Логическая операция исключающее или. Основные логические операции

На практике наиболее часто используют двухвходовые элементы «исключающее ИЛИ. На рис. 1 показано условное графическое обозначение элемента без инверсии и его таблица состояний. По простому, суть данного элемента сводится к следующему, сигнал на выходе появляется только в том случае, когда логические уровни на входах не одинаковые.

Схема выделения фронта и среза импульса

В данной схеме три элемента «Исключающий ИЛИ» используются для задержки импульсов. DD1.4 — суммирующий. Выходные импульсы имеют стабильные фронты и срезы. Длительность каждого выходного импульса равна утроенному времени задержки переключения каждого из трех элементов. Временной промежуток между фронтами выходных импульсов равен длительности входного импульса. Так же это устройство удваивает частоту входного сигнала.

Есть еще одно интересное свойство «Исключающее ИЛИ». Если на один из входов подать постоянный «0», то сигнал на выходе элемента будет повторять входной сигнал, а если постоянный «0» поменять на постоянную «1», то выходной сигнал уже будет инверсией входного.

Иногда появляется необходимость получить элемент «исключающее ИЛИ» из отдельных стандартных логических элементов. Примером может служить схема элемента «исключающее ИЛИ» реализованная на четырех элементах 2-И-НЕ. На рисунке 3 показана схема «исключающее ИЛИ» в четырех ее состояниях. Здесь показаны все возможные логические уровни на каждом из используемых логически элементов 2-И-НЕ.

Такие элементы входят в схему . В данной схеме элемент «Исключающий ИЛИ» выполнен на четырех элементах 2-И-НЕ, входящих в один корпус микросхемы К561ЛА7.

Формирователь дискретного сигнала с разностной частотой

Схема формирователя показана на рисунке 4. Здесь логический элемент «исключающее ИЛИ» также реализован на четырех элементах 2-И-НЕ.

На входы 1 и 2 формирователя падают импульсы прямоугольной формы (см. графики 1 и 2), которые различаются частотой следования. Узел на логических элементах DD1.1-DDI.4 перемножает эти сигналы. Выходной импульсный сигнал (график 3) с элемента DD1.4 подается на интегрирующую цепь R3, С1, преобразующую его в сигнал треугольной формы (график 4) с частотой, равной разности частот входных сигналов, а ОУ DA1 преобразует полученный сигнал в меандр (см. график 5). Резистором R1 регулируют длительность положительной и отрицательной полуволн выходного сигнала. Очень интересная схема. Радиоконструктору, есть над чем подумать. Например, сигнал, показанный на третьем графике, является сигналом ШИМ синусоиды.
Конечно диапазон использования элементов «исключающее ИЛИ» намного шире. Я привел здесь на мой взгляд более интересные для радиолюбителей.

Теги: Си битовые операции, побитовые операции, побитовое сложение, побитовое умножение, битовый сдвиг влево, битовый сдвиг вправо

Введение

Я зык Си иногда называют макроассемблером за его тягу к железу. Если не использовать оптимизацию, можно даже примерно оценить, в какие конструкции на ассемблере преобразуется код программы. Простота и минимализм языка (простоту языка не путать с простотой программирования на языке) привели к тому, что на многих платформах си остаётся единственным высокоуровневым языком программирования. Без обзора побитовых операций, конечно, изучения языка было бы неполным.

Побитовые операции, как понятно из названия, позволяют оперировать непосредственно с битами. Большое количество примеров использования побитовых операций можно найти, например, в книге Генри Уоррена «Алгоритмические трюки для программистов». Здесь мы рассмотрим только сами операции и примитивные алгоритмы.

Побитовые И, ИЛИ, НЕ, исключающее ИЛИ

Н апомню для начала, что логические операции И, ИЛИ, исключающее ИЛИ и НЕ могут быть описаны с помощью таблиц истинности

Логический оператор НЕ
X NOT X
0 1
1 0

В побитовых (bit-wise) операциях значение бита, равное 1, рассматривается как логическая истина, а 0 как ложь. Побитовое И (оператор &) берёт два числа и логически умножает соответствующие биты. Например, если логически умножить 3 на 8, то получим 0

Char a = 3; char b = 8; char c = a & b; printf("%d", c);

Так как в двоичном виде 3 в виде однобайтного целого представляет собой

Первый бит переменной c равен логическому произведению первого бита числа a и первого бита числа b. И так для каждого бита.

