История отечественной электронной компонентной базы (ЭКБ). История развития интегральных схем

Развитие микроэлектроники привело в начале 70-х годов к появлению узкоспециализированных БИС, содержащих сотни и тысячи логических элементов и выполняющих одну или ограниченное число функций. Разнообразие типов цифровой аппаратуры требовало расширения номенклатуры БИС, что сопряжено с неприемлемыми с точки зрения экономики затратами. Выходом из этого положения явилась разработка и крупносерийное производство ограниченной номенклатуры БИС, выполняющих разнообразные функции, зависящие от внешних управляющих сигналов. Совокупности таких БИС образуют микропроцессорные комплекты и позволяют строить разнообразную цифровую аппаратуру любой сложности. Важнейшим суперкомпонентом комплекта БИС является микропроцессор (МП): универсальная стандартная БИС, функции которой определяются заданной программой.

Качественной особенностью МП является возможность их функциональной перестройки с помощью изменения внешней программы. По сути, МП представляют собой центральные процессорные элементы ЭВМ, выполненные в виде одной или нескольких БИС.

Главное отличие МП от других типов интегральных схем- способность к программированию последовательности выполняемых функций, т. е. возможность работы по заданной программе.

Таблица 4.1

Обозначение

технология

Число ИС

Разрядность,

Быстродействие,

р -МДП

n -МДП

n -МДП

n -МДП

n -МДП

p -МДП

n -МДП

р -МДП

р -МДП

n -МДП

Внедрение микропроцессоров позволяет изменять принцип проектирования цифровой аппаратуры. Раньше для реализации нового алгоритма требовалась новая разработка аппаратуры. Теперь при использовании МП для реализации нового алгоритма не требуется новой аппаратуры, достаточно изменить соответствующим образом программу его работы. Указанная особенность и объясняет огромный интерес, проявляемый у нас в стране и за рубежом к микропроцессорным устройствам.

Короткий интервал времени (1971-1975 гг.) характеризуется появлением МП самых разнообразных модификаций. В настоящее время число типов МП в мире превышает 1000.

Параметры основных типов отечественных микропроцессорных комплектов (МПК) приведены в табл. 4.1.

4.2. Структуры микропроцессоров

Упрощенная структурная схема МП приведена на рис. 4.1.

Рисунок 4.1

Рисунок 4.2

Микропроцессор содержит арифметически-логическое устройство АЛУ, запоминающие устройства ЗУ для оперативного (ОЗУ) и постоянного (ПЗУ) хранения информации, устройство управления, осуществляющее прием, расшифровку команд и задающее последовательность их выполнения, а также устройства ввода-вывода (УВВ) информации, с помощью которого вводятся исходные и выводятся полученные в результате работы МП данные.

Микропроцессоры обрабатывают 2-, 4-, 8-, 16-, 32-разрядные числа, выполняют 30...500 команд сложения, вычитания, сдвига, логических операций. Четырех- и восьмиразрядные МП представляют собой БИС с размерами кристалла 5 х 5 х 0,2 мм.

Обобщенная структурная схема МП приведена на рис. 4.2. Арифметическо-логическое устройство АЛУ совершает различные арифметические и логические операции над числами и адресами, представленными в двоичном коде. Состав операций, выполняемых АЛУ, определен списком инструкций (набором команд). В набор команд входят, как правило, арифметические и логические сложения и умножения, сдвиги, сравнения и т. п. Арифметические операции выполняются в соответствии с правилами двоичной арифметики. Логические операции выполняются по правилам булевой алгебры.

В состав АЛУ входят сумматор, сдвигатели, регистры и другие элементы.

Устройство управления управляет работой АЛУ и всех других блоков МП. В УУ поступают команды из блока памяти. Здесь они преобразуются в двоичные сигналы управления для выполнения данной команды. Работа УУ синхронизируется таймером, распределяющим процесс выполнения команды во времени. Команда представляет собой двоичное слово из 8, 16, 24 разрядов и более (до 64), часть которых представляет код операции, а остальные распределены между адресами данных (операндов) в памяти. Команда с 16-разрядной адресной частью позволяет обращаться к 2 16 -1=65635 ячейкам памяти. Этого количества, как правило, вполне достаточно для задач, решаемых МП. Такое обращение к памяти называется прямой адресацией.

Однако чаще применяется косвенная адресация, которая необходима, когда разрядность адресной части меньше, чем требуется. В этом случае, адресация проводится в два этапа. На первом этапе по адресу, содержащемуся в команде, выбирается ячейка, содержащая адрес другой ячейки, из которой на втором этапе выбирается операнд. Команда при косвенном методе адресации должна содержать один разряд признака операнда, состояние которого определяет, что выбирается на данном этапе: адрес операнда или сам операнд? Конечно, косвенный способ адресации медленнее прямого. Он позволяет за счет наращивания объема памяти адресов обращаться к числу операндов в 2 n раза (где n-разрядность адресной части команды) большему, чем при прямом способе.

Управляющее устройство любую операцию согласно коду, заданному командным словом, распределяет на последовательность фаз (фазы адресации и фазы выполнения), называемую циклом. Из-за ограниченной разрядности МП действия над операндами большой разрядности могут выполняться за два и более циклов. Очевидно, что это в 2 и более раз снижает быстродействие МП. Отсюда следует интересный и практически важный вывод: быстродействие МП находится в обратной зависимости от точности, однозначно определяемой разрядностью операндов.

Микропроцессор содержит блок регистров (Р). Рабочие регистры МП физически представляют собой одинаковые ячейки памяти, служащие для сверхоперативного хранения текущей информации (СОЗУ). По выполненным функциям Р содержит группы, связанные с определенными элементами структуры МП.

Два регистра операндов (О) в течение выполнения операции в АЛУ хранят два двоичных числа. По окончании операции в первом регистре число заменяется результатом, т. е. как бы накапливается (отсюда и название регистра «аккумулятор»). Содержимое второго регистра операндов заменяется в следующей операции другим операндом, в то время как содержимое аккумулятора может быть сохранено по ряду специальных команд.

Регистр команд (К) хранит в течение выполнения операции несколько разрядов командного слова, представляющих собой код этой операции. Адресная часть командного слова содержится в регистре адреса А.

После реализации какой-либо операции разрядность результата может оказаться больше разрядности каждого из операндов, что регистрируется состоянием специального флагового регистра, иногда называемого триггером переполнения. В процессе отладки составленной программы программист должен следить за состоянием флагового регистра и в случае необходимости устранять возникшее переполнение.

Очень важными в системе команд МП являются команды переходов к выполнению заданного участка программы по определенным признакам и условиям, так называемые команды условных переходов. Наличие таких команд определяет уровень «интеллектуальности» МП, так как характеризует его способность принимать альтернативные решения и выбирать различные пути в зависимости от возникающих в ходе решения условий. Для определения таких условий служит специальный регистр состояний (С), фиксирующий состояние МП в каждый момент выполнения программы и посылающий в УУ сигнал перехода к команде, адрес которой содержится в специальном регистре, называемом счетчиком команд (СК). Команды в памяти записываются в определенной программной последовательности по адресам, образующим натуральный ряд, т. е. адрес следующей команды отличается от адреса предыдущей на единицу. Поэтому при реализации непрерывной последовательности команд адрес следующей команды получается путем прибавления к содержимому СК единицы, т. е. образуется в результате счета. Назначение СК-нахождение необходимых адресов команд, причем при наличии в программе команд перехода очередная команда может не иметь следующего адреса. В таком случае в СК записывается адресная часть команды перехода.

Регистры общего назначения (РОН) используются для хранения промежуточных результатов, адресов и команд, возникающих в ходе выполнения программы, и могут связываться по общим шинам с другими рабочими регистрами, а также со счетчиками команд и блоком ввода-вывода информации. В МП обычно содержите» 10...16 РОН разрядностью 2...8 бит каждый. Количество РОН косвенно характеризует вычислительные возможности МП.

