестве центра эксплуатации и технического обслуживания группы станций, в качестве узла в системе общеканальной сигнализации, в цифровой сети интегрального обслуживания, для предоставления специальных услуг.

EWSD обеспечивает эксплуатационные компании многими преимущественными возможностями, которые, в свою очередь, обуславливаются универсальностью, гибкостью и эксплуатационными качествами коммутационной системы. К основным характерным возможностям EWSD можно отнести: интегрированный надзор, включающий надзор за работой, индикацию ошибок, процедуры анализа ошибок и их диагностику, внедрение в существующие сети, выбор маршрута, выбор альтернативного маршрута, регистрация учета стоимости телефонных разговоров, измерение нагрузки, управление базой данных и других.

В EWSD могут быть использованы все стандартные системы сигнализации. Передача сигнализации также осуществляется стандартными системами. Станция может работать как с абонентами с декадным набором номера, так и с абонентами с тональным набором номера. Для регистрации учета стоимости используются все стандартные методы.

Аналоговому абоненту могут быть представлены следующие виды услуг:

1) сокращенный набор номера;

2) соединение без набора номера (прямая связь);

3) соединение без выдержки времени;

4) передача входящего вызова при отсутствии абонента на службу отсутствующих абонентов;

5) автоинформатор с заранее записанными фразами;

7) временный запрет входящей связи;

8) постановка вызова на ожидание (в случае занятости вызываемого абонента);

9) наведение справки во время разговора;

10) конференц-связь;

11) распечатанная запись длительности и стоимости разговора;

12) автоматическая побудка;

13) специальный абонент;

14) приоритет вызовов

и другие.

Для абонентов цифровой сети интегрального обслуживания дополнительно могут быть предоставлены следующие виды услуг:

1) подключение до восьми оконечных устройств одновременно;

2) изменение оконечного устройства, выбор оконечного устройства;

3) мобильность оконечного устройства;

4) индикаторы услуги;

5) изменение услуги во времени вызова;

6) работа с одновременным пользованием двумя услугами;

7) регистрация учета стоимости разговора по отдельным услугам;

8) вызова, оплачиваемые абонентом и другие .

Основные характеристики системы EWSD приведены в таблице 2.2.

Электронная автоматическая коммутационная система Alkatel S12. При разработке системы большое внимание уделялось проблемам экономичности в производстве и эксплуатации. Экономичность производства обеспечивается высокой степенью унификации оборудования.

Главной функциональной характеристикой станции "Alkatel S12" является децентрализованная структура, основанная на полностью распределенном управлении, как функциями обработки информации, так и непосредственно процессами коммутации.

В сочетании с модульностью аппаратных и программных средств распределенное управление обеспечивает:

1) высокую надежность работы оборудования;

2) возможность построения станции в широком диапазоне емкостей;

3) гибкость в плановом наращивании емкостей системы по требованиям заказчика;

4) устойчивость к изменениям системных требований в будущем, поскольку новые применения будут связаны только с доукомплектованием станции новыми аппаратными или программными модулями без изменения архитектурных принципов и базовых аппаратно-программных средств;

5) упрощение программного обеспечения.

Модульная архитектура станции обеспечивает гибкое внедрение новых технологических решений и предоставление новых услуг в условиях эксплуатации без перерывов в работе. Новые технологические решения и версии программного обеспечения внедрены на сетях различных стран, доведя "Alkatel S12" до совершенного уровня соответствия требованиям к функциональным и технико-эксплуатационным характеристикам, а также обеспечив ее дальнейший эволюционный переход к узкополосной и широкополосной цифровой сети интегрального обслуживания.

Оборудование станции "Alkatel S12" предназначено для применения на сетях общего и специального назначения, охватывая спектр применения от малых вынесенных абонентских блоков до крупных городских и междугородних станций. Основными вариантами конфигурации оборудовании являются:

1) городские автоматические телефонные станции малой емкости (от 256 до 5376 абонентских линий);

2) городские автоматические телефонные станции средней и большой емкости (до 100000 абонентских линий);

3) транзитные узлы коммутации (до 60000 соединительных линий);

4) вынесенные абонентские концентраторы (до 976 абонентских линий).