00000011
00001000
↓↓↓↓↓↓↓↓
00000000

Соответственно, побитовое произведение чисел 31 и 17 даст 17, так как 31 это 00011111 , а 17 это 00010001

00011111
00010001
↓↓↓↓↓↓↓↓
00010001

Побитовое произведение чисел 35 и 15 равно 3.

00100011
00001111
↓↓↓↓↓↓↓↓
00000011

Аналогично работает операция побитового ИЛИ (оператор |), за исключением того, что она логически суммирует соответствующие биты чисел без переноса.

Например,

Char a = 15; char b = 11; char c = a | b; printf("%d", c);

выведет 15, так как 15 это 00001111 , а 11 это 00001011

00001111
00001011
↓↓↓↓↓↓↓↓
00001111

Побитовое ИЛИ для чисел 33 и 11 вернёт 43, так как 33 это 00100001 , а 11 это 00001011

00100001
00001011
↓↓↓↓↓↓↓↓
00101011

Побитовое отрицание (оператор ~) работает не для отдельного бита, а для всего числа целиком. Оператор инверсии меняет ложь на истину, а истину на ложь, для каждого бита. Например,

Char a = 65; char b = ~a; printf("%d", b);

Выведет -66, так как 65 это 01000001 , а инверсия даст 10111110

что равно -66. Кстати, вот алгоритм для того, чтобы сделать число отрицательным: для нахождение дополнительного кода числа его надо инвертировать и прибавить к нему единицу.

Char a = 107; char b = ~a + 1; printf("a = %d, -a = %d", a, b);

Исключающее ИЛИ (оператор ^) применяет побитово операцию XOR. Например, для чисел

Char a = 12; char b = 85; char c = a ^ b; printf("%d", c);

будет выведено 89, так как a равно 00001100 , а b равно 01010101 . В итоге получим 01011001

Иногда логические операторы && и || путают с операторами & и |. Такие ошибки могут существовать в коде достаточно долго, потому что такой код в ряде случаев будет работать. Например, для чисел 1 и 0. Но так как в си истиной является любое ненулевое значение, то побитовое умножение чисел 3 и 4 вернёт 0, хотя логическое умножение должно вернуть истину.

Int a = 3; int b = 4; printf("a & b = %d\n", a & b); //выведет 0 printf("a && b = %d\n", a && b);//выведет не 0 (конкретнее, 1)

Операции побитового сдвига

О пераций сдвига две – битовый сдвиг влево (оператор <<) и битовый сдвиг вправо (оператор >>). Битовый сдвиг вправо сдвигает биты числа вправо, дописывая слева нули. Битовый сдвиг влево делает противоположное: сдвигает биты влево, дописывая справа нули. Вышедшие за пределы числа биты отбрасываются.

Например, сдвиг числа 5 влево на 2 позиции

00000101 << 2 == 00010100

Сдвиг числа 19 вправо на 3 позиции

00010011 >> 3 == 00000010

Независимо от архитектуры (big-endian, или little-endian, или middle-endian) числа в двоичном виде представляются слева направо, от более значащего бита к менее значащему. Побитовый сдвиг принимает два операнда – число, над которым необходимо произвести сдвиг, и число бит, на которое необходимо произвести сдвиг.

Int a = 12; printf("%d << 1 == %d\n", a, a << 1); printf("%d << 2 == %d\n", a, a << 2); printf("%d >> 1 == %d\n", a, a >> 1); printf("%d >> 2 == %d\n", a, a >> 2);

Так как сдвиг вправо (>>) дописывает слева нули, то для целых чисел операция равносильна целочисленному делению пополам, а сдвиг влево умножению на 2. Произвести битовый сдвиг для числа с плавающей точкой без явного приведения типа нельзя. Это вызвано тем, что для си не определено представление числа с плавающей точкой. Однако можно переместить число типа float в int, затем сдвинуть и вернуть обратно

Float b = 10.0f; float c = (float) (*((unsigned int*)&b) >> 2); printf("%.3f >> 2 = %.3f", b, c);

Но мы, конечно же, получим не 5.0f, а совершенно другое число.

