Наибольшее количество информации около 90. Введение в предмет информатики

СИСТЕМЫ СЧИСЛЕНИЙ

Общие сведения

Краткий обзор. Основные термины и понятия

Система счисления – способ представления любого числа с помощью алфавита символов, называемых цифрами.

Существует много систем счисления, которые можно разбить на 2 вида: непозиционные и позиционные.

Непозиционная система. Примером является римская система счислений. В ней значение каждого символа постоянно, где бы символ ни находился в числе.

I, IX, XXI, LXI, XLII – символом “I” во всех приведенных числах закодирована цифра единица.

Позиционные системы. Пример арабская система.В позиционной системе значение каждой цифры (символа) зависит от места в числе, где записана эта цифра (символ). Убедимся в этом, на примере из принятой у нас десятичной системы, выполнив тождественные преобразования числа.

5555=5000+500+50+5. Итак, цифра 5 обозначает 5000, 500, 50 и 5.

В десятичной системе применяется 10 цифр (символов) для записи чисел: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Количество цифр (символов) применяемых в системе называют ее основанием, следовательно, у нашей системы основание равно 10, поэтому ее называют десятичной. Выполним снова преобразования десятичного числа

5685=5*1000+6*100+8*10+5=5*10 3 +6*10 2 +8*10 1 +5*10 0

Мы видим, число можно записать с помощью слагаемых, в которых присутствует основание системы. Оно возведено в степень на единицу меньше, чем порядок цифры в числе справа налево.

Кроме десятичной системы существуют некоторые другие системы счислений. Например, 12-тиричная применялась в России до 1917 года. До сих пор сохранились выражения «дюжина», «чертова дюжина». Ее до сих пор применяют в денежных единицах некоторых стран. На часах 12 чисел. 12 месяцев в году и т.д.

Возможность применять различные системы счислений основана на том, что на носителе информации (бумаге, папирусе) для можно записать много различных символов и придать им некоторое определенное значение.

Способы записи информации в компьютерной технике

На носителях информации, связанных с компьютерной техникой, широких возможностей для записи информации в настоящее время нет. Для записи информации в вычислительной технике используют 2 устойчивых состояния различных устройств.

На дискете или винчестере, которые можно представить состоящими из набора элементарных магнитов, эти магниты можно повернуть северным либо южным полюсом к подложке. Точка на диске может отражать или не отражать свет. На карте из плотной бумаги в определенном месте может быть или не быть отверстие. Электрическая цепь может проводить или не проводить ток. Лампочка может гореть или не гореть. Одному такому состоянию можно придать значение 1, второму 0. Таким образом, на одном элементе памяти можно записать либо 0, либо 1.

Этот минимальный объем информации, который можно записать на таких носителях называютбит .

Исторически сложилось так, что 8 носителей информации объединили в одну ячейку памяти, и количество записываемой в них информации назвали байт. Таким образом 1 байт = 8 бит.
В байте можно записать 2 8 =256 различных комбинаций двоичных чисел, то есть чисел состоящих только из двух цифр 0 и 1: 00000000, 00000001, 00000010, 00000011 . . . 11111110, 11111111.

Если посмотреть несколько ячеек памяти, то в них будет записано множество нулей и единиц. Адреса ячеек памяти также представляются в двоичной системе. Чтобы облегчить человеку работу с такого рода информацией решили работать с ней по правилам 2-ной системы счислений. Числа этой системы можно перевести в другие более привычные и наглядные для человека системы: 8-меричную, 16-тиричную, 10-тичную.

Таблица 1.1.2

Десятичная система Двоичная система Восьмеричная система Шестнадцатеричная система
A
B
C
D
E
F

Из таблицы 1.1.2 видно, какие символы применяются в качестве цифр в разных системах. Если использован последний допустимый символ, то в младшем разряде пишут 0, а в старшем 1.

Арифметические действия в системах счисления

Правила выполнения арифметических действий в десятичной системе счисления сохраняются и для других позиционных систем счисления.

Сложение

Складываем сначала единицы, потом десятки и т.д. до тех пор, пока не дойдем до старшего разряда. При этом всегда помним, что когда при сложении чисел в каком-либо разряде получается сумма, большая чем основание, то надо сделать перенос в следующий разряд.

Например 173, 261 8

16, 35 8

Восьмеричная с.с.

УРОК №19-20.

Тема

Арифметические операции в позиционных системах счисления. Умножение и деление.

Цель урока: показать способы арифметических операций (умножения и деления) чисел в разных системах счисления, проверить усвоение темы «Сложение и вычитание чисел в различных системах счисления».

