Как сканировать пленочные негативы обыкновенным сканером. Как проводились исследования

» Сканирующие устройства минилабов

Мы продолжаем знакомство с принципами и особенностями работы минифотолабораторий. Попробуем разобраться с тем, как происходит измерение характеристик плотности и цвета негатива и вычисление параметров экспонирования.

Чтобы увидеть и проанализировать увиденное (в нашем случае - негативное изображение на фотопленке), необходимо, как минимум, иметь "глаза и мозги". Функции этих органов в принтере минилаба выполняет сканер. Особенности способа считывания изображения и алгоритма обработки полученных данных определяют степень достоверности вычисления времени экспонирования для получения качественного отпечатка.

Что касается "глаз" сканера, то, чем более подробную информацию о негативе они сообщают компьютеру (чем больше разрешающая способность и динамический диапазон измерительной системы) - тем лучше. Однако, на самом деле, объем обрабатываемой информации ограничен возможностями аппаратных средств компьютера и алгоритма и временем обработки, которое должно быть согласовано с производительностью остальных систем принтера. Тем более что задача, которую призван решать сканер, состоит не только и не столько в компенсации описанных ранее факторов, связанных с негативом, бумагой, оптическим и химическим трактами принтера. Алгоритм сканера должен, в идеальном случае, классифицировать условия съемки объекта и вычислить коррекцию для его оптимального воспроизведения на отпечатке. Следует иметь в виду, что задача определения объекта съемки зачастую не может быть однозначно решена не только мощными программно-аппаратными средствами, но и самим оператором, так как идеальная коррекция плотности для одного участка изображения может привести к потере деталей на другом участке. Например, “выбитое” вспышкой лицо на переднем плане имеет на негативе плотность гораздо выше, чем объекты заднего плана, которые могут представлять не меньший интерес для снимавшего. В этом случае более приемлемым решением может оказаться компромисс, при котором объект переднего плана печатается несколько более плотным, чтобы воспроизвести детали заднего плана. Задачу воспроизведения деталей одновременно с участков негатива повышенной и пониженной плотности решает адаптивное маскирование, примененное в принтере новейшего поколения Agfa MSP DIMAX . В оптический тракт введена жидкокристаллическая матрица, на которой автоматически формируется маскирующее изображение, компенсирующее высокий контраст исходного негатива.

Попытаемся разобраться, как сканеры различных моделей принтеров (Noritsu QSS1401/1501/1201(2)/1701(2) , Gretag MasterOne/MasterLab(+) , Agfa MSC ) справляются со столь сложной задачей, и в какой степени их функционирование может быть оптимизировано настройкой.

Глазами сканера Noritsu является ПЗС матрица 128x128 элементов, на которую через линзу,соответствующую формату пленки, проецируется кадр. Изображение считывается трижды за фильтрами R,G,B. Линзы и фильтры расположены на соосных турелях. После предварительного усиления информация в виде аналогового видеосигнала поступает на процессорную плату сканера, где оцифровывается и анализируется. Несмотря на достаточно большое разрешение ПЗС матрицы и солидную вычислительную мощность процессора этот сканер часто ошибается при вычислении экспозиции. Это обусловлено как несовершенством алгоритма, так и свойствами измерительной системы: характеристики фильтров не адаптированы к спектральной чувствительности фотобумаги и нестабильны во времени (фильтры быстро выгорают). Динамический диапазон измерительной системы недостаточно адаптирован ко всему диапазону плотностей изображения на пленке. Настройка принтера при работе со сканером заключается в калибровке усиления сигнала (потенциометрами на плате предварительных усилителей), определении области ПЗС матрицы, на которую проецируется кадр (для каждого формата пленки), и запоминанию величин для неэкспонированного кадра пленки. Практика показывает, что, для снижения процента брака, операторы Noritsu предпочитают работать в полуавтоматическом режиме, когда сканер корректирует только цветовые сдвиги, а оператор вводит поправки по плотности. Функция цветовой коррекции ухудшается по мере выгорания фильтров, и зачастую роль сканера сводится к позиционированию кадра.