Особенностью операторов сдвига является то, что они могут по-разному вести себя с числами со знаком и без знака, в зависимости от компилятора. Действительно, отрицательное число обычно содержит один бит знака. Когда мы будем производить сдвиг влево, он может пропасть, число станет положительным. Однако, компилятор может сделать так, что сдвиг останется знакопостоянным и будет проходить по другим правилам. То же самое и для сдвига вправо.

Unsigned int ua = 12; signed int sa = -11; printf("ua = %d, ua >> 2 = %d\n", ua, ua >> 2); printf("sa = %d, sa >> 2 = %d\n", sa, sa >> 2); printf("(unsigned) sa = %u, sa >> 2 = %u\n", sa, sa >> 2); printf("sa = %d, ((unsigned) sa) >> 2 = %d", sa, ((unsigned) sa) >> 2);

В данном случае при первом сдвиге всё работает, как и задумано, потому что число без знака. Во втором случае компилятор VSE2013 оставляет знак. Однако если посмотреть на представление этого числа, как беззнакового, сдвиг происходит по другим правилам, с сохранением самого левого бита. В последней строчке, если привести число со знаком к числу без знака, то произойдёт обычный сдвиг, и мы получим в результате положительное число.

Побитовые операторы и операторы сдвига не изменяют значения числа, возвращая новое. Они также как и арифметические операторы, могут входить в состав сложного присваивания

Int a = 10; int b = 1; a >>= 3; a ^= (b << 3); и т.д.

Примеры

1. Напишем функции, которые позволяют определять и изменять определённый бит числа

Для того, чтобы узнать, какой бит (1 или 0) стоит на позиции n, воспользуемся логическим умножением.

Пусть имеется число 9

00001001

Нужно узнать, выставлен ли бит на позиции 3 (начиная с нуля). Для этого умножим его на число, у которого все биты равны нулю, кроме третьего:

00001001 & 00001000 = 00001000

Теперь узнаем значение бита в позиции 6

00001001 & 01000000 = 00000000

Таким образом, если мы получаем ответ, равный нулю, то на искомой позиции находится ноль, иначе единица. Чтобы получить число, состоящее из нулей с одним битом на нужной позиции, сдвинем 1 на нужное число бит влево.

#include #include #include int checkbit(const int value, const int position) { int result; if ((value & (1 << position)) == 0) { result = 0; } else { result = 1; } return result; } void main() { int a = 3; size_t len = sizeof(int) * CHAR_BIT; size_t i; for (i = 0; i < len; i++) { printf("%d", checkbit(a, i)); } _getch(); }

Заметьте, что в функции условие записано так

(value & (1 << position)) == 0

Потому что без скобок сначала будет вычислено равенство нулю и только потом выполнено умножение.

Value & (1 << position) == 0

Функцию можно упростить

Int checkbit(const int value, const int position) { return ((value & (1 << position)) != 0); }

Функция, которая выставляет бит на n-й позиции в единицу.

Известно, что логическое сложение любого бита с 1 будет равно 1. Так что для установки n-го бита нужно логически сложить число с таким, у которого все биты, кроме нужного, равны нулю. Как получить такое число, уже рассмотрено.

Int setbit(const int value, const int position) { return (value | (1 << position)); }

Функция, которая устанавливает бит на n-й позиции в ноль.

Для этого нужно, чтобы все биты числа, кроме n-го, не изменились. Умножим число на такое, у которого все биты равны единице, кроме бита под номером n. Например

0001011 & 1110111 = 0000011

Чтобы получить такую маску, сначала создадим число с нулями и одной единицей, а потом инвертируем его.

Int unsetbit(const int value, const int position) { return (value & ~(1 << position)); }

Функция, изменющая значение n-го бита на противоположное.

Для этого воспользуемся функцией исключающего или: применим операцию XOR к числу, которое состоит из одних нулей и одной единицы на месте нужного бита.