Задачи урока:

    образовательные : практическое применение изученного материала по теме «Умножение и деление в различных системах счисления», закрепление и проверка знаний по теме «Сложение и вычитание чисел в различных системах счисления». развивающие: развитие навыков индивидуальной практической работы , умения применять знания для решения задач. воспитательные: достижение сознательного усвоения материала учащимися.

Материалы и оборудование к уроку: карточки для самостоятельной работы, таблицы умножения.

Тип урока: комбинированный урок

Форма проведения урока : индивидуальная, фронтальная.

Ход урока:

1. Проверка домашнего задания.

Домашнее задание:

1. № 2.41 (1 и 2 столбик), практикум, стр. 55

Решение:

А) 11102+10012 =101112

Б) 678+238=1128

В)AF16+9716 = 14616

Г)11102-10012 =1012

Д) 678-238 =448

Е) АF16-9716 =1816

2. №2.48 (стр. 56)

2. Самостоятельная работа «Сложение и вычитание чисел в различных системах счисления». (20 минут)

Самостоятельная работа. 10 класс .

11 + 1110 ; 10111+111 ; 110111+101110

3. Вычесть: 10111-111; 11 - 1110

4. Сложить и вычесть в 8-ричной системе: 738 и 258

Вариант 1

Самостоятельная работа. 10 класс. Двоичная система счисления: перевод 2® 10; сложение.

1. Выполнить перевод из двоичной системы счисления в десятичную.

2. Сложить два двоичных числа.

1110+111 ; 111+1001 ; 1101+110001

3. Вычесть: 111-1001; 1110+111

4. Сложить и вычесть в 16-ричной системе: 7316 и 2916

Вариант 2

3. Новый материал.


1. У м н о ж е н и е

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Умножение в двоичной системе

Умножение в восьмеричной системе

Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.

Пример 1. Перемножим числа 5 и 6 в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления.

https://pandia.ru/text/80/244/images/image004_82.gif" width="419" height="86 src=">
Ответ: 5 . 6 = 3010 = 111102 = 368.
Проверка.
111102 = 24 + 23 + 22 + 21 = 30;
368 = 381 + 680 = 30.

Пример 2. Перемножим числа 115 и 51 в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления.

https://pandia.ru/text/80/244/images/image006_67.gif" width="446" height="103 src=">
Ответ: 115 . 51 = 586510 = 10110111010012 = 133518.
Проверка. Преобразуем полученные произведения к десятичному виду:
10110111010012 = 212 + 210 + 29 + 27 + 26 + 25 + 23 + 20 = 5865;
133518 = 1 . 84 + 3 . 83 + 3 . 82 + 5 . 81 + 1 . 80 = 5865.

2. Д е л е н и е

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто , ведь очередная цифра частного может быть только нулем или единицей.
Пример 3. Разделим число 30 на число 6.

https://pandia.ru/text/80/244/images/image008_48.gif" width="478" height="87 src=">
Ответ: 30: 6 = 510 = 1012 = 58.

Пример 4. Разделим число 5865 на число 115.

https://pandia.ru/text/80/244/images/image010_50.gif" width="400" height="159 src=">

Восьмеричная: 133518:1638

https://pandia.ru/text/80/244/images/image012_40.gif" width="416" height="18 src=">

https://pandia.ru/text/80/244/images/image014_36.gif" width="72" height="89 src=">
Ответ: 35: 14 = 2,510 = 10,12 = 2,48.
Проверка. Преобразуем полученные частные к десятичному виду:
10,12 = 21 + 2 -1 = 2,5;
2,48 = 2 . 80 + 4 . 8-1 = 2,5.

4. Домашнее задание:

1. Приготовиться к контрольной работе № 2 «По теме Системы счисления. Перевод чисел. Арифметические операции в системах счисления»

2. Практикум Угринович, №2.46, 2.47, стр. 56.

Литература:

1. Практикум по информатике и информационным технологиям . Учебное пособие для общеобразовательных учреждений / , . – М.: Бином. Лаборатория Знаний, 2002. 400 с.: ил.

2. Угринович и информационные технологии. Учебник для 10-11 классов. – М.:БИНОМ. Лаборатория знаний, 2003.

3. Шауцукова: Учебн. пособие для 10-11 кл. общеобразоват. учреждений. – М.: Просвещение, 2003.9 - с. 97-101, 104-107.