Станции "Alkatel S12" обеспечивает предоставление абонентам следующих видов связи:

1) автоматическая внутренняя связь между всеми абонентами станции;

2) автоматическая входящая и исходящая местная связь к абонентам других станций;

3) транзитная связь между входящими и исходящими линиями;

4) автоматическая связь внутри определенной группы абонентов;

5) автоматическая исходящая связь к справочным службам;

6) полупостоянная коммутация.

Абонентам "Alkatel S12" предоставляются следующие виды дополнительных телефонных видов услуг:

1) переадресация входящего вызова к другому аппарату;

2) переадресация вызова в случае занятости абонента;

3) переадресация входящего вызова на автоинформатор или оператора;

4) сопровождающий вызов по паролю на аппарат, с которого заказывались услуги;

5) поисковая сигнализация;

6) установка на ожидание освобождения вызываемого абонента (ожидание с обратным вызовом);

7) повторный вызов без набора номера;

8) соединение с абонентом по предварительному заказу;

9) конференц-связь и другие.

Основные характеристики системы "Alkatel S12" приведены в таблице 2.2 .

Таблица 2.2 - Основные характеристики импортных систем коммутации

Как видно из вышесказанного, параметры импортных систем коммутации близки друг к другу, и в этом случае решающее значение имеет стоимость. Вот именно по этому критерию мной выбрана система коммутации AXE-10, как наилучшая по соотношению "качество-цена".

Рис. 3.3. Соотношения между временными интервалами и кадрами

3.2. Размещение логических каналов на физических каналах

Известно, что логические каналы образуются с помощью физических каналов. Метод размещения логических каналов на физических называется «отображением» - mapping .

Несмотря на то, что большинство логических каналов занимают только один временной интервал, некоторые логические каналы могут занимать более чем 1 TS. В этом случае информация логических каналов передаётся в одном и том же временном интервале физического канала в последовательных кадрах TDMA.

Поскольку логические каналы являются короткими, несколько логических каналов могут занимать один и тот же физический канал, что позволяет более эффективно использовать временные интервалы.

На рис. 3.4. показан случай, когда на одной несущей соты каналом DCCH из-за высокой нагрузки занимается дополнительный временной интервал.

Рис. 3.4. Размещение логических каналов на физических каналах

3.2.1. Несущая «0», временной интервал «0»

Нулевой временной интервал на нулевой несущей частоте в соте всегда резервируется для сигнализации. Таким образом, когда MS определила, что несущая частота является несущей BCCH, она знает, где и как считывать информацию.

При направлении передачи от BTS к MS (downlink) передается информация BCH и CCCH. Единственным каналом, по которому информация передается только в направлении от MS к BTS (uplink), является канал RACH. Канал для передачи информации RACH всегда свободен, поэтому MS может осуществить доступ в сеть в любое время.

3.2.2. Несущая «0», временной интервал «1»

Как правило, первый («1») временной интервал на нулевой несущей частоте в соте также всегда резервируется для сигнальных целей. Единственным исключением являются соты, где наблюдаются высокий или низкий трафик.

Как видно из рис. 3.4, если трафик в соте большой, то в целях установления соединения может быть занят третий физический канал, используя DCCH. Этим каналом может быть любой временной интервал, исключая временные интервалы «0» и «1» на несущей «0».

Это же происходит и тогда, когда нагрузка в соте низкая. В этом случае есть возможность занять временной интервал «0» на несущей «0» для передачи/приёма всей сигнальной информации: BCH, CCCH и DCCH. Таким образом, физический канал «1» может быть освобождён под трафик.

Восемь SDCCH каналов и 4 SACCH канала могут совместно использовать один и тот же физический канал. Это означает, что на одном физическом канале может быть установлено одновременно 8 соединений.

3.2.3. Несущая «0», временные интервалы со второго по седьмой и все остальные временные интервалы других несущих той же самой соты

Все остальные интервалы, кроме сигнальных интервалов «0» и «1» используются в соте под трафик, то есть для передачи речи или данных. В этом случае используется логический канал TCH.

Дополнительно MS во время разговора передает результаты измерений уровня сигнала, качества, временной задержки. Для этой цели используется канал SACCH, занимая на время один временной интервал TCH.

3.3. Пример обслуживания входящего вызова к MS

Рис. 3.5 схематично показывает обслуживание входящего вызова к MS и использование различных каналов управления.

Рис. 3.5. Вызов к MS

MSC/VLR располагает информацией о том, в какой LA находится MS. Сигнальное сообщение пейджинга передаётся тем BSC, который контролирует данную LA.