Особый интерес представляет наличие у многих моделей МП группы регистров, имеющих магазинную или стековую организацию - так называемые стеки. Стек позволяет без обмена с памятью организовать правильную последовательность выполнения различных последовательностей арифметических действий. Операнд или другая информация может посылаться в стек без указания адреса, поскольку каждое помещаемое в него слово занимает сначала первый регистр, затем «проталкивается» последующими словами каждый раз на регистр глубже. Вывод информации происходит в обратном порядке, начиная с первого регистра, в котором хранится слово, посланное в стек последним. При этом последние регистры очищаются.

Блоки АЛУ, УУ, Р образуют центральный процессор (ЦП), входящий в состав, любой ЭВМ: выделенный на рис. 4.2 штриховой линией. В состав МП может, входить таймер (Т), использующий навесной времязадающий конденсатор или кварцевый резонатор. Таймер - сердце МП, поскольку его работа определяет динамику всех информационных, адресных и управляющих сигналов и синхронизирует работу УУ, а через него и других элементов структуры. Частота синхронизации, называемая тактовой, выбирается максимальной и ограничивается только задержками прохождения сигналов, определяемыми в основном технологией изготовления БИС. Скорость выполнения микропроцессором программы прямо, пропорциональна тактовой частоте.

В составе МП может быть устройство ввода-вывода (УВВ) для обмена информацией между МП и другими устройствами.

Сигналы трех видов - информационные, адресные и управляющие - могут передаваться по одной, двум или трем шинам. Шина представляет собой группу линий связи, число которых определяет разрядность одновременно передаваемой по ней двоичной информации.

Число линий информационной шины (ИШ) определяет объем информации, получаемой или передаваемой МП за одно обращение к памяти, к устройству ввода или вывода. Большинство МП имеет 8-шиниую информационную магистраль. Это позволяет за один раз принять восемь двоичных единиц информации (1 байт). Один байт информация может содержать один из 256 возможных символов алфавита источника информации или один из 256 возможных кодов операций. Такое количество допустимых символов и типов операций для большинства применений является достаточным.

Существуют МП, содержащие 16 и 32 шины в информационной магистрали.

Число линий в шине управления (VIII) зависит от порядка взаимодействия между МП, ЗУ, внешними УВВ информации. Обычно шины управления содержат 8... 16 линий.

4.3. МикроЭВМ

Важным итогом развития программируемых БИС явилась разработка микроЭВМ. Если микроЭВМ создается на одной интегральной микросхеме, то она называется однокристальной. Упрощенная структурная схема микроЭВМ приведена на рис. 4.3.

Рисунок 4.3

Как видно, она содержит центральный процессор ЦП (имеющий устройство аналогично рассмотренному выше МП), ПЗУ, ОЗУ и устройства ввода и вывода информации. Устройство ввода содержит селектор адреса и так называемые порты ввода для считывания информации с гибкого диска, АЦП, телетайпа, перфоленты. Устройство вывода также содержит селектор адреса и порты вывода информации (дисплею, печатающему устройству, устройству выхода на перфоленту, ЦАП).

Данные, поступающие обустройства ввода, передаются на адресную магистраль обычно в виде 8-разрядных параллельных или последовательных кодовых сигналов через порт ввода. Селектор адреса определяет порт ввода, который передает данные на информационную магистраль в некоторый момент времени. Основная память состоит из ПЗУ и ОЗУ. Постоянное ЗУ используется как память программы, которую разработчик микроЭВМ заранее запрограммировал в соответствии с требованием пользователя. Для различных программ используют различные части ПЗУ.

Памятью данных в микроЭВМ является ОЗУ. Информация, хранящаяся в ОЗУ, стирается, когда отключается напряжение питания. Данные, поступающие в ОЗУ, обрабатываются в ЦП в соответствии с программой, хранящейся в ПЗУ. Результаты операций в ЦП хранятся в специальном накопителе информации, называемом аккумулятором или ОЗУ. Они могут быть выведены по команде через один из портов вывода на устройства вывода, подсоединенные к этому порту. Требуемый порт вывода выбирается с помощью схемы селекции адреса.

4.4. Запоминающие устройства

Важнейшими блоками цифровой аппаратуры являются запоминающие устройства (блоки памяти), которые подразделяются на внешние и внутренние. Внешние ЗУ до сих пор реализуются на магнитных лентах и магнитных дисках. Они обеспечивают неопределенно длительное сохранение информации при отсутствии! питания, а также практически любую необходимую емкость памяти. Внутренние ЗУ являются неотъемлемой частью цифровой аппаратуры. Раньше они выполнялись на основе ферритовых сердечников с прямоугольной петлей гистерезиса. Теперь в связи с разработкой ИС имеются широкие возможности создания полупроводниковыхЗУ.

К устройствам памяти относятся следующие виды запоминающих устройств:

Оперативные запоминающие устройства, выполняющие запись и хранение произвольной двоичной информации. В цифровых системах ОЗУ хранят массивы обрабатываемых данных и программы, определяющие процесс текущей обработки информации. В зависимости от назначения и структуры ОЗУ имеют емкость 10 2 …10 7 бит.

Постоянные запоминающие устройства, служащие для хранения информации, содержание которой не изменяется в ходе работы системы, например используемые в процессе работы стандартные подпрограммы и микропрограммы, табличные значения различных функций, константы и др. Запись информации в ПЗУ производится заводом-изготовителем БИС.

Программируемые постоянные запоминающие устройства являются разновидностьюПЗУ, отличающиеся возможностью однократной записи информации по заданию заказчика.

Репрограммируемые ПЗУ, отличающиеся от обычных возможностью многократной электрической сменой информации, осуществляемой заказчиком. Объем РПЗУ обычно составляет 10 2 …10 5 бит.

К устройствам постоянной памяти (ПЗУ, ППЗУ, РПЗУ) предъявляется требование сохранности информации при отключении питания.

Основными параметрамиЗУ являются: информационная емкость в битах; минимальный период обращения; минимально допустимый интервал между началом одного цикла и началом второго; максимальная частота обращения - величина, обратная минимальному периоду обращения; удельная мощность - общая мощность, потребляемая в режиме хранения, отнесенная к 1 биту; удельная стоимость одного бита информации - общая стоимость кристалла, поделенная на информационную емкость.

4.5. Оперативные запоминающиеся устройства

Типовая структура БИС ОЗУ приведена на рис. 4.4.

Рисунок 4.4

Рисунок 4.5

Основным узлом является матрица ячеек памяти (МЯП), состоящая из n строк с т запоминающими ячейками (образующими разрядное слово) в каждой строке. Информационная емкость БИС памяти определяется по формуле N = nm бит.

Входы и выходы ячеек памяти подключаются к адресным АШ и разрядным РШ шинам. При записи и считывании осуществляется обращение (выборка) к одной или одновременно к нескольким ячейкам памяти. В первом случае используются двухкоординатные матрицы (рис. 4.5, а), во втором случае матрицы с пословной выборкой (рис. 4.5,6).

Дешифратор адресных сигналов (ДАС) при подаче соответствующих адресных сигналов осуществляет выбор требуемых ячеек памяти. С помощью РШ осуществляется связь МЯП с буферными усилителями записи (БУЗ) и считывания (БМС) информации. Схема управления записью (СУЗ) определяет режим работы БИС (запись, считывание, хранение информации). Схема выбора кристалла (СВК) разрешает выполнение операций записи-считывания данной микросхемы. Сигнал выборки кристалла обеспечивает выбор требуемой БИС памяти в ЗУ, состоящем из нескольких БИС.