Примечание:
Выполнять действия можно только в одной системе счисления, если вам даны разные системы счисления, сначала переведите все числа в одну систему счисления
Если вы работаете с системой счисления, основание которой больше 10 и у вас в примере встретилась буква, мысленно замените её цифрой в десятичной системе, проведите необходимые операции и переведите результат обратно в исходную систему счисления

Сложение:
Все помнят, как в начальной школе нас учили складывать столбиком, разряд с разрядом. Если при сложении в разряде получалось число больше 9, мы вычитали из него 10, полученный результат записывали в ответ, а 1 прибавляли к следующему разряду. Из этого можно сформулировать правило:

  1. Складывать удобнее «столбиком»
  2. Складывая поразрядно, если цифра в разряде > больше самой большой цифры алфавита данной Системы счисления, вычитаем из этого числа основание системы счисления.
  3. Полученный результат записываем в нужный разряд
  4. Прибавляем единицу к следующему разряду
Пример:

Сложить 1001001110 и 100111101 в двоичной системе счисления

1001001110

100111101

1110001011

Ответ: 1110001011

Сложить F3B и 5A в шестнадцатеричной системе счисления

FE0

Ответ: FE0


Вычитание:Все помнят, как в начальной школе нас учили вычитать столбиком, разряд из разряда. Если при вычитании в разряде получалось число меньше 0, мы то мы «занимали» единицу из старшего разряда и прибавляли к нужной цифре 10, из нового числа вычитали нужное. Из этого можно сформулировать правило:

  1. Вычитать удобнее «столбиком»
  2. Вычитая поразрядно, если цифра в разряде < 0, вычитаем из старшего разряда 1, а к нужному разряду прибавляем основание системы счисления.
  3. Производим вычитание
Пример:

Вычесть из 1001001110 число 100111101 в двоичной системе счисления

1001001110

100111101

100010001

Ответ: 100010001

Вычесть из F3B число 5A в шестнадцатеричной системе счисления

D9 6

Ответ: D96

Самое главное, не забывайте про то, что у вас в распоряжении только цифры данной системы счисления, так же не забывайте про переходы между разрядными слагаемыми.
Умножение:

Умножение в других системах счисления происходит точно так же, как и мы привыкли умножать.

  1. Умножать удобнее «столбиком»
  2. Умножение в любой системе счисления происходит по тем же правилам, что и в десятичной. Но мы можем использовать только алфавит, данный системы счисления
Пример:

Умножить 10111 на число 1101 в двоичной системе счисления

10111

1101

10111

10111

10111

100101011

Ответ: 100101011

Умножить F3B на число A в шестнадцатеричной системе счисления

F3B

984E

Ответ: 984E

Ответ: 984E

Самое главное, не забывайте про то, что у вас в распоряжении только цифры данной системы счисления, так же не забывайте про переходы между разрядными слагаемыми.

Деление:

Деление в других системах счисления происходит точно так же, как и мы привыкли делить.

  1. Делить удобнее «столбиком»
  2. Деление в любой системе счисления происходит по тем же правилам, что и в десятичной. Но мы можем использовать только алфавит, данный системы счисления

Пример:

Разделить 1011011 на число 1101 в двоичной системе счисления

Разделить F 3 B на число 8 в шестнадцатеричной системе счисления

Самое главное, не забывайте про то, что у вас в распоряжении только цифры данной системы счисления, так же не забывайте про переходы между разрядными слагаемыми.

НЕПОЗИЦИОННЫЕ

Непозиционные системы счисления

Непозиционные системы счисления появились исторически первыми. В этих системах значение каждого цифрового символа постоянно и не зависит от его положения. Простейшим случаем непозиционной системы является единичная, для которой для обозначения чисел используется единственный символ, как правило это черта, иногда точка, которых всегда ставится количество, соответствующее обозначаемому числу:

  • 1 - |
  • 2 - ||
  • 3 - |||, и т. д.

Таким образом, этот единственный символ имеет значение единицы , из которой последовательным сложением получается необходимое число:

||||| = 1+1+1+1+1 = 5.

Модификацией единичной системы является система с основанием, в которой есть символы не только для обозначения единицы, но и для степеней основания. Например, если за основание взято число 5, то будут дополнительные символы для обозначения 5, 25, 125 и так далее.

Примером такой системы с основанием 10 является древнеегипетская, возникшая во второй половине третьего тысячеления до новой эры. В этой системе имелись следующие иероглифы:

  • шест - единицы,
  • дуга - десятки,
  • пальмовый лист - сотни,
  • цветок лотоса - тысячи.

Числа получались простым сложением, порядок следования мог быть любым. Так, для обозначения, например, числа 3815, рисовали три цветка лотоса, восемь пальмовых листов, одну дугу и пять шестов. Более сложные системы с дополнительными знаками - старая греческая, римская. Римская также использует элемент позиционной системы - большая цифра, стоящая перед меньшей, прибавляется, меньшая перед большей - вычитается: IV = 4, но VI = 6, этот метод, правда, применяется исключительно для обозначения чисел 4, 9, 40, 90, 400, 900, 4000, и производных их сложением.