1. BSC распределяет вызывное сообщение между всеми базовыми станциями в требуемой LA. Базовые станции передают вызывные сообщения через эфир, используя канал PCH.

2. Когда MS обнаруживает идентифицирующий ее PCH, она осуществляет запрос на выделение канала управления через канал RACH.

3. BSC использует канал AGCH для информирования MS о том, какие каналы SDCCH и SACCH она может использовать.

4. SDCCH и SACCH используются для установления соединения. Занимается канал ТСН, а канал SDCCH освобождается.

5. MS и BTS переключаются на частоту канала TCH и выделенный под этот канал временной интервал. Если абонент отвечает, то соединение устанавливается. В процессе разговора радиосоединение контролируется посредством информации, передаваемой и получаемой MS по каналу SACCH.

Глава 4 - GPRS Служба пакетной передачи данных по радиоканалам общего пользования

GPRS использует общий физический ресурс радиоинтерфейса совместно с существующими ресурсами системы GSM с коммутацией каналов. Службу GPRS можно рассматривать как наложенную на сеть GSM. Это позволяет использовать одну и ту же физическую среду в сотах как для передачи речи с коммутацией каналов, так и для передачи данных с коммутацией пакетов. Ресурсы GPRS могут выделяться под передачу данных динамически в периоды, когда отсутствует сессия передачи информации с коммутацией каналов.

Для GPRS будет использовать те же физические каналы, но эффективность их использования намного больше по сравнению с традиционной GSM с коммутацией каналов, поскольку несколько пользователей GPRS могут использовать один канал. Это позволяет повысить утилизацию каналов. Кроме того, GPRS использует ресурсы только в период передачи и приема данных.

4.1 Архитектура сети GPRS

На приведено ниже рисунке показана структура системы GPRS. Поскольку GPRS является новой службой GSM, для нее используется существующая инфраструктура GSM с некоторыми модификациями. Решение для системы GPRS разрабатывалось таким образом, чтобы можно было быстро внедрять GPRS на сети с небольшими затратами.

Для внедрения GPRS необходимо выполнить модернизацию программного обеспечения элементов существующих сетей GSM, за исключением BSC, для которого требуется модернизация аппаратных средств (см. рис. 4.1). В сети GSM появляются два новых узла: Обслуживающий узел поддержки GPRS – Serving GPRS Support Node (SGSN) и Шлюзовой узел поддержки GPRS – Gateway GPRS Support Node (GGSN). Эта два узла физически могут быть реализованы в виде одного аппаратного узла. Возможно гибкое внедрение GPRS, сначала возможно, например, внедрение централизованного узла GPRS, который может представлять собой комбинацию узлов SGSN и GGSN. На следующей стадии они могут быть разделены на выделенные узлы SGSN и GGSN.

Ниже описывается, каким образом внедрение системы GPRS оказывает влияние на узлы GSM и какие терминалы GPRS существуют в сети.

Рис. 4.1 Архитектура сети GPRS (показаны BSS, CSS и PSS)

Интерфейс между SSGN и BSC является поддерживающим открытый интерфейс Gb, определенный в стандарте ETSI. Этот интерфейс позволяет оператору работать с мультивендорной конфигурацией.

4.2 Система базовых станций (BSS)

Система GPRS по радиоинтерфейсу взаимодействует с MS, передавая и принимая радиосигналы через систему BSS. BSS управляет передачей и приемом радиосигналов для всех видов сообщений: речи и данных, передаваемых в режиме коммутации каналов и коммутации пакетов. При внедрении GPRS для базовых станций BTS требуется дополнительное программное обеспечение и дополнительные аппаратные блоки.

BSS используется для разделения данных, передаваемых в режиме коммутации каналов и в режиме коммутации пакетов, поскольку только сообщения, передаваемые в режиме коммутации каналов направляются в MSC. Пакеты перенаправляются в новые узлы коммутации пакетов GPRS.

Система коммутации каналов (CSS)

CSS представляет собой традиционную систему SS сети GSM, включающую в себя уже рассмотренные ранее узлы (см. Главу 1, раздел 1.7: «Описание компонентов сети GSM»).

При внедрении GPRS необходима модернизация программного обеспечения MSC, которая позволяет выполнять комбинированные процедуры GSM/GPRS, например, комбинированную процедуру подключения MS (Attach): IMSI/GPRS.