Int switchbit(const int value, const int position) { return (value ^ (1 << position)); }

Проверка

#include #include #include int checkbit(const int value, const int position) { return ((value & (1 << position)) != 0); } int setbit(const int value, const int position) { return (value | (1 << position)); } int unsetbit(const int value, const int position) { return (value & ~(1 << position)); } int switchbit(const int value, const int position) { return (value ^ (1 << position)); } void printbits(int n) { //CHAR_BIT опеределён в библиотеке limits.h //и хранит число бит в байте для данной платформы size_t len = sizeof(int)* CHAR_BIT; size_t i; for (i = 0; i < len; i++) { printf("%d", checkbit(n, i)); } printf("\n"); } void main() { int a = 3; size_t len = sizeof(int) * CHAR_BIT; size_t i; printbits(a); a = setbit(a, 5); printbits(a); a = unsetbit(a, 5); printbits(a); a = switchbit(a, 11); printbits(a); a = switchbit(a, 11); printbits(a); _getch(); }

Битовые флаги

Расммотрим синтетический пример. Пусть у нас есть три логические переменные, и нам нужно вывести определённое значение в зависимости от всех этих переменных сразу. Очевидно, что может быть 2 3 возможных вариантов. Запишем это условие в виде ветвления:

#include int main() { unsigned char a, b, c; a = 1; b = 0; c = 0; if (a) { if (b) { if (c) { printf("true true true"); } else { printf("true true false"); } } else { if (c) { printf("true false true"); } else { printf("true false false"); } } } else { if (b) { if (c) { printf("false true true"); } else { printf("false true false"); } } else { if (c) { printf("false false true"); } else { printf("false false false"); } } } _getch(); return 0; }

Мы получили 8 ветвей. Пусть теперь нам понадобилось добавить ещё одно условие. Тогда число ветвей удвоится, и программа станет ещё сложней для понимания и отладки. Перепишем пример.

Если каждое из наших логичесих значений сдвинуть на своё число бит влево и логически сложить, то мы получим свою уникальную комбинацию бит в зависимоти от значений a, b и c:

#include #include void printbits (int n) { int i; for (i = CHAR_BIT - 1; i >= 0; i--) { printf("%d", (n & (1 << i)) != 0); } printf("\n"); } int main() { unsigned char a, b, c; unsigned char res; a = 1; b = 0; c = 0; res = c | b << 1 | a << 2; printbits(res); a = 0; b = 1; c = 1; res = c | b << 1 | a << 2; printbits(res); a = 1; b = 0; c = 1; res = c | b << 1 | a << 2; printbits(res); _getch(); return 0; }

Используем этот подход к нашей задаче и заменим ветвеление на switch:

#include int main() { unsigned char a, b, c; unsigned char res; a = 1; b = 0; c = 0; res = c | b<< 1 | a << 2; switch (res) { case 0b00000000: printf("false false false"); break; case 0b00000001: printf("false false true"); break; case 0b00000010: printf("false true false"); break; case 0b00000011: printf("false true true"); break; case 0b00000100: printf("true false false"); break; case 0b00000101: printf("true false true"); break; case 0b00000110: printf("true true false"); break; case 0b00000111: printf("true true true"); break; } _getch(); return 0; }

Этот метод очень часто используется для назначения опций функций в разных языках программирования. Каждый флаг принимает своё уникальное название, а их совместное значение как логическая сумма всех используемых флагов. Например, библиотека fcntl.

Операция исключающее ИЛИ (неравнозначность, сложение по модулю два) обозначается символом и отличается от логического ИЛИ только приA=1 и B=1.

Таким образом, неравнозначность двух высказываний Х1 и Х2 называют такое высказывание Y, которое истинно тогда и только тогда, когда одно из этих высказываний истинно, а другое ложно.

Определение данной операции может быть записано в виде таблицы истинности (таблица 6):

Таблица 6 – Таблица истинности операции «ИСКЛЮЧАЮЩЕЕ ИЛИ»

Как видно из таблицы 6, логика работы элемента соответствует его названию.

Это тот же элемент «ИЛИ» с одним небольшим отличием. Если значение на обоих входах равно логической единице, то на выходе элемента «ИСКЛЮЧАЮЩЕЕ ИЛИ», в отличие от элемента «ИЛИ», не единица, а ноль.

Операция «ИСКЛЮЧАЮЩЕЕ ИЛИ» фактически сравнивает на совпадение два двоичных разряда.

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет своё название и обозначение (таблица 7).