Новогреческая и древнерусская системы использовали в качестве цифр 27 букв алфавита, где ими обозначалось каждое число от 1 до 9, а также десятки и сотни. Такой подход обеспечил возможность записывать числа от 1 до 999 без повторений цифр.

В старорусской системе для обозначения больших чисел использовались специальные обрамления вокруг цифр.

В качестве словесной системы номерации до сих пор практически везде используется непозиционная. Словесные системы нумерации сильно привязаны в языку, и общие их элементы в основном относятся к общим принципам и названиям больших чисел (триллион и выше). Общие принципы, положенные в основу современных словесных нумераций вредполагают формирование обозначения посредством сложения и умножения значений уникальных названий.

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же правилам. Для проведения арифметических операций над числами, представленными в различных системах счисления, необходимо предварительно преобразовать их в одну систему счисления и учесть то, что перенос в следующий разряд при операции сложения и заем из старшего разряда при операции вычитания определяется величиной основания системы счисления.

Арифметические операции в двоичной системе счисления основаны на таблицах сложения, вычитания и умножения одноразрядных двоичных чисел.

При сложении двух единиц происходит переполнение разряда и производится перенос единицы в старший разряд, при вычитании 0–1 производится заем из старшего разряда, в таблице «Вычитание» этот заем обозначен 1 с чертой над цифрой (Таблица 3).

Таблица 3

Ниже приведены примеры выполнения арифметических операций над числами, представленными в различных системах счисления:

Арифметические операции над целыми числами, представленными в различных системах счисления, достаточно просто реализуются с помощью программ Калькулятор и MS Excel.

1.3. Представление чисел в компьютере

Числовые данные обрабатываются в компьютере в двоичной системе счисления. Числа хранятся в памяти компьютера в двоичном коде, т. е. в виде последовательности нулей и единиц, и могут быть представлены в формате с фиксированной или плавающей запятой.

Целые числа хранятся в памяти в формате с фиксированной запятой. При таком формате представления чисел для хранения целых неотрицательных чисел отводится регистр памяти, состоящий из восьми ячеек памяти (8 бит). Каждому разряду ячейки памяти соответствует всегда один и тот же разряд числа, а запятая находится справа после младшего разряда и вне разрядной сетки. Например, число 110011012 будет храниться в регистре памяти следующим образом:

Таблица 4

Максимальное значение целого неотрицательного числа, которое может храниться в регистре в формате с фиксированной запятой, можно определить из формулы: 2n – 1, где n – число разрядов числа. Максимальное число при этом будет равно 28 – 1 = 25510 = 111111112и минимальное 010 = 000000002. Таким образом, диапазон изменения целых неотрицательных чисел будет находиться в пределах от 0 до 25510.

В отличие от десятичной системы в двоичной системе счисления при компьютерном представлении двоичного числа отсутствуют символы, обозначающие знак числа: положительный (+) или отрицательный (-), поэтому для представления целых чисел со знаком в двоичной системе используются два формата представления числа: формат значения числа со знаком и формат дополнительного кода. В первом случае для хранения целых чисел со знаком отводится два регистра памяти (16 бит), причем старший разряд (крайний слева) используется под знак числа: если число положительное, то в знаковый разряд записывается 0, если число отрицательное, то – 1. Например, число 53610 = 00000010000110002 будет представлено в регистрах памяти в следующем виде:

Таблица 5

а отрицательное число -53610 = 10000010000110002 в виде:

Таблица 6

Максимальное положительное число или минимальное отрицательное в формате значения числа со знаком (с учетом представления одного разряда под знак) равно 2n-1 – 1 = 216-1 – 1 = 215 – 1 = 3276710 = 1111111111111112 и диапазон чисел будет находиться в пределах от -3276710 до 32767.

Наиболее часто для представления целых чисел со знаком в двоичной системе применяется формат дополнительного кода, который позволяет заменить арифметическую операцию вычитания в компьютере операцией сложения, что существенно упрощает структуру микропроцессора и увеличивает его быстродействие.

Для представления целых отрицательных чисел в таком формате используется дополнительный код, который представляет собой дополнение модуля отрицательного числа до нуля. Перевод целого отрицательного числа в дополнительный код осуществляется с помощью следующих операций:

1) модуль числа записать прямым кодом в n (n = 16) двоичных разрядах;

2) получить обратный код числа (инвертировать все разряды числа, т. е. все единицы заменить на нули, а нули – на единицы);

3) к полученному обратному коду прибавить единицу к младшему разряду.