Подача управляющего сигнала на вход СУЗ при наличии сигнала выборки кристалла на входе СВК осуществляет операцию записи. Сигнал на информационном входе БУЗ (1 или 0) определяет записываемую в ячейку памяти информацию. Выходной информационный сигнал снимается с БУС и имеет уровни, согласующиеся с серийными ЦИС.

Большие интегральные схемы ОЗУ стремятся на основе простейших элементов ТТЛ, ТТЛШ, МДП, КМДП, И 2 Л, ЭСЛ, модифицированных с учетом специфики конкретных изделий. В динамических ячейках памяти чаще всего используются накопительные емкости, а в качестве ключевых элементов - МДП транзисторы.

Выбор элементной базы определяется требованиями к информационной емкости и быстродействию БИС памяти. Наибольшей емкости достигают при использовании логических элементов, занимающих малую площадь на кристалле: и 2 л, МДП, динамических ЗЯ. Высоким быстродействием обладают БИС с логическими элементами, имеющими малые перепады логических уровней (ЭСЛ, И 2 Л), а также логические элементы ТТЛШ.

Частотные области применения БИС, использующих различные базовые технические решения, иллюстрирует рис. 4.6.

Рисунок 4.6

Благодаря развитию технологии и схемотехники быстродействие элементов непрерывно возрастает, поэтому границы раздела указанных областей с течением времени сдвигаются в область больших рабочих частот.

4.6. Постоянные запоминающие устройства

Схема ПЗУ аналогична схеме ОЗУ (см. рис. 4.4). Отличия состоят лишь в следующем:

ПЗУ используются для считывания информации;

в ПЗУ осуществляется выборка нескольких разрядов одного адреса одновременно (4, 8, 16 разрядов);

информация, записанная в ПЗУ, не может меняться, и в режиме выборки происходит только ее считывание.

Большие интегральные схемы ПЗУ подразделяются на программируемые изготовителем (с помощью специальных фотошаблонов) и программируемые заказчиком (электрически).

Рисунок 4.7

В ПЗУ используется матричная структура: строки образуются адресными шинами ДШ, а столбцы - разрядами РШ. Каждая АШ хранит определенный код: заданную совокупность логических 1 и 0. В МЯП, изображенной на рис. 4.7, а, однократная запись кода осуществляется с помощью диодов, которые присоединены между АЩ и теми РШ, на которых при считывании должна быть логическая 1. Обычно заказчику поставляют ПЗУ с матрицей, во всех узлах которой имеются диоды.

Суть однократного электрического программирования ППЗУ заключается в том, что пользователь (с помощью специального устройства-программатора) пережигает выводы - перемычки тех диодов, которые находятся в местах расположения логических 0. Пережигание выводов осуществляется путем пропускания через соответствующий диод тока, превышающего допустимое значение.

Диодные ПЗУ отличаются простотой, но имеют существенный недостаток, потребляют значительную мощность. Чтобы облегчить работу дешифратора, вместо диодов используют биполярные (рис. 4.7,6) и (рис. 4.7, в) транзисторы.

При использовании биполярных транзисторов АШ обеспечивает протекание базового тока, который в β б.т. +1 раз меньше эмиттерного, питающего РШ. Следовательно, существенно уменьшается необходимая мощность дешифратора.

Еще больший выигрыш обеспечивает применение МДП транзисторов, так как цепь затвора практически не потребляет мощности. Здесь используется не пережигание выводов, а отсутствие металлизации затвора у транзисторов, обеспечивающих считывание логических 0 в разрядной шине.

4.7. Репрограммируемые постоянные запоминающие устройства

Репрограммируемые ПЗУ являются наиболее универсальными устройствами памяти. Структурная схема РПЗУ аналогична схеме ОЗУ (см. рис. 4.4). Важной отличительной особенностью РПЗУ является использование в МЯП транзистора специальной конструкции со структурой «металл-нитрид-окисел-полупроводник» (МНОП). Принцип действия такой ячейки памяти основан на обратимом изменении порогового напряжения МНОП транзистора. Например, если сделать U ЗИпор >U АШ, то транзистор не будет отпираться адресными импульсами (т. е. не участвует в работе). В то же время другие МНОП транзисторы, у которых U ЗИпор

Структура МНОП транзистора с индуцированным каналом р -типа показана на рис. 4.8, а.

Рисунок 4.8

Здесь диэлектрик состоит из двух слоев: нитрида кремния (Si 3 N 4) и окисла кремния (SiO 2). Пороговое напряжение можно менять, подавая на затвор короткие (порядка 100 мкс) импульсы напряжения разной полярности, с большой амплитудой 30...50 В. При подаче импульса +30 В устанавливается пороговое напряжение U ЗИпор = -5 В. Это напряжение сохраняется, если использовать транзистор или напряжения на затворе U ЗИ =±10В. В таком режиме МНОП транзистор работает как обычный МДП транзистор с индуцированным каналом р -типа.

При подаче импульса -30 В пороговое напряжение принимает значение U ЗИпор ~20 В, как показано на рис. 4.8, 6 и в. При этом сигналы на входе транзистора U ЗИ ± 10 В не могут вывести транзистор из закрытого состояния. Это явление используется в РПЗУ.

В основе работы МНОП транзисторов лежит накопление, заряда на границе нитридного и оксидного слоев. Это накопление есть результат неодинаковых токов проводимости в слоях. Процесс накопления описывается выражением dq / dt = I sio 2 - I si 3 n 4 . При большом отрицательном напряжении U ЗИ на границе накапливается положительный заряд. Это равносильно введению доноров в диэлектрик и сопровождается увеличением отрицательного порогового напряжения. При большом положительном напряжении U ЗИ на границе накапливается отрицательный заряд. Это приводит к уменьшению отрицательного порогового напряжения. При малых напряжениях U ЗИ токи в диэлектрических слоях уменьшаются на 10...15 порядков, поэтому накопленный заряд сохраняется в течение тысяч часов, а, следовательно, сохраняется и пороговое напряжение.

Известна и другая возможность построения ячейки памяти для РПЗУ на основе МДП транзисторов с однослойным диэлектриком. Если прикладывать к затвору достаточно большое напряжение, то будет наблюдаться лавинный пробой диэлектрика, в результате чего в нем будут накапливаться электроны. При этом у транзистора изменится пороговое напряжение. Заряд электронов сохраняется в течение тысяч часов. Для того чтобы осуществить перезапись информации, нужно удалить электроны из диэлектрика. Это достигается путем освещения кристалла ультрафиолетовым светом, вызывающим фотоэффект: выбивание электронов из диэлектрика.

При использовании ультрафиолетового стирания удается существенно упростить схему РПЗУ. Обобщенная структурная схема РПЗУ с ультрафиолетовым стиранием (рис. 4.9) содержит кроме МЯП дешифратор адресных сигналов (ДАС), устройство выбора кристалла (УВК) и буферный усилитель (БУ) для считывания информации.

Рисунок 4.9

По приведенной структурной схеме выполнена, в частности, БИС РПЗУ с ультрафиолетовым стиранием типа К573РФ1 емкостью 8192 бита.

4.8. Цифроаналоговые преобразователи

Назначение ЦАП - преобразование двоичного цифрового сигнала в эквивалентное аналоговое напряжение. Такое преобразование можно произвести с помощью резистивных цепей, показанных на рис. 4.10.

Рисунок 4.10

В ЦАП с двоично-весовыми резисторами (рис. 4.10, а) требуется меньшее число резисторов, однако при этом необходим целый ряд номиналов прецизионных сопротивлений. Аналоговое выходное напряжение U ан ЦАП определяется как функция двухуровневых входных напряжений:

U ан =(U A +2U B +4U C +…)/(1+2+4+...).