Внедрение GPRS не оказывает влияния на GMSC, так как этот центр участвует в установлении соединения к абонентам сети GSM от абонентов сети фиксированной связи PSTN.

HLR является базой данных , в которой содержатся все абонентские данные, в том числе данные, относящиеся к абонированию службы GPRS. Таким образом, в HLR хранятся данные как для службы коммутации каналов, так и для службы коммутации пакетов. Эта информация включает в себя, например, разрешение/запрет на использование услуг GPRS абоненту, имя узла доступа (Access Point Name – APN) провайдера службы Интернет (Internet Service Provider – ISP), а также указание на то, выделены ли для MS адреса IP. Эта информация хранится в HLR как контекстное абонирование (context subscription) протокола пакетной передачи данных PDP. В HLR может храниться до 5 контекстов PDP на одного абонента. Доступ к хранящейся в HLR информации осуществляется из SGSN. При роуминге обращение за информацией может осуществляться в HLR, не связанный с собственным узлом SGSN.

Для работы HLR в сети GPRS необходима модернизация его программного обеспечения.

4.3.1 Центр аутентификации (AUC)

AUC не требует какой-либо модернизации при работе с GPRS. Новым свойством с точки зрения AUC в сети GPRS является только новый алгоритм шифрования, который определен для GPRS как А5.

Служба коротких сообщений – взаимодействующий MSC (SMS-IW-MSC) позволяет MS с функциями GPRS передавать и принимать SMS через радиоканалы GPRS. SMS-IW-MSC не изменяется при внедрении GPRS.

4.3.2Система коммутации пакетов (PSS)

PSS является новой системой, разработанной специально для GPRS. Эта система основана на протоколах Интернет (IP). Она включает в себя новые узлы пакетной коммутации, в общем контексте известные как GSN (Узлы поддержки GPRS). В настоящее время существуют два вида узлов GPRS: Обслуживающий узел поддержки GPRS (SGSN) и Шлюзовой узел поддержки GPRS (GGSN). Интерфейсы SGSN связывают его со стандартными узлами сети GSM, такими, как MSC/BSC, а интерфейсы GGSN связывают этот узел в с внешними сетями пакетной передачи данных, такими, как сеть Интернет или корпоративная сеть Интернет.

4.3.3 Терминалы GGSN

Существуют три класса MS, которые могут работать с GPRS.

Класс А: MS класса А одновременно поддерживает GPRS и другие службы GSM. Это означает, что MS одновременно выполняет функции подключения (attach), активизации, мониторинга, передачи информации и т. д. как для передачи речи, так и для пакетной передачи данных. MS класса А одновременно может обслуживать вызов для речевой службы и принимать пакетные данные.

Класс В: MS класса В одновременно наблюдает за каналами GSM и GPRS, но в каждый момент времени может принимать/передавать информацию либо службы с коммутацией каналов, либо службы с коммутацией пакетов.

Класс С: MS класса С поддерживает только неодновременные операции, например, attach. Если MS этого класса поддерживает как службы GSM, так и службы GPRS, она может получать вызовы только от выбранной по умолчанию или назначенной оператором службы. Не назначенные или не выбранные службы являются недоступными.

4.3.4 Другие объекты

Биллинговый шлюз (Biling Gateway – BGw).

BGw облегчает внедрение GPRS в сети мобильной связи путем реализации функций, упрощающих управление начислением оплаты для GPRS в биллинговой системе. В частности, очень полезной является функция Advanced Processing – усовершенствованная обработка биллинговой информации.

Критерии начисления оплаты при пользовании услугами GPRS фундаментально отличаются от тех критериев, которые применяются для служб с коммутацией каналов. В частности, они основаны на объеме переданной/полученной информации, не на времени занятия каналов. Сессия GPRS может быть активной в течение достаточно длительного периода времени, тогда как реальная передача данных осуществляется в короткие промежутки времени при наличие свободных радиоресурсов. В этом случае время занятия радиоресурсов является несущесвтенным критерием для начилсения полаты в сравнении с обхемом данных.

Информация о начислении оплаты может быть получена от SGSN и GGSN, использующих интерфейсы, отличающиеся от интерфейсов MSC и для этой информации создаются отчеты CDR нового типа. Некоторыми новыми типами CDR являются:

· S-CDR, связанные с использованием радиосети и переданные от SGSN.