Например, для числа -53610 в таком формате модуль будет равен 00000010000110002, обратный код – 1111110111100111, а дополнительный код – 1111110111101000.

Необходимо помнить, что дополнительный код положительного числа – само число.

Для хранения целых чисел со знаком помимо 16-разрядного компьютерного представления, когда используются два регистра памяти (такой формат числа называется также форматом коротких целых чисел со знаком), применяются форматы средних и длинных целых чисел со знаком. Для представления чисел в формате средних чисел используется четыре регистра (4 х 8 = 32 бит), а для представления чисел в формате длинных чисел – восемь регистров (8 х 8 = 64 бита). Диапазоны значений для формата средних и длинных чисел будут соответственно равны: -(231 – 1) … + 231 – 1 и -(263-1) … + 263 – 1.

Компьютерное представление чисел в формате с фиксированной запятой имеет свои преимущества и недостатки. К преимуществам относятся простота представления чисел и алгоритмов реализации арифметических операций, к недостаткам – конечный диапазон представления чисел, который может быть недостаточным для решения многих задач практического характера (математических, экономических, физических и т. д.).

Вещественные числа (конечные и бесконечные десятичные дроби) обрабатываются и хранятся в компьютере в формате с плавающей запятой. При таком формате представления числа положение запятой в записи может изменяться. Любое вещественное число К в формате с плавающей запятой может быть представлено в виде:

где А – мантисса числа; h – основание системы счисления; p – порядок числа.

Выражение (2.7) для десятичной системы счисления примет вид:

для двоичной -

для восьмеричной -

для шестнадцатеричной -

Такая форма представления числа также называется нормальной . С изменением порядка запятая в числе смещается, т. е. как бы плавает влево или вправо. Поэтому нормальную форму представления чисел называют формой с плавающей запятой . Десятичное число 15,5, например, в формате с плавающей запятой может быть представлено в виде: 0,155 · 102; 1,55 · 101; 15,5 · 100; 155,0 · 10-1; 1550,0 · 10-2 и т. д. Эта форма записи десятичного числа 15,5 с плавающей запятой не используется при написании компьютерных программ и вводе их в компьютер (устройства ввода компьютеров воспринимают только линейную запись данных). Исходя из этого выражение (2.7) для представления десятичных чисел и ввода их в компьютер преобразовывают к виду

где Р – порядок числа,

т. е. вместо основания системы счисления 10 пишут букву Е, вместо запятой – точку, и знак умножения не ставится. Таким образом, число 15,5 в формате с плавающей запятой и линейной записи (компьютерное представление) будет записано в виде: 0.155Е2; 1.55Е1; 15.5Е0; 155.0Е-1; 1550.0Е-2 и т.д.

Независимо от системы счисления любое число в форме с плавающей запятой может быть представлено бесконечным множеством чисел. Такая форма записи называется ненормализованной . Для однозначного представления чисел с плавающей запятой используют нормализованную форму записи числа, при которой мантисса числа должна отвечать условию

где |А| - абсолютное значение мантиссы числа.

Условие (2.9) означает, что мантисса должна быть правильной дробью и иметь после запятой цифру, отличную от нуля, или, другими словами, если после запятой в мантиссе стоит не нуль, то число называется нормализованным. Так, число 15,5 в нормализованном виде (нормализованная мантисса) в форме с плавающей запятой будет выглядеть следующим образом: 0,155 · 102, т. е. нормализованная мантисса будет A = 0,155 и порядок Р = 2, или в компьютерном представлении числа 0.155Е2.

Числа в форме с плавающей запятой имеют фиксированный формат и занимают в памяти компьютера четыре (32 бит) или восемь байт (64 бит). Если число занимает в памяти компьютера 32 разряда, то это число обычной точности, если 64 разряда, то это число двойной точности. При записи числа с плавающей запятой выделяются разряды для хранения знака мантиссы, знака порядка, мантиссы и порядка. Количество разрядов, которое отводится под порядок числа, определяет диапазон изменения чисел, а количество разрядов, отведенных для хранения мантиссы, – точность, с которой задается число.

При выполнении арифметических операций (сложение и вычитание) над числами, представленными в формате с плавающей запятой, реализуется следующий порядок действий (алгоритм) :

1) производится выравнивание порядков чисел, над которыми совершаются арифметические операции (порядок меньшего по модулю числа увеличивается до величины порядка большего по модулю числа, мантисса при этом уменьшается в такое же количество раз);

2) выполняются арифметические операции над мантиссами чисел;

3) производится нормализация полученного результата.