Таблица 7 – Основные логические операции

Обозначение

операции

Читается

Название операции

Альтернативные обозначения

Отрицание (инверсия)

Черта сверху

Конъюнкция (логическое умножение)

Дизъюнкция (логическое сложение)

Если … то

Импликация

Тогда и только тогда

Эквиваленция

Либо … либо

ИСКЛЮЧАЮЩЕЕ ИЛИ (сложение по модулю 2)

  1. Порядок выполнения логических операций в сложном логическом выражении

Система логических операций инверсии, конъюнкции, дизъюнкции позволяет построить сколь угодно сложное логическое выражение.

При вычислении значения логического выражения принят определённый порядок выполнения логических операций.

1. Инверсия.

2. Конъюнкция.

3. Дизъюнкция.

4. Импликация.

5. Эквивалентность.

Для изменения указанного порядка выполнения операций используются скобки.

  1. Логические выражения и таблицы истинности

    1. Логические выражения

Каждое составное высказывание можно выразить в виде формулы (логического выражения), в которую входят логические переменные, обозначающие высказывания, и знаки логических операций, обозначающие логические функции.

Для записи составного высказывания в виде логического выражения на формальном языке (языке алгебры логики) в составном высказывании нужно выделить простые высказывания и логические связи между ними.

Запишем в форме логического выражения составное высказывание «(2·2=5 или 2∙2=4) и (2∙2≠5 или 2∙2 4)».

Проанализируем составное высказывание. Оно содержит два простых высказывания:

А = «2 2=5»-ложно (0),

В = «2 2=4»-истинно (1).

Тогда составное высказывание можно записать в следующей форме:

«(А или В ) и (Ā или В )».

Теперь необходимо записать высказывание в форме логического выражения с учётом последовательности выполнения логических операций. При выполнении логических операций определён следующий порядок их выполнения:

инверсия, конъюнкция, дизъюнкция.

Для изменения указанного порядка могут использоваться скобки:

F = (A v В ) & (Ā v В ).

Истинность или ложность составных высказываний можно определять чисто формально, руководствуясь законами алгебры высказываний, не обращаясь к смысловому содержанию высказываний.

Подставим в логическое выражение значения логических переменных и, используя таблицы истинности базовых логических операций, получим значение логической функции:

F = (A v В) & (Ā v В) = (0 v 1) & (1 v 0) = 1 & 1 = 1.

      Таблицы истинности

Таблицы, в которых логические операции отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний, называются таблицами истинности.

Простые высказывания обозначаются переменными (например, A и B).

При построении таблиц истинности целесообразно руководствоваться определённой последовательностью действий:

    необходимо определить количество строк в таблице истинности. Оно равно количеству возможных комбинаций значений логических переменных, входящих в логическое выражение. Если количество логических переменных равно п, то:

количество строк = 2 n .

В нашем случае логическая функция

имеет 2 переменные и, следовательно, количество строк в таблице истинности должно быть равно 4;

    необходимо определить количество столбцов в таблице истинности, которое равно количеству логических переменных плюс количество логических операций.

В нашем случае количество переменных равно двум: А и В, а количество логических операций - пяти (таблица 8), то есть количество столбцов таблицы истинности равно семи;

    необходимо построить таблицу истинности с указанным количеством строк и столбцов, обозначить столбцы и внести в таблицу возможные наборы значений исходных логических переменных;

    необходимо заполнить таблицу истинности по столбцам, выполняя базовые логические операции в необходимой последовательности и в соответствии с их таблицами истинности.

Теперь мы можем определить значение логической функции для любого набора значений логических переменных.

Таблица 8 – Таблица истинности логической функции

Обозначается оборотом речи «либо…, либо…» Составное утверждение «либо A, либо B» считается истинным, когда истинно либо A, либо B, но не оба сразу; в противном случае составное утверждение ложно.

Т.е. результат истинен (равен 1), если A не равно B (A≠B).

Эту операцию нередко сравнивают с дизъюнкцией потому, что они очень похожи по свойствам, и обе имеют сходство с союзом «или» в повседневной речи. Сравните правила для этих операций:

1. истинно, если истинно или , или оба сразу.

2. истинно, если истинно или , но не оба сразу.

Операция исключает последний вариант («оба сразу») и по этой причине называется исключающим «ИЛИ». Неоднозначность естественного языка заключается в том, что союз «или» может применяться в обоих случаях.