На цифровых входах U A , U B , U C , ... напряжение может принимать лишь два фиксированных значения, например, либо 0, либо 1. Для ЦАП, в котором используются резисторы R и R /2, требуется больше резисторов (рис. 4.10,6), но только с двумя номиналами. Аналоговое напряжение на выходе такого ЦАП определяется по формуле

U ан =(U A +2U B +4U C +…+mU n)/2 n

где n - число разрядов ЦАП; т - коэффициент, зависящий от числа разрядов ЦАП.

Для обеспечения высокой точности работы резистивные цепи ЦАП должны работать на высокоомную нагрузку. Чтобы согласовать резистивные цепи с низкоомной нагрузкой, используют буферные усилители на основе операционных усилителей, показанные на рис. 4.10, а, б.

4.9. Аналого-цифровые преобразователи

Назначение АЦП - преобразование аналогового напряжения в его цифровой эквивалент. Как правило, АЦП имеют более сложную схему, чем ЦАП, причем ЦАП часто является узлом АЦП. Обобщенная структурная схема АЦП с ЦАП в цепи обратной связи показана на рис. 4.11.

Рисунок 4.11

Выполненные по такой схеме АЦП находят широкое применение благодаря хорошим показателям по точности, быстродействию при сравнительной простоте и низкой стоимости.

В состав АЦП входят n -разрядный триггерный регистр результатов преобразования DD 1 - DD n , управляющий разрядами ЦАП; компаратор, связанный с устройством управления УУ и содержащий генератор тактовой частоты. Реализуя вУУ различные алгоритмы работы АЦП, получают различные характеристики преобразователя.

Используя рис. 4.11, рассмотрим принцип действия АЦП, предполагая, что в качестве триггерного регистра используется реверсивный счетчик. Реверсивный счетчик имеет цифровой выход, напряжение на котором возрастает от каждого тактового импульса, когда на входе счетчика «Прямой счет» высокий уровень напряжения, а на входе «Обратный счет» - низкий. И наоборот, напряжение на цифровом выходе при каждом тактовом импульсе уменьшается, когда на входе «Прямой счет» низкий, а на входе «Обратный счет» - высокий уровень напряжения.

Важнейшим узлом АЦП является компаратор (К), имеющий два аналоговых входа U ЦАП и U ан и цифровой выход, подключенный через УУ к реверсивному счетчику. Если напряжение на выходе компаратора имеет высокий уровень, уровень на входе счетчика «Прямой счет» также будет высоким. И наоборот, когда выходное напряжение компаратора имеет низкий уровень, низким будет также и уровень на входе «Прямой счет».

Таким образом, в зависимости от того, высокий или низкий уровень на выходе компаратора, реверсивный счетчик считает соответственно в прямом или обратном направлении. В первом случае на входе U ЦАП компаратора наблюдается ступенчато-нарастающее напряжение, а во втором - ступенчато-спадающее.

Поскольку компаратор работает без обратной связи, уровень его выходного напряжения делается высоким, когда напряжение на его входе U ан станет немного отрицательнее, чем на входе U ЦАП. И наоборот, уровень его выходного напряжения становится низким, как только напряжение на входе U ан станет немного положительнее напряжения на входе U ЦАП.

На вход U ЦАП компаратора поступает выходное напряжение ЦАП, которое сравнивается с аналоговым входным напряжением,поступающим на вход U ан .

Если аналоговое напряжение U ан превышает напряжение, снимаемое с выхода ЦАП, реверсивный счетчик считает в прямом направлении, ступенями наращивая напряжение на входе U ЦАП до значения напряжения на входе U ан. Если же U ан <U ЦАП или становится таковым в процессе счета, напряжение на выходе компаратора имеет низкий уровень и счетчик считает в обратном направлении, вновь приводя U ЦАП к U ан . Таким образом, система имеет обратную связь, которая поддерживает выходное напряжение ЦАП приблизительно равным напряжению U ан . Следовательно, выход реверсивного счетчика всегда представляет собой цифровой эквивалент аналогового входного напряжения. С выхода реверсивного счетчика считывается цифровой эквивалент аналогового входного сигнала АЦП.

4.10. Цифровые и аналоговые мультиплексоры

В микропроцессорных системах, АЦП, ЦАП, а также в системах электронной коммутации широкое применение находят мультиплексоры: многоканальные коммутаторы (имеющие 4, 8, 16, 32, 64 входа и 1-2 выхода) с цифровым устройством управления. Простейшие мультиплексоры цифровых и аналоговых сигналов показаны на рис. 4.12, а и б соответственно.

Рисунок 4.12

Цифровой мультиплексор (рис. 4.12, а) позволяет осуществлять последовательный или произвольный опрос логических состояний источников сигналов Х 0 , Х 1 , Х 2 , Х 3 и передачу результата опроса на выход

По указанному принципу строятся мультиплексоры на любое требуемое число информационных входов. Некоторые типы цифровых мультиплексоров допускают коммутацию и аналоговых информационных сигналов.

Однако лучшими показателями обладают аналоговые мультиплексоры, содержащие матрицу высококачественных аналоговых ключей (AK 1 ...AK 4), работающих на выходной буферный усилитель, цифровое УУ. Соединение узлов между собой иллюстрирует рис. 4.12,6.

Примером БИС аналогового мультиплексора является микросхема типа К591КН1, выполненная на основе МДП транзисторов. Она обеспечивает коммутацию 16 аналоговых источников информации на один выход, позволяя производить как адресацию, так и последовательную выборку каналов. При разработке БИС аналоговых мультиплексоров учитывают необходимость их совместимости с системой команд микропроцессоров.

Аналоговые мультиплексоры являются весьма перспективными изделиями для электронных коммутационных полей и многоканальных электронных коммутаторов связи, радиовещания и телевидения.

Всего лет двадцать пять назад радиолюбителям и специалистам старшего поколения пришлось заниматься изучением новых по тому времени приборов — транзисторов. Нелегко было отказываться от электронных ламп, к которым так привыкли, и переключаться на теснящее и все разрастающееся «семейство» полупроводниковых приборов.

А сейчас это «семейство» все больше и больше стало уступать свое место в радиотехнике и электронике полупроводниковым приборам новейшею поколения — интегральным микросхемам, часто называемым сокращенно ИМС.

Что такое интегральная микросхема

Интегральная микросхема - это миниатюрный электронный блок, содержащий в общем корпусе транзисторы, диоды, резисторы и другие активные и пассивные-элементы, число которых может достигать нескольких десятков тысяч.

Одна микросхема Может заменить целый блок радиоприемника, электронной вычислительной машины (ЭВМ) и электронного автомата. «Механизм» наручных электронных часов, например, — это всего лишь одна большей микросхема.

По своему функциональному назначению интегральные микросхемы делятся на две основные группы: аналоговые, или линейно-импульсные, и логические, или цифровые, микросхемы.

Аналоговые микросхемы предназначаются для усиления, генерирования и преобразования электрических колебаний разных частот, например, для приемников, усилителей, а логические — для использования в устройствах автоматики, в приборах с цифровым отсчетом времени, в ЭВМ.

Этот практикум посвящается знакомству с устройством, принципом работы и возможным применением самых простых аналоговых и логических интегральных микросхем.

На аналоговой микросхеме

Из огромного «семейства» аналоговых самыми простыми являются микросхемы-близнецы» К118УН1А (К1УС181А) и К118УН1Б (К1УС181Б), входящие в серию К118.

Каждая из них представляет собой усилитель, содержащий... Впрочем, об электронной «начинке» лучше поговорить лозже. А пока будем считать их «черными ящичками» с выводами для подключения к ним источников питания, дополнительных деталей, входных и выходных цепей.

Разница же между ними заключается только в их коэффициентах усиления колебаний низких частот: коэффициент усиления микросхемы К118УН1А на частоте 12 кГц составляет 250, а микросхемы К118УН1Б — 400.

На высоких частотах коэффициент усиления этих микросхем одинаков — примерно 50. Так что любая из них может быть использована для усиления колебаний как низких, так и высоких частот, а значит, и для наших опытов. Внешний вид и условное обозначение этих микросхем-усилителей на принципиальных схемах устройств показаны на рис. 88.