· G-CDR, связанные с использованием внешних сетей передачи данных и переданные от GGSN.

· CDR, связанные с использованием службы коротких сообщений, основанной на GPRS.

Во время одной сессии GPRS может быть сгенерировано несколько S-CDR и G-CDR.

BGw позволяет начислять оплату за услуги передачи данных с минимальным влиянием на уже существующие биллинговые системы. BGw может либо трансформировать данные в тот формат, который распознается существующей биллинговой системой, либо может использоваться для создания нового биллингового приложения, специально адаптированного для начисления оплаты за объем. Это позволяет внедрять службы передачи данных очень быстро и осуществлять начисление оплаты за пользование услугами немедленно, в реальном режиме времени.

Узлы поддержки GPRS

Узлами поддержки GPRS являются SGSN и GGSN, каждый из которых выполняет специфические функции в составе сети GPRS. Ниже описываются эти конкретные индивидуальные функции.

Обслуживающий узел поддержки GPRS (SGSN)

SGSN расположен в сети GPRS, как показано на рис. 4.2. Этот узел взаимодействует с BSC, MSC/VLR, SMS-G и HLR. Этот узел подключается к базовой сети передачи данных (backbone network) для организации связи с GGSN и другими SGSN.

Рис. 4.2 Интерфейсы SGSN

SGSN обслуживает всех абонентов GPRS, физически расположенных в пределах географической зоны обслуживания SGSN. SGSN выполняет в GPRS функции, аналогичные тем, которые выполняет MSC в сети GSM. То есть этот узел управляет функциями подключения, отключения MS, обновления информации о местоположении и т. д. Абоненты GPRS могут быть обслужены любым узлом SGSN в сети в зависимости от их местоположения.

Функции SGSN.

В составе сети GPRS узел SGSN выполняет следующие функции. Управление мобильностью (ММ). Узел SGSN реализует функции протокола ММ в MS и по сетевым интерфейсам. Процедурами ММ, поддерживаемыми по этому интерфейсу, являются подключение IMSI как для вызовов GPRS, так и для вызовов с коммутацией каналов, обновление зоны маршрутизации, обновление комбинированной зоны маршрутизации и зоны местоположения, передача пейджинговых сигналов.

Протокол ММ позволяет сети поддерживать перемещающихся абонентов. ММ позволяет MS перемещаться из одной соты в другую, перемещаться из одной зоны маршрутизации SGSN в другую, перемещаться между узлами SGSN в пределам сети GPRS.

Понятие «зона местоположения» (LA) не используется в GPRS. Аналогом этого понятия в GPRS является зона маршрутизации (Routing Area – RA). RA состоит из одной или нескольких сот. В первой реализации RA была эквивалентна LA.

ММ позволяет абонентам передавать и получать данные во время перемещения в пределах своей сети PLMN, а также при перемещении в другую сеть PLMN. SGSN поддерживает стандартный интерфейс Gs в направлении MSC/VLR для MS классов A и B, что позволяет выполнять следующие процедуры:

- Комбинированное подключение/отключение GPRS / IMSI . Процедура «IMSI attach» осуществляется через SGSN. Это позволяет объединять/комбинировать действия и таким образом экономить радиоресурсы. Эти действия зависят от класса MS.

- Комбинированный пейджинг . Если MS зарегистрирована одновременно как IMSI/GPRS терминал, (работа в режиме I), MSC/VLR выполняет пейджинг через SGSN. Сеть также может координировать предоставление служб с коммутацией каналов или с коммутацией пакетов. Координация пейджинговой операции означает, что сеть передает пейджинговые сообщения для служб с коммутацией каналов по тем же каналам, которые используются для служб с коммутацией пакетов, то есть пейджинговый канал GPRS или канал трафика GPRS.

- Комбинированные обновление метоположения (зоны местоположения LA или зоны маршрутизации RA) для служб с коммутацией каналов GSM и служб с коммутацией пакетов GPRS. MS выполняет функции обновления местоположения отдельно, передавая информацию о новой LA в MSC и новой RA в SGSN. По интерфейсу Gs оба узла: MSC и SGSN могут обмениваться информацией об обновлении местоположения абонента, позволяя тем самым друг другу выполнять обновление. Это позволяет экономить на функциях сигнализации по радиоинтерфейсу.