Сканер упомянутых моделей Gretag работает гораздо эффективнее при определении коррекции как по плотности, так и по цвету. Его измерительная система представляет собой линейку фотодиодов, которая сканирует кадр в 12 позициях за каждым из фильтров R,G,B (для полного кадра формата 135 сканируется массив данных 8x12 точек для каждого из цветов) (рис.1 ). Такое небольшое разрешение накладывает определенные ограничения на эффективность распознавания мелких объектов, однако алгоритм обработки неплохо справляется с классификацией типичных сюжетов. Линейка фотодиодов является единственным органом зрения принтера (принтеры Noritsu , помимо матрицы сканера, имеют три фоточувствительных датчика R,G,B, осуществляющих интегральное измерение плотности кадра). Поэтому работа без сканера возможна лишь в режиме фиксированной экспозиции. Сигналы с фотодиодов, после адаптивного усиления, оцифровываются 12-разрядным АЦП, что обеспечивает достаточный динамический диапазон измерительной системы. Алгоритм классифицирует изображение, пытаясь отнести его к одной из групп по условиям съемки (Flash-1, Flash-2, Back Light, Green, Snow). Для каждой группы оценивается вероятность отнесения к ней сюжета, и полученные величины участвуют в процессе вычисления времени экспонирования наряду с параметрами в памяти принтера, определяющими степень коррекции для каждой из групп. К группе Flash-1 относятся сюжеты с ярко выраженным объектом высокой плотности в центре кадра (предполагается, что объект переднего плана снят со вспышкой и требуется плюсовая коррекция плотности для его нормального воспроизведения). Типичный пример - лицо на переднем плане, снятое со вспышкой. Если один или несколько плотных участков негатива смещены от центра, сканер анализирует их цветовой баланс и в случае близости с балансом человеческой кожи принимает их за объект съемки, относя сюжет к группе Flash-2, и, также как в предыдущем случае, осуществляет плюсовую коррекцию плотности. Сканер относит сюжет к группе Back Light (яркий фон), если обнаруживает достаточно большой участок негатива повышенной плотности, ограниченный краями кадра. Такой участок классифицируется как яркий фон и применяется минусовая коррекция плотности. Типичный пример - яркое небо на заднем плане. Сюжеты с объектами на фоне ярко освещенной зелени классифицируются как группа Green и требуют минусовой коррекции. Следует отметить, что, хотя сканер принимает во внимание цветовой баланс при отнесении сюжетов к группам Flash-2 и Green, соответствующая коррекция производится только по плотности. К группе Snow сканер относит низкоконтрастные объекты на однородном светлом фоне (снежный пейзаж, небо). Такие сюжеты требуют минусовой коррекции. Специальные кнопки на клавиатуре позволяют "подсказать" сканеру, с каким случаем он имеет дело.

При вычислении цветовой коррекции используются установленные в памяти пределы цветового сдвига по каждой из цветовых осей (Y-B, M-G, C-R плюс дополнительные оси для цвета ламп накаливания и люминесцентных ламп), при превышении которых коррекция не применяется (предполагается наличие естественной цветовой доминанты). Степень коррекции определяется заданной в памяти величиной максимума (Color Correction Factor) и величиной отклонения от “серого центра”. Она максимальна при малых отклонениях и линейно уменьшается до нуля с приближением к установленным пределам. Баланс “серого центра” индивидуален для каждой пленки. В памяти хранятся величины средней плотности нормального негатива и маски для каждого настроенного пленочного канала в соответствии с DX-кодом. По этим величинам ведется статистика, и заданные величины могут со временем уточняться с использованием статистических данных. При вычислении отклонения по плотности и цвету каждого кадра измеренная интегральная плотность сравнивается с плотностью нормального негатива с учетом отклонения маски.

Сканер показывает приемлемые результаты при работе в автоматическом режиме. Ошибки по плотности составляют в среднем 5-10%. Приведем типичные случаи ошибок. При смещении от центра до соприкосновения с границей кадра объекта переднего плана, снятого со вспышкой, сканер может отнести сюжет к группе Back Light, вместо Flash-1, и применить коррекцию с обратным знаком. Человеческие лица на групповой фотографии могут оказаться слишком мелкими объектами для сканера. Он не применит поправку, предусмотренную для сюжета Flаsh-2, и они окажутся на отпечатке слишком светлыми. Сюжет, содержащий белые объекты,снятые при вечернем или желто-красном искусственном освещении (корабль, здание), может быть отнесен сканером к группе Flash-2. В этом случае принтер напечатает слишком плотный отпечаток, приведя белые объекты к нормальной плотности человеческого лица. Часто сканер пытается привести к средней плотности светлую рубашку, принимая ее за основной объект переднего плана (Flash-1). Ясно, что портрет при этом оказывается слишком темным. Существенные цветовые сдвиги, обусловленные нарушением процесса обработки и хранения пленки, почти не корректируются. Не удается избежать некоторого искажения цветов при наличии в сюжете небольших цветовых доминант. При ручной печати опытный оператор может предвидеть некоторые из упомянутых ситуаций и попытаться их исправить. Оптимизация работы алгоритма сканера является процессом нахождения компромисса путем подстройки в памяти одноименных параметров, отвечающих за степень коррекции каждой из сюжетных групп. Также компромиссом между качеством печати сюжетов с цветовыми доминантами и коррекцией нежелательных цветовых сдвигов является настройка величин пределов коррекции и CCF.