Корпус у них пластмассовый прямоугольной формы. Сверху на корпусе — метка, служащая точкой отсчета номеров выводов. Микросхемы рассчитаны на питание от источника постоянного тока напряжением 6,3 В, которое подают через выводы 7 (+Uпит) и 14 (— U пит).

Источником питания может быть сетевой блок питания с регулируемым выходным напряжением или батарея, составленная из четырех элементов 334 и 343.

Первый опыт с микросхемой К118УН1А (или К118УН1Б) проводи по схеме, приведенной на рис. 89. В качестве монтажной платы используй картонную пластинку размерами примерно 50X40 мм.

Микросхему выводами 1, 7, 8 и 14 припаяй к проволочным скобкам, пропущенным через проколы в картоне. Все они будут выполнять роль стоек, удерживающих микросхему на плате, а скобки выводов 7. и 14, кроме того, соединительными контактами с батареей GB 1 (или сетевым блоком питания).

Между ними с обеих сторон от микросхемы укрепи еще по два-три контакта, которые будут промежуточными для дополнительных деталей. Смонтируй на плате конденсаторы С1 (типа К50-6 или К50-3) и С2 (КЯС, БМ, МБМ), подключи к выходу микросхемы головные телефоны В2.

Ко входу микросхемы подключи (через конденсатор С1) электродинамический микрофон В1 любого типа или телефонный капсюль ДЭМ-4м, включи питание и, прижав поплотнее телефоны к ушам, постучи легонько карандашом по микрофону. Если ошибок в монтаже нет, в телефонах должны быть слышны звуки, напоминающие щелчки по барабану.

Попроси товарища сказать что-то перед микрофоном — в телефонах услышишь его голос. Вместо микрофона ко входу микросхемы можешь подключить радиотрансляционный (абонентский) громкоговоритель с его согласующим трансформатором. Эффект будет примерно таким же.

Продолжая опыт с телефонным устройством одностороннего действия, включи между общим (минусовым) проводником цепи питания и выводом 12 микросхемы электролитический конденсатор СЗ, обозначенный на схеме штриховыми линиями. При этом громкость звука в телефонах должна возрасти.

Телефоны станут звучать еще громче, если такой же конденсатор включить в цепь вывода 5 (на рис, 89 — конденсатор С4). Но если при этом усилитель возбудится, то между общим проводом и выводом 11 придется включить электролитический конденсатор емкостью 5 — 10 мкФ на. номинальное напряжение 10 В.

Еще один опыт: включи между выводами 10 и 3 микросхемы керамический или бумажный конденсатор емкостью 5 — 10 тыс. пикофарад. Что получилось? В телефонах появился непрекращающийся -звук средней тональности. С увеличением емкости этого конденсатора тон звука в телефонах должен понижаться, а с уменьшением повышаться. Проверь это.

А теперь раскроем этот «черный ящичек» и рассмотрим его «начинку» (рис. 90). Да, это двухкаскадный усилитель с непосредственной связью между его транзисторами. Транзисторы кремниевые, структуры n-р- n . Низкочастотный сигнал, создаваемый микрофоном, поступает (через конденсатор С1) на вход микросхемы (вывод 3).

Падение напряжения, создающееся на резисторе R 6 в эмиттерной цепи транзистора V 2, через резисторы R 4 и R 5 подается на базу транзистора VI и открывает его. Резистор R 1 — нагрузка этого транзистора. Снимаемый с него усиленный сигнал поступает на базу транзистора V 2 для дополнительного усиления.

В опытном усилителе нагрузкой транзистора V 2 были головные телефоны, включенные в его коллекторную цепь, которые преобразовывали низкочастотный сигнал в звук.

Но его нагрузкой мог бы быть резистор R 5 микросхемы, если соединить вместе выводы 10 и 9. В таком случае телефоны надо включать между общим проводом и точкой соединения этих выводов через электролитический конденсатор емкостью в несколько микрофарад (положительной обкладкой к микросхеме).

При включении конденсатора между общим проводом и выводом 12 микросхемы громкость звука увеличилась, Почему? Потому что он, шунтируя резистор R 6 микросхемы, ослабил действующую в ней отрицательную обратную связь по переменному току.

Отрицательная обратная связь стала еще слабее, когда ты второй конденсатор включил в базовую цепь транзистора V 1. А третий конденсатор, включенный между общим проводом и выводом 11, образовал с резистором R 7 микросхемы развязывающий фильтр, предотвращающий возбуждение усилителя.

Что получилось при включении конденсатора между выводами 10 и 5? Он создал между выходом и входом усилителя положительную обратную связь, которая превратила его в генератор колебаний звуковой частоты.

Итак, как видишь, микросхема К118УН1Б (или К118УН1А) — это усилитель, который может быть низ-кочастотным или высокочастотным, например, в приемнике. Но он может стать и генератором электрических колебаний как низких, так и высоких частот.

Микросхема в радиоприемнике

Предлагаем испытать эту микросхему в высокочастотном тракте приемника, собранного, например, по схеме, приведенной на рис. 91. Входной контур магнитной антенны такого приемника образуют катушка L 1 и конденсатор переменной емкости С1. Высокочастотный сигнал радиостанции, на волну которой контур настроен, через катушку связи L 2 и разделительный конденсатор С2 поступает на вход (вывод 3) микросхемы Л1.

С выхода микросхемы (вывод 10, соединенный с выводом 9) усиленный сигнал подается через конденсатор С4 на детектор, диоды VI и V 2 которого включены по схеме умножения напряжения, а выделенный им низкочастотный сигнал телефоны В1 преобразуют в звук. Приемник питается от батареи GB 1, составленной из четырех элементов 332, 316 или пяти аккумуляторов Д-01.

Во многих транзисторных приемниках усилитель высокочастотного тракта образуют транзисторы, а в этом — микросхема. Только в этом и заключается разница между ними. Имея опыт предыдущих практикумов, ты, надеюсь, сможешь самостоятельно смонтировать иг наладить такой приемник и даже, если пожелаешь, дополнить его усилителем НЧгдля громкоговорящего радиоприема.

На логической микросхеме

Составной частью многих цифровых интегральных микросхем является логический элемент И-НЕ, условное обозначение которого ты видишь на рис. 92, а. Его символом служит знак «&», помещаемый внутри прямоугольника, обычно в верхнем левом углу, заменяющий союз «И» в английском языке. Слева два или больше входов, справа — один выход.

Небольшой кружок, которым начинается линия связи выходного сигнала, символизирует логическое Отрицание «НЕ» на выходе микросхемы. На языке цифровой техники «НЕ» означает, что элемент И-НЕ является инвертором, то есть устройством, выходные параметры которого противоположны входным.

Электрическое состояние и работу логического элемента характеризуют уровнями сигналов на его входах и выходе. Сигнал небольшого (или нулевого) напряжения, уровень которого не превышает 0,3 — 0,4 В, принято (в соответствии с двоичной системой счисления) называть логическим нулем (0), а сигнал более высокого напряжения (по сравнению с логическим 0), уровень которого может быть 2,5 — 3,5 В, — логической единицей (1).

Например, говорят: «на выходе элемента логическая 1». Это значит, что в данный момент на выходе элемента появился сигнал, напряжение которого соответствует уровню логической 1.

Чтобы не углубляться в технологию и устройство элемента И-НЕ, будем рассматривать его как «черный ящичек», у которого для электрического сигнала есть два входа и один выход.

Логика же элемента заключается в том, что при подаче на один из его входов логического О, а на второй вход логической 1, на выходе появляется сигнал логической 1, который исчезает при подаче на оба входа сигналов, соответствующих логической 1.