Управление сеансами (Session Management – SM)

Процедуры SM включают в себя активизацию контекста протокола пакетной передачи данных (PDP), деактивизацию этого контекста и его модификацию.

Контекст PDP используется для установления и разъединения виртуального канала передачи данных между терминалом, подключенным к MS и GGSN.

SGSN затем сохраняет данные, которые включают в себя:

Идентификатор контекста PDP - индекс, используемый для указания на конкретный контекст PDP.

Тип PDP. Это тип контекста PDP. В настоящее время поддерживается IPv4.

Адрес PDP. Это адрес мобильного терминала. Это либо адрес IPv4, если абонент указывает его при заключения контракта на предоставление услуг пакетной передачи данных, либо это пустое множество при использовании динамического режима назначения адреса.

Имя узла доступа (APN). Это сетевой идентификатор внешней сети, например: wap. *****

Определенное качество обслуживания (QoS). Это профиль QoSЮ, на который может подписаться абонент.

Контекст PDP должен быть активным в SGSN до того, как какой-либо блок пакетной передачи данных (PDU) может быть передан в MS или получен из MS.

Когда в SGSN поступает сообщение о запросе на активизацию контекста PDP, он запрашивает функцию управления разрешением. Эта функция ограничивает число регистраций в пределах одного узла SGSN и контролирует качество в пределах каждой зоны. Затем SGSN проверяет, разрешен ли абоненту доступ к конкретной сети ISP или корпоративной сети передачи данных.

Начисление оплаты

Эта функция обеспечивает оператора достаточной информацией о действиях абонента и позволяет составлять счета на основе объема переданной информации (объем переданных данных, SMS), а также о продолжительности сеанса передачи данных (время включения/регистрации, продолжительность активного состояния контекста PDP) .

Возможности службы GPRS по начислению оплаты полностью соответствуют спецификациям ETSI для S-CDR (SGSN), G-CDR (GGSN) и SMS CDR.

CDR содержит все обязательные поля и следующие опциональные поля:

S-CDR: отметку о классе MS, информацию о зоне маршрутизации RA, код зоны, идентификатор соты, информацию о смене SGSN в процессе сеанса, диагностическую информацию, номер последовательности в отчете, идентификатор узла.

G-CDR: флаг динамического адреса, диагностическую информацию, номер последовательности в отчете, идентификатор узла.

У всех CDR имеются идентификаторы, благодаря этому можно отсортировать все CDR, относящиеся к одному сеансу управления мобильностью ММ и связанные с соответствующими сеансами PDP, что является важным с точки зрения выставления счетов. Это распространятеся на все CDR от всех узлов GPRS.

CDR в узлах GPRS сначала подпадают в буфер временного хранения, в котором хранятся около 15 минут, затем они записываются на жесткий диск. Емкость диска для хранения данных о начислении оплаты приблизительно рассчитана на хранение данных о начислении оплаты, эквивалентных 72 часам.

Оператор может конфигурировать следующие параметры:

Пункт назначения (например, биллинговая система);

Максимальный объем памяти на диске для хранения CDR;

Максимальное время хранения CDR;

Таймер буферизации в оперативной памяти (RAM);

Объем буферизации в оперативной памяти (RAM);

Метод извлечения данных.

Выбор GGSN

SGSN выбирает GGSN (включая сервер доступа) на основе протокола пакетной передачи данных (PDP), имени узла доступа (APN) и данных о конфигурации. Он использует сервер доменного имени (Domain Name Server) в базовой сети для установления идентичности SGSN, обслуживающего запрашиваемый APN. Затем SGSN устанавливает тоннель с помощью тоннельного протокола GPRS (GTP) для подготовки GGSN к дальнейшей обработке.

DIV_ADBLOCK192">

Ниже приведен пример успешной доставки сообщения SMS по радиоканалам GPRS:

SMS-C определяет, что необходимо переслать сообщение в MS. SMS-C перенаправляет это сообщение в SMS-GMSC. SMS-GMSC проверяет адрес пункта назначения и запрашивает информацию о маршрутизации из HLR для доставки SMS. HLR передает результирующее сообщение, которое может включать в себя информацию о SGSN, в зоне действия которого в данный момент находится искомая MS, информацию о MSC или информацию об обоих узлах. Если результирующее сообщение не содержит номер SGSN, это означает, что HLR располагает информацией о том, что MS находится вне зоны действия SGSN и недоступна через этот SGSN. Если результирующее сообщение содержит номер MSC, сообщение SMS будет доставляться традиционным образом через сеть GSM. Если результирующее сообщение содержит номер SGSN, SMS-GMSC перенаправит SMS в SGSN. SGSN передаст SMS в MS, и отправит сообщение об успешной доставке сообщения в SMS-C.