5. Импликация (логическое следование) образуется соединением двух высказываний в одно с помощью оборота речи «если …, то ….».

Запись: А®В

Составное высказывание, образованное с помощью операции импликации, ложно тогда и только тогда, когда из истинной предпосылки (первого высказывания) следует ложный вывод (второе высказывание).

Т.е. если из 1 следует 0, то результат – 0, в остальных случаях – 1.

Например, высказывание «Если число делится на 10, то оно делится на 5» истинно, т.к. истинны и первое и второе высказывание.

Высказывание «Если число делится на 10, то оно делится на 3» ложно, т.к. из истинной предпосылки делается ложный вывод.

"Данный четырёхугольник - квадрат" (А ) и "Около данного четырёхугольника можно описать окружность" (В ). Тогда составное высказывание , читается как "Если данный четырёхугольник квадрат, то около него можно описать окружность".

В обычной речи связка "если..., то" описывает причинно-следственную связь между высказываниями. Но в логических операциях смысл высказываний не учитывается. Рассматривается только их истинность или ложность. Поэтому не надо смущаться "бессмысленностью" импликаций, образованных высказываниями, совершенно не связанными по содержанию. Например, такими: "если президент США - демократ, то в Африке водятся жирафы", "если арбуз - ягода, то в бензоколонке есть бензин".

6. Эквивалентность (логическое равенство, ~ º Û) образуется соединением двух высказываний в одно с помощью оборота речи « …тогда и только тогда, когда...»

Составное высказывание, образованное операцией эквивалентности, истинно тогда и только тогда, когда оба высказывания одновременно либо ложны, либо истинны.

Например, высказывание «Компьютер может производить вычисления тогда и только тогда, когда он включен» и «Компьютер не может производить вычисления тогда и только тогда, когда он не включен» - истинны, поскольку оба простых высказывания одновременно истинны.


Таблицы истинности

Для каждого составного высказывания (логической функции) можно построить таблицу истинности, которая определяет его истинность или ложность при всех возможных комбинациях исходных значений простых высказываний.

Таблица истинности это табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значением истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

Отразим выше рассмотренные логические операции в таблице истинности:

В алгебре высказываний все логические функции путем логических преобразований могут быть сведены к трем базовым: логическому сложению, логическому умножению и логическому отрицанию.

Докажем, что операция импликация А®В равносильна логическому выражению:

Простейшие логические операции

Простейшие логические операции относятся к двузначной логике. Их 4 штуки: “НЕ”, “И”, “ИЛИ”, “XOR”. Также для обозначения этих операций используют разные значки (“~”, “&” и т.п.).

При записи логических формул вместо слов “истина” и “ложь” обычно используют стандартные международные обозначения:
Вместо “истина” пишут: true, T, t, 1.
Вместо “ложь” пишут: false, F, f, 0.

“НЕ”

Операция “НЕ” преобразует истину в ложь, а ложь в истину:

НЕ true = false
НЕ false = true

У этой операции бывают разные другие названия: “логическое НЕ”, “отрицание”, “логическое отрицание”, “инверсия”, “логическая инверсия”. Для международных обозначений вместо “НЕ” пишут “NOT”.

В естественном языке этой операции соответствует добавление слов “неправда, что...” в начале высказывания. Например:

Применение операции “НЕ” к высказыванию (1):

“Неправда, что Сурков должен мне денег”. (2)

Если высказывание (1) ложно, то высказывание (2) истинно. Если высказывание (2) ложно, то высказывание (1) истинно.

Нетрудно понять, что двойное применение “НЕ” возвращает нас к прежней истинности.

“Неправда, что неправда, что Сурков должен мне денег”. (3)

Истинность высказывания (3) всегда совпадает с истинностью высказывания (1).

“И”

Операция “И” применяется к двум высказываниям. Ее результат “истина”, только если оба высказывания истинны (а иначе “ложь”):

false И false = false
false И true = false
true И false = false
true И true = true

У этой операции бывают разные другие названия: “логическое И”, “конъюнкция”, “логическое умножение”. Для международных обозначений вместо “И” пишут “AND”.