Для опытов, закрепляющих в памяти это свойство элемента, потребуются наиболее распространенная микросхема К155ЛАЗ, вольтметр постоянного тока, свежая батарея 3336Л и два резистора сопротивлением 1...1,2 кОм.

Микросхема К155ЛАЗ состоит из четырех элементов 2И-НЕ (рис. 92, б), питающихся от одного общего источника постоянного тока напряжением 5 В, но каждый из них работает как самостоятельное логическое устройство. Цифра 2 в названии микросхемы указывает на то, что ее элементы имеют по два входа.

Внешним видом и конструктивно она, как и все микросхемы серии К155, не отличается от уже знакомой тебе аналоговой микросхемы К118УН1, только полярность подключения источника питания иная. Поэтому сделанная ранее тобой картонная плата подойдет и для опытов с этой микросхемой. Источник питания подключают: +5 В — к выводу 7» — 5 В — к выводу 14.

Но эти выводы не принято обозначать на схематическом изображении микросхемы. Объясняется это тем, что на принципиальных электрических схемах элементы, составляющие микросхему, изображают раздельно, например, как на рис. 92, в. Для опытов можно использовать любой из ее четырех элементов.

Микросхему выводами 1, 7, 8 и 14 припаяй к проволочным стойкам на картонной плате (как на рис. 89). Один из входных выводов любого из ее элементов, например, элемента с выводами 1 3, соедини через ре-.зистор сопротивлением 1...1.2 кОм с выводом 14, вывод второго входа — непосредственно с общим («заземленным») проводником цепи питания, а к выходу элемента подключи вольтметр постоянного тока (рис. 93, а).

Включии питание. Что показывает вольтметр? Напряжение, равное примерно 3 В. Это напряжение соответствует сигналу логической 1 на выходе элемента. Тем же вольтметром измерь напряжение на выводе первого входа, И здесь, как видишь, тоже логическая 1. Следовательно, когда на одном из входов элемента логическая 1, а на втором логический 0, на выходе будет логическая 1.

Теперь вывод и второго входа соедини через резистор сопротивлением 1...1.2 кОм с выводом 14 и одновременно проволочной перемычкой — с общим проводником, как показано на рис. 93, б.

При этом на выходе, как и в первом опыте, будет логическая 1. Далее, следя за стрелкой вольтметра, удали проволочную перемычку, чтобы и на второй вход подать сигнал, соответствующий логической 1.

Что фиксирует вольтметр? Сигнал на выходе элемента преобразовался в логический 0. Так оно и должно быть! А если любой из входов периодически замыкать на общий провод и тем самым имитировать подачу на него логического 0, то с такой же частотой на выходе элемента станут появляться импульсы тока, о чем будут свидетельствовать колебания стрелки вольтметра. Проверь это опытным путем.

Свойство элемента И-НЕ изменять свое состояние под воздействием входных управляющих сигналов широко используется в различных устройствах цифровой вычислительной техники. Радиолюбители же, особенно начинающие, очень часто используют логический элемент как инвертор — устройство, сигнал на выходе которого противоположен входному сигналу.

Подтвердить такое свойство элемента может следующий опыт. Соедини вместе выводы обоих входов элемента и через резистор сопротивлением 1...1,2 кОм подключи их к выводу 14 (рис. 93, в).

Так ты подашь на общий вход элемента сигнал, соответствующий логической 1, напряжение которого можно измерить вольтметром. Что при этом получается на выходе?

Стрелка вольтметра, подключенного к нему, чуть отклонилась от нулевой отметки шкалы. Здесь, следовательно, как и предполагалось, сигнал соответствует логическому 0.

Затем, не отключая резистор от вывода 14 микросхемы, несколько раз подряд замкни проволочной перемычкой вход элемента на общий проводник (на рис. 93, в показано штриховой линией со стрелками) и одновременно следи за стрелкой вольтметра. Так ты убедишься в том, что когда на входе инвертора логический 0, на выходе в это время логическая 1 и, наоборот, когда на входе логическая 1 — на выходе логический 0.

Так работает инвертор, особенно часто используемый радиолюбителями в конструируемых ими импульсных устройствах.

Примером такого устройства может служить генератор импульсов, собранный по схеме, приведенной на рис. 94. В его работоспособности ты можешь убедиться сейчас же, затратив на это всего несколько минут.

Выход элемента D1.1 соедини с входами элемента D 1.2 той же микросхемы, его выход — с входами элемента DJ .3, а выход этого элемента (вывод 8) — с входом элемента D 1.1 через переменный резистор R1. К выходу элемента D 1.3 (между выводом 8 и общим проводником) подключи головные телефоны B 1, a параллельно элементам D1.1 и D 1.2 электролитический конденсатор С1.

Движок переменного резистора установи в правое (по схеме) положение и включи питание — в телефонах услышишь звук, тональность которого можно изменять переменным резистором.

В этом эксперименте элементы D 1.1, D 1.2 и D 1.3, соединенные между собой последовательно, подобно транзисторам трехкаскадного усилителя, образовали мультивибратор — генератор электрических импульсов прямоугольной формы.

Микросхема стала генератором благодаря конденсатору и резистору, создавшим между выходом и входом элементов частотозависимые цепи обратной связи. Переменным резистором частоту импульсов, генерируемых мультивибратором, можно плавно изменять примерно от 300 Гц до 10 кГц.

Какое практическое применение может найти такое импульсное устройство? Оно может стать, например, квартирным звонком, пробником для проверки работоспособности каскадов приемника и усилителя НЧ, генератором для тренировок по приему на слух телеграфной азбуки.

Самодельный игровой автомат на микросхеме

Подобное устройство можно превратить в игровой автомат «Красный или зеленый?». Схема такого имлульсного устройства приведена на рис. 95. Здесь элементы D 1.1, D 1.2, D 1.3 той же (или такой же) микросхемы К155ЛАЗ и конденсатор С1 образуют аналогичный мультивибратор, импульсы которого управляют транзисторами VI и V 2, включенными по схеме с общим эмиттером.

Элемент D 1.4 работает как инвертор. Благодаря ему импульсы мультивибратора поступают на базы транзисторов в противофазе и открывают их поочередно. Так, например, когда на входе инвертора уровень логической 1, а на выходе уровень логического 0, то в Эти моменты, времени транзистор В1 открыт и лампочка HI в его коллекторной цепи горит, а транзистор V 2 закрыт и его лампочка Н2 не горит.

При следующем импульсе инвертор изменит свое состояние на обратное. Теперь откроется транзистор V 2 и загорится лампочка Н2, а транзистор VI закроется и лампочка H 1 погаснет.

Но частота импульсов, генерируемых мультивибратором, сравнительно высокая (не меньше 15 кГц) и лампочки, естественно, не могут реагировать на каждый импульс.

Поэтому они светятся тускло. Но стоит нажать на кнопку S1, чтобы ее контактами замкнуть накоротко конденсатор С1 и тем самым сорвать генерацию мультивибратора, как тут же ярко загорится лампочка того из транзисторов, на базе которого в этот момент окажется напряжение, соответствующее логической 1, а другая лампочка совсем погаснет.

Заранее невозможно сказать, какая из лампочек после нажатия на кнопку будет продолжать гореть — можно только гадать. В этом смысл игры.

Игровой автомат вместе с батареей питания (3336Л или три элемента 343, соединенные последовательно) можно разместить в коробке небольших размеров, например в корпусе «карманного» приемника.

Лампочки накаливания HI и Н2 (МН2,5-0,068 или МН2,5-0,15) размести под отверстиями в лицевой стенке корпуса и закрой их колпачками или пластинками органического стекла красного и зеленого цветов. Здесь же укрепи выключатель питания (тумблер ТВ-1) и кнопочный выключатель §1 (типа П2К или КМ-Н) остановки мультивибратора.