4.6 Шлюзовой узел поддержки GPRS (GGSN)

GGSN обеспечивает интерфейс в направлении внешней IP сети с пакетной передачей данных. GGSN обеспечивает функции доступа для внешних устройств, таких, как маршрутизаторы ISP и серверы RADIUS, обеспечивающие функции безопасности. С точки зрения внешней сети IP GGSN действует как маршрутизатор для адресов IP всех абонентов, обслуживаемых сетью GPRS. Направление пакетов к нужному SGSN и преобразование протоколов также обеспечивается узлом GGSN.

4.7 Функции GGSN

GGSN выполняет следующие функции в составе сети GSPR:

- Подключение к сети IP . GGSN поддерживает соединения с внешними сетями IP с помощью сервера доступа. Сервер доступа использует сервер RADIUS для назначения динамических адресов IP.

- Обеспечение безопасности передачи данных по протоколу IP . Эта функция обеспечивает безопасную передачу между SGSN и GGSN (интерфейс Gi). Эта функция необходима при подключении абонентов GPRS через их собственную корпоративную сеть (VPN). Она также повышает безопасность управления трафиком между узлами GPRS и системами управления. Функции безопасности протокола IP позволяют шифровать все передаваемые данные. Это является защитой от нелегального доступа и обеспечивает гарантии конфиденциальности передачи пакетов данных, целостность данных и аутентификацию источника данных. Механизмы обеспечения безопасности основываются на фильтрации, аутентификации и шифровании на уровне IP. Для обеспечения более высокой степени безопасности при передаче по базовой сети IP эта функция интегрируется в маршрутизатор как в SGSN, так и в GGSN (а также в шлюзовые устройства, действующие на границах сетей). Для этого решения используется заголовок аутентификации Opv4 IPSEC, использующий алгоритм MD5 и инкапсулированную нагрузку для обеспечения безопасности (ESP), в которой используется режим цепочечного блочного шифрования американского стандарта шифрования данных (DES-CBC). Система также готова к введению новых алгоритмов шифрования (например, ассиметричного протокола аутентификации с ключами общего пользования и т. д.)

- Маршрутизация. Маршрутизация является функцией SGSN.

- Управление сеансами. GGSN поддерживает процедуры управления сеансами (то есть активизацию, деактивизацию и модификацию контекста PDP). Управление сеансами описано в разделе «Функции SGSN. Управление сеансами».

- Поддержка функции начисления оплаты. GGSN также генерирует CDR для каждой обслуживаемой MS. CDR содержит регистрационный файл с отметкой времени для процедур управления сеансами в случае применения режима начисления оплаты, основанного на учете времени и файл с учетом объема переданной информации.

4.8 Логические каналы

В системе GSM определено около 10 типов логических каналов. Эти каналы используются для передачи различных типов информации. Так, например, пейджинговый канал PCH используется для передачи вызывного сообщения, а по широковещательному каналу управления BCCH передается информация о системе. Для GPRS определена новая совокупность логических каналов. Большинство из них имеют наименования, аналогичные и соответствующие наименованиям каналов в GSM. Наличие в сокращенном наименовании логического канала буквы «Р», означающей «Packet» и стоящей перед всеми остальными буквами, указывает на то, что это канал GPRS. Так, например, пейджинговый канал в GPRS обозначается как PPCH – Packet Paging Channel.

Новым логическим каналом системы GPRS является канал PTCCH (Packet Timing advance Control Channel). Это канал уведомления о временной задержке TA, он необходим для регулировки этого параметра. В системе GSM информация, относящаяся к этому параметру, передается по каналу SACCH.

Для поддержки GPRS могут быть назначены группы каналов для соединений с коммутацией пакетов (PS). Каналы, назначенные для GPRS для обслуживания трафика, поступающего из домена с коммутацией каналов (CSD), обозначаются как каналы пакетной передачи данных PDCH. Эти PDCH будут принадлежать домену с коммутацией пакетов (PSD). Для назначения PDCH используется мультислотовая структура кадра и TCH, способный поддерживать PS.