Наилучшие результаты при автоматической печати показывает TFS-сканер семейства принтеров Agfa MSC . Технология “Total Film Scanning” позволяет печатать всю продукцию в общем для всех пленок канале с минимальным участием оператора (только загрузка пленки). Вполне удовлетворительно корректируются даже пленки с серьезными отклонениями, обусловленными нарушением процесса обработки и хранения. Процедура настройки принтера предельно проста. Попробуем разобраться, какими средствами достигается эта простота. “Глаза” сканера представляют собой три линейки из 16 фоточувствительных элементов, каждая из которых экспонируется одной из основных спектральных составляющих света, а также дополнительная линейка для анализа плотности негатива (рис.2 ). Блок фильтров сканера имеет характеристики, адаптированные к спектральной чувствительности эмульсии используемого типа фотобумаги, и выполнен в виде сменной обоймы. Это позволяет сканеру видеть негатив “глазами” фотобумаги. Подвижные части отсутствуют - сканирование происходит по мере подачи пленки. При сканировании полного кадра пленки формата 135 компьютер получает массив данных в 16x31 точках для каждого из трех основных цветов. При загрузке пленки она полностью сканируется. Данные, полученные по всей пленке, анализируются алгоритмом сканера, и выявленные особенности принимаются в расчет, наряду с информацией о каждом кадре. Полученной информации оказывается достаточно, чтобы алгоритм правильно вычислил не только коррекцию, связанную с особенностями пленок разных типов и производителей, но и скомпенсировал цветовые сдвиги пленок с различными отклонениями от нормы. Классификация индивидуальных кадров по сюжетным группам осуществляется подобно тому, как это происходит в сканере Gretag , но с более надежным результатом, что обусловлено как более высоким разрешением, так и информацией о других кадрах пленки. Заслуживает внимание работа алгоритма с сюжетами, содержащими цветовую доминанту. При расчете цветовой коррекции индивидуального кадра алгоритм игнорирует участки с повышенным цветовым сдвигом, что позволяет получить неискаженную цветопередачу объекта в сюжете с цветовой доминантой.

Настройка параметров сканера DL1, DL2, DL3, хранящихся в памяти принтера, позволяет оптимизировать распознавание и коррекцию сканером специфических условий съемки. Например, если замечено, что отпечатки с контрастных негативов, содержащих объект на переднем плане, снятый со вспышкой, получаются недоэкспонированными, следует слегка увеличить параметр DL1. Параметр DL2 отвечает за распознавание и коррекцию контрастных сюжетов с ярким фоном. Как и в случае с Gretag оптимизация этих параметров является поиском некоторого компромисса. Коррекция же негативов с низким контрастом, а также сюжетов на фоне больших водных поверхностей, снежных пейзажей и т.д., производится регулировкой параметра DL3.

При правильной настройке указанных параметров и регулировке порога распознавания цветовых доминант работа оператора в режиме автоматической печати становится чрезвычайно простой и удобной, даже если на пленке имеются кадры со значительными отклонениями от нормальных условий экспонирования.

Завершая сравнительный обзор принципов работы сканеров в МЛ и их возможности по коррекции плотности и цвета фотоотпечатков, хотелось бы отметить, что даже самый лучший сканер, снабженный хорошим алгоритмом, не в состоянии скомпенсировать серьезные отклонения технологических параметров процессов обработки пленки и бумаги от нормальных. Другими словами, всегда нужно помнить, что корректирующая работа сканера наиболее эффективна при условии нормальной, с химической точки зрения, работы как фильмпроцессора, так и бумажного процессора.

Игорь ГОРЮНОВ, Павел ЗАХАРОВ

Ссылки на связанные темы:

Описания минифотолабораторий
Периодически обновляемый раздел сайта, посвященный описаниям, в первую очередь, новых, а так же, по мере возможности, старым моделям минифотолабораторий.

Тихон Баранов

Настольные сканеры появились в 80-х годах и сразу стали объектом повышенного внимания, но сложность использования, отсутствие универсального программного обеспечения, а самое главное, высокая цена не позволяли сканерам выйти за пределы специализированного использования.

С тех пор прошло не так много времени, но уже выделилось целое направление настольных сканеров, предназначенных в основном для офисного и домашнего использования. Причем, за последние несколько лет, благодаря невероятному снижению цен популярность сканеров выросла значительным образом. Цена хорошего планшетного сканера сегодня соизмерима с ценой хорошей видеокарты или принтера, поэтому логично продолжить покупку компьютера и принтера приобретением сканера.

Последние два года планшетные сканеры настолько упали в цене, и настолько вырос ассортимент предлагаемых моделей, что выбор этого устройства для конкретных задач стал более чем актуальным.

В предлагаемом материале хочется рассказать о строении