Налаживание игрового автомата заключается в тщательном подборе резистора R 1. Его сопротивление должно быть таким, чтобы при остановке мультивибратора кнопкой S 1 по крайней мере 80 — 100 раз число загораний каждой из лампочек было примерно одинаково.

Сначала проверь, работает ли мультивибратор. Для этого параллельно конденсатору С1, е,мкость которого может быть 0,1...0,5 мкФ, подключи электролитический конденсатор емкостью 20...30 мкФ, а к выходу мультивибратора головные телефоны — в телефонах должен появиться звук низкой тональности.

Этот звук — признак работы мультивибратора. Затем удали электролитический конденсатор, резистор R 1 замени подстроечным резистором сопротивлением 1,2...1,3 кОм, а между выводами 8 и 11 элементов DI .3 и D 1.4 включи вольтметр постоянного тока. Изменением сопротивления подстро-ечного резистора добейся такого положения, чтобы вольтметр показывал нулевое напряжение между выходами этих элементов микросхемы.

Число играющих может быть любое. Каждый по очереди нажимает на кнопку остановки мультивибратора. Выигрывает тот, кто при равном числе ходов, например двадцати нажатий на кнопку, большее число раз угадает цвета загорающихся лампочек после остановки мультивибратора.

К сожалению, частота мультивибратора описанного здесь простейшего игрового автомата из-за разрядки батареи несколько изменяется, что, конечно, сказывается на равновероятности зажигания разных лампочек, поэтому лучше питать его от источника стабилизированного напряжения 5 В.

Литература: Борисов В. Г. Практикум начинающего радиолюбителя.2-е изд., перераб. и доп. — М.: ДОСААФ, 1984. 144 с., ил. 55к.

В ранних электрических компьютерах компонентами схемы, выполнявшими операции, были вакуумные трубки. Эти трубки, напоминавшие электрические лампочки, потребляли много электроэнергии и вьщеляли много тепла. Все изменилось в 1947 году с изобретением транзистора. В этом маленьком устройстве использовался полупроводниковый материал, названный так за способность как проводить, так и задерживать электрический ток, в зависимости от того, есть ли электрический ток в самом полупроводнике. Эта новая технология позволила строить все виды электрических переключателей на кремниевых микросхемах. Схемы на транзисторах занимали меньше места и потребляли меньше энергии. Для более мощных компьютеров были созданы интегральные схемы, или ИС.

В наше время транзисторы стали микроскопически малы, и вся цепь ИС помещается на кусочке полупроводника площадью 1 дюйм квадратный. Маленькие блоки, рядами смонтированные на печатной плате компьютера, и есть интегральные схемы, заключенные в пластиковые корпуса. Каждая микросхема содержит набор простейших элементов схемы, или устройств. Большую их часть занимают транзисторы. ИС может также включать диоды, которые позволяют электрическому току идти только в одном направлении, и резисторы, которые блокируют ток.
Неподвижные части. Во внутренних отделах компьютера ряды интегральных схем в защитных корпусах, как показано внизу, смонтированы на печатной плате компьютера (зеленый цвет). Каждая бледно-зеленая линия обозначает дорожку, по которой идет электрический ток; все вместе они образуют «магистрали», по которым от схемы к схеме проводится электрический ток.

Крошечные связные. По краю микросхемы сильно намагниченные проводки, напоминающие человеческие волоски, посылают электрические сигналы от электрической цепи (им. сверху). Эти золотые или алюминиевые проводки практически не подвержены коррозии и хорошо проводят электричество.

Анатомия транзистора
Транзисторы - основные микроскопические элементы электронной схемы - это переключатели, которые включают и выключают электрический ток. Маленькие металлические дорожки (серый цвет) проводят ток (красный и зеленый цвета) из этих устройств. Организованные в комбинацию, называемую логическими «воротами» (логической схемой), транзисторы реагируют на электрические импульсы разнообразными предустановленными способами, позволяя компьютеру выполнять широкий спектр задач.

Логическая схема. В случае если поступающий электрический ток (красные стрелки) активизирует базу каждого транзистора, питающий ток (зеленые стрелки) устремится к проводку вывода.

Варады Г.К. 404 взвод.

Интегральные схемы.

План:

1) Вступление (понятие, устройство).

2) Типы ИС.

3) Плюсы и минусы ИС.

4) Производство.

5) Применение.

Вступление.

(от лат. integratio - «соединение»).

ИС - это микроэлектронная схема, сформированная на крошечной пластинке (кристаллике, или "чипе") полупроводникового материала, обычно кремния, которая используется для управления электрическим током и его усиления. Типичная ИС состоит из множества соединенных между собой микроэлектронных компонентов, таких, как транзисторы, резисторы, конденсаторы и диоды, изготовленные в поверхностном слое кристалла. Размеры кремниевых кристаллов лежат в пределах от примерно 1,3 х 1,3 мм до 13 х13 мм. Прогресс в области интегральных схем привел к разработке технологий больших и сверхбольших интегральных схем (БИС и СБИС).

Классификация.

В зависимости от степени интеграции (количество элементов для цифровых схем) применяются следующие названия интегральных схем:

    малая интегральная схема (МИС) - до 100 элементов в кристалле,

    средняя интегральная схема (СИС) - до 1000 элементов в кристалле,

    большая интегральная схема (БИС) - до 10 тыс. элементов в кристалле,

    сверхбольшая интегральная схема (СБИС) - более 10 тыс. элементов в кристалле.

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) - от 1-10 млн до 1 млрд элементов в кристалле и, иногда, гигабольшая интегральная схема (ГБИС) - более 1 млрд. элементов в кристалле. В настоящее время, в 2010-х, названия «УБИС» и «ГБИС» практически не используются, и все микросхемы с числом элементов более 10 тыс. относят к классу СБИС.

Плюсы и минусы ИС.

Интегральные схемы обладают целым рядом преимуществ перед своими предшественниками -аналоговыми схемами, которые собирались из отдельных компонентов, монтируемых на шасси. ИС имеют меньшие размеры, более высокие быстродействие и надежность; они, кроме того, дешевле и в меньшей степени подвержены отказам, вызываемым воздействиями вибраций, влаги и старения. Миниатюризация электронных схем оказалась возможной благодаря особым свойствам полупроводников. Их основными плюсами считаются :

    Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» - что соответствует сигналу высокого уровня (1), либо «закрыт» - (0), в первом случае на транзисторе нет падения напряжения, во втором - через него не идёт ток . В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (активном) состоянии.

    Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка состояния возможна при таком уровне помех, когда высокий уровень интерпретируется как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов, позволяющих исправлять ошибки.

    Большая разница уровней состояний сигналов высокого и низкого уровня (логических «0» и «1») и достаточно широкий диапазон их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора компонентов и настройки элементами регулировки в цифровых устройствах.

Надежность. Надежность интегральной схемы примерно такая же, как у отдельного кремниевого транзистора, эквивалентного по форме и размеру. Теоретически транзисторы могут безотказно служить тысячи лет - один из важнейших факторов для таких областей применения, как ракетная и космическая техника, где единственный отказ может означать полный провал осуществляемого проекта.

Производство.

Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему. Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м2. На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера. кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).

Применение. Локальное\ Глобальное.

Локальное.

Непосредственно в схемотехнике, интегральная схема может взять на себя огромное количество задач. Среди них могут быть:

Логические элементы, Триггеры, Счётчики, Регистры, Буферные, преобразователи, Шифраторы, Дешифраторы, Цифровой компаратор, Мультиплексоры, Демультиплексоры, Сумматоры, Полусумматоры, Ключи, Микроконтроллеры, (Микро)процессоры (в том числе ЦП для компьютеров), Однокристалльные микрокомпьютеры, Микросхемы и модули памяти, ПЛИС (программируемые логические интегральные схемы).

Глобальное.