В естественном языке этой операции соответствует вставка союза “и” между высказываниями. Например:

“Сурков должен мне денег”. (1)
“Петров должен мне денег”. (2)

Применение операции “И” к высказываниям (1) и (2):

“Сурков должен мне денег, и Петров должен мне денег”. (3)

Эту фразу можно сократить, сохранив прежний смысл:

“Сурков и Петров должны мне денег”. (3)

Высказывание (3) истинно только тогда, когда истинны оба высказывания: (1) и (2). Если хотя бы одно из них ложно, то результат тоже ложен. Если оба ложны – тоже.

То есть, если Петров мне денег не задолжал, а задолжал только Сурков, тогда высказывание (3) не будет “полуправдой” или “полуложью”, а будет просто ложью.

“ИЛИ”

Операция “ИЛИ” применяется к двум высказываниям. Ее результат “истина”, если хотя бы одно высказывание истинно (а иначе “ложь”):

false ИЛИ false = false
false ИЛИ true = true
true ИЛИ false = true
true ИЛИ true = true

У этой операции бывают разные другие названия: “логическое ИЛИ”, “включающее ИЛИ”, “дизъюнкция”, “логическое сложение”. Для международных обозначений вместо “ИЛИ” пишут “OR”.
В естественном языке этой операции соответствует вставка союза “или” между высказываниями, но... не всегда (см. ниже об операции “XOR”). Например:

“Я хочу попить”. (1)
“Я хочу поесть”. (2)

Применение операции “ИЛИ” к высказываниям (1) и (2):

“Я хочу попить, или я хочу поесть”. (3)

По-русски звучит правильно, но коряво, и эту фразу можно сократить, сохранив прежний смысл:

“Я хочу попить или поесть ”. (3)

Высказывание (3) истинно тогда, когда истинно хотя бы одно из высказываний (1) и (2), а можно оба. Если оба высказывания ложны, то результат тоже ложен.

То есть, если я хочу есть, но не пить, тогда высказывание (3) истинно. Если я не прочь и поесть, и попить, выказывание (3) тоже истинно. Ложно оно тогда, когдя я не хочу ни того, ни другого.

“XOR”

Операция “XOR” применяется к двум высказываниям. Ее результат “истина”, если ровно одно из высказываний истинно (а иначе “ложь”):

false XOR false = false
false XOR true = true
true XOR false = true
true XOR true = false

У этой операции бывают разные другие названия: “исключающее ИЛИ”, “сложение по модулю 2”, “логическое сложение по модулю 2”. “XOR” – это международное обозначение, общепринятого “русского” аналога нет.

В естественном языке этой операции соответствует вставка союза “или” между высказываниями – так же, как в случае с операцией “ИЛИ”. Например:

“Я собираюсь просить прибавки к зарплате”. (1)
“Я попытаюсь сэкономить ”. (2)

Применение операции “XOR” к высказываниям (1) и (2):

“Я собираюсь просить прибавки к зарплате или я попытаюсь сэкономить”. (3)

Сокращенно:

“Я собираюсь просить прибавки к зарплате или попытаюсь сэкономить”. (3)

Высказывание (3) истинно тогда, когда истинно ровно одно из высказываний (1) и (2). Если я не собираюсь ни просить прибавки, ни экономить, тогда фраза ложна. Также, я имел в виду, что не собираюсь делать и то, и другое одновременно.

Обратите внимание на разницу между операциями “ИЛИ” и “XOR”. Она заключается только в последнем правиле:

true ИЛИ true = true
true XOR true = false

В естественном языке обе операции изображаются одним и тем же союзом “или”. Это – пример неоднозначности естественного языка. Если помните, омонимы и многозначные слова могут иметь больше одного значения. Союз “или” именно такой: он имеет два возможных значения. Первое выражается логической операцией “ИЛИ”, второе – логической операцией “XOR”.

В английском языке существуют те же проблемы: союз “or” имеет те же два значения. А вот древним римлянам было проще, так как в латыни есть два разных слова: “vel” (операция “ИЛИ”) и “aut” (операция “XOR”).

Поскольку разница между операциями “ИЛИ” и “XOR” невелика (всего одно последнее правило), то иногда эта разница не имеет значения. Иногда о том, что имеется в виду, можно догадаться по интонации, или по контексту. Иногда определить точный смысл так и не удается.