В соте каналы PDCH будут сосуществовать с каналами обслуживания трафика для CS. Ответственным за назначение каналов PDCH является блок управления пакетной передачей PCU.

В PSD несколько соединений PS могут совместно использовать один и тот же канала PDCH. Одно соединение PS определяется как поток временных блоков (TBF), который передается в обоих направлениях: uplink и downlink. MS может располагать одновременно двумя TBF, один из их которых используется в направлении uplink, а другой – в направленииdownlink.

При назначении TBF для MS резервируется один или несколько PDCH. PDCH располагаются в совокупности каналов PDCH, называемой PSET и только один канал PDCH в одном и том же PSET может использоваться для MS. До резервирования канала система должна убедиться в том, что в PSD есть один или несколько свободных каналов PDCH.

4.9 Назначение каналов в системе GPRS

Канал PBCCH так же, как и канал BCCH в GSM, является широковещательным каналом управления и используется только в информационной системе пакетной передачи данных. Если оператор не назначает в системе каналы PBCCH, информационная система пакетной передачи данных использует для своих целей канал BCCH.

Этот канал состоит из логических каналов, используемых для общей сигнализации управления, необходимой для пакетной передачи данных.

Этот канал пейджингового вызова используется только в направлении downlink. Он используется для передачи вызывного сигнала к MS до начала передачи пакетов. PPCH может быть использован в группе пейджинговых каналов как для режима коммутации пакетов, так и для режима коммутации каналов. Использование канала PPCH для режима с коммутацией каналов возможно только для терминалов GPRS классов А и В в сети с режимом работы I.

PRACH – Packet Random Acces Channel, используется только в направлении uplink. PRACH используется MS для инициализации передачи в направлении uplink для передачи данных или сигнализации.

PAGCH – Packet Access Grant Channel используется только в направлении downlink в фазе установления соединения для передачи информации о назначении ресурса. Передается в MS до начала передачи пакетов.

PNCH – Packet Notification Channel используется только в направлении downlink. Этот канал используется для передачи уведомления PTM-M (Point-to-Multipoin – Multicast) к группе MS до передачи пакета PTM-M. Для мониторинга канала PNCH должен быть назначен режим DRX. Услуги DRX не специфицированы для GPRS фазы 1.

PАCCH - Packet Associated Control Channel переносит информацию сигнализации, связанную с конкретным MS. Информация сигнализации включает в себя, например, подтверждения и информацию управления выходной мощностью терминала. По каналу PАCCH передаются также сообщения о назначении или переназначении ресурса. Этот канал использует ресурсы совместно с каналами PDTCH, назначенными конкретной MS. Кроме того, по этому каналу может быть передано пейджинговое сообщение в сторону MS, находящейся в состоянии соединения с коммутацией каналов, о том, что данная MS вовлекается в режим передачи пакетов.

PTCCH/U - Packet Timing advance Control Channel используется только в направлении uplink. Этот канал используется для передачи пакета случайного доступа для оценки временной задержки одной MS, находящейся в режиме передачи пакетов.

PTCCH/D - Packet Timing advance Control Channel используется только в направлении downlink.. Этот канал используется для передачи информации об обновлении значения временной задержки для нескольких MS. Один PTCCH/D используется совместно с несколькими PTCCH/U.

По этому каналу передаются пакеты данных. Если система работает в режиме PTM-M, он временно назначается для одной MS из группы. Если система работает в мультислотовом режиме, одна MS может параллельно использовать несколько каналов PDTCH для одного сеанса передачи пакетов. Все трафиковые каналы передачи пакетов являются двунаправленными, при этом различают PDTCH/U для направления передачи uplink, и PDTCH/D для направления передачи downlink.

Глава 5 - Система коммутации

Введение

Система коммутации подвижной радиосвязи приведена на рис. 5.1

676 " style="width:506.9pt;border-collapse:collapse;border:none">

5.2. Центр коммутации подвижной связи/визитный регистр (MSC/VLR)

5.2.1 Функции MSC

MSC – это основной узел в системе GSM. Этот узел управляет всеми функциями по обслуживанию входящих и исходящих вызовов между MS. Основными функциями данного узла являются.