Микропроцессоры и миникомпьютеры. Впервые представленные публично в 1971 микропроцессоры выполняли большинство основных функций компьютера на единственной кремниевой ИС, реализованной на кристалле размером 5х5 мм. Благодаря интегральным схемам стало возможным создание миникомпьютеров - малых ЭВМ, где все функции выполняются на одной или нескольких больших интегральных схемах. Такая впечатляющая миниатюризация привела к резкому снижению стоимости вычислений. Выпускаемые в настоящее время мини-ЭВМ ценой менее 1000 долл. по своей производительности не уступают первым очень большим вычислительным машинам, стоимость которых в начале 1960-х годов доходила до 20 млн. долл. Микропроцессоры находят применение в оборудовании для связи, карманных калькуляторах, наручных часах, селекторах телевизионных каналов, электронных играх, автоматизированном кухонном и банковском оборудовании, средствах автоматического регулирования подачи топлива и нейтрализации отработавших газов в легковых автомобилях, а также во многих других устройствах. Большая часть мировой электронной индустрии, оборот которой превышает 795млрд рублей., так или иначе зависит от интегральных схем. В масштабах всего мира интегральные схемы находят применение в оборудовании, суммарная стоимость которого составляет многие сотни миллиардов рублей.

Литература.

Мейзда Ф. Интегральные схемы: технология и применения. М., 1981 Зи С. Физика полупроводниковыхприборов. М., 1984 Технология СБИС. М., 1986 Маллер Р., Кеймин С. Элементы интегральных схем. М.,1989 Шур М.С. Физика полупроводниковых приборов. М., 1992

Чтобы работала любая мало-мальски сложная электроника, обычно необходимо много деталей. Когда их много, то они могут «объединяться», скажем, в интегральные схемы. Что они собой являют? Как классифицируются? Каким образом изготавливаются, и какие сигналы передают?

Чем являются логические интегральные схемы (ИС)

По сути, это микроэлектронное устройство, которое базируется на кристалле произвольной сложности, что изготовлено на полупроводниковой плёнке или пластине. Оно помещается в неразборный корпус (хотя может обойтись и без него, но только когда он является частью микросборки). Первая интегральная схема была запатентована в 1968 году. Это стало своеобразным прорывом в промышленности, хотя предоставленное устройство и не очень сильно соответствовало современным представлениям по своим параметрам. Интегральные схемы в массе своей изготавливаются для поверхностного монтажа. Часто под ИС понимают один только кристалл или плёнку. Наибольшее распространение получила интегральная схема на пластине кремния. Так вышло, что его применение в промышленности имеет ряд преимуществ, например, эффективность передачи сигналов.

Уровни проектирования

Данные устройства являются сложными, что прекрасно отображается. Сейчас они создаются при помощи специальных САПР, которые автоматизируют и значительно ускоряют производственные процессы. Итак, при проектировании прорабатывается:

  1. Логический уровень (инверторы, И-НЕ, ИЛИ-НЕ и им подобные).
  2. Системо- и схемотехнический (прорабатываются триггеры, шифраторы, АЛУ, компараторы и прочее);.
  3. Электрический (конденсаторы, транзисторы, резисторы и им подобные устройства).
  4. Топологический уровень - фотошаблоны для производства.
  5. Физический - как реализовывается один транзистор (или небольшая группа) на кристалле.
  6. Программный - создаются инструкции для микроконтроллеров, микропроцессоров и ПЛИС. Разрабатывается модель поведения с помощью вертикальной схемы.

Классификация

Говоря о том, как различают интегральные схемы, нельзя избрать только один параметр вида сложности техники, о которой ведётся речь. Поэтому в рамках статьи было отобрано целых три.

Степень интеграции

  1. Малая интегральная схема. Содержит меньше ста элементов.
  2. Средняя интегральная схема. Количество элементов колеблется в диапазоне сотня/тысяча.
  3. Большая интегральная схема. Содержит от тысячи до 10 000 элементов.
  4. В них есть свыше десяти тысяч элементов.

Как правило, для бытовых устройств часто используется большая интегральная схема. Ранее использовались и другие категории:

  1. Ультрабольшая интегральная схема. В неё зачисляли те образцы, которые могли похвастаться количеством элементов в диапазоне от 1 млн. до 1 млрд.
  2. Гигабольшая интегральная схема. Сюда относили образцы, количество элементов которых превышало 1 млрд. элементов.

Но в данный момент времени они не применяются. А все образцы, которые раньше относили к УБИС и ГБИС, сейчас проходят как СБИС. В целом, это позволило значительным образом сэкономить на количестве групп, поскольку две последних типа обычно используются специфически в больших научно-исследовательских центрах, где работают компьютерные системы, мощность которых измеряется в десятках и сотнях терабайт.

Технология изготовления

Ввиду различных возможностей производства интегральные схемы также классифицируются по тому, как они изготавливаются и из чего:

1. Полупроводниковые. В них все элементы и соединения выполняются на одном и том же полупроводниковом кристалле. Полупроводниковые интегральные схемы используют такие материалы, как кремний, германий, арсенид галлия и оксид гафния.

2. Пленочные. Все элементы и соединения сделаны как плёнки:

Толстоплёночные.

Тонкоплёночные.

3. Гибридная. Имеет бескорпусные диоды, транзисторы или иные электронные активные компоненты. Пассивные (как то резисторы, катушки индуктивности, конденсаторы) размещены на общей керамической подложке. Все они помещаются в один герметизированный корпус.

4. Смешанная. Здесь есть не только полупроводниковый кристалл, но и тонкоплёночные (или толстоплёночные) пассивные элементы, которые размещаются на его поверхности.

Вид обрабатываемого сигнала

И третий, самый последний вид, основывается на том, какие сигналы обрабатывает интегральная схема. Они бывают:

  1. Аналоговые. Здесь входные и выходные сигналы меняются согласно закону Они могут принимать значение в диапазоне от отрицательного до положительного напряжения питания.
  2. Цифровые. Здесь любой входной или выходной сигнал может иметь два значения: логической единицы или нуля. Каждому из них соответствует свой заранее определённый уровень напряжения. Так, микросхемы типа ТТЛ диапазон 0-0,4В оценивают в ноль, а 2,4-5В в единицу. Могут быть и другие разделения, всё зависит от конкретного образца.
  3. Аналогово-цифровые. Совмещают в себе преимущества и особенности предыдущих образцов. К примеру, в них могут быть усилители сигналов и аналого-цифровые преобразователи.

Правовые особенности

Что говорится про интегральные схемы в законодательстве? У нас в стране предоставлена правовая охрана топологий интегральных микросхем. Под ней подразумевают зафиксированное на определённом материальном носителе геометрически-пространственного расположения определённой совокупности конкретных элементов и связей меж ними (согласно статье 1448 Гражданского кодекса Российской Федерации). Автор топологии имеет такие интеллектуальные права на своё изобретение:

  1. Авторские.
  2. Исключительное право.

Кроме этого автору топологии могут принадлежать и другие преференции, в том числе - возможность получения вознаграждения за её использование. действует на протяжении десяти лет. За это время изобретатель, или человек, которому этот статус был уступлен, может зарегистрировать топологию в соответствующей службе интеллектуальной собственности и патентов.

Заключение

Вот и всё! Если у вас возникло желание собрать свою схему - можно только пожелать успеха. Но одновременно хочется обратить ваше внимание на одну особенность. Если есть желание собрать микросхему, то необходимо основательно подготовиться к этому процессу. Дело в том, что для её создания требуется исключительная чистота на уровне хирургической операционной, к тому же, из-за мелкости деталей поработать паяльником в обычном режиме не получится - все действия осуществляются машинами. Поэтому в домашних условиях можно создавать только схемы. При желании можно приобрести промышленные разработки, которые будут предлагаться на рынке, но идею с их изготовлением дома без значительных финансов лучше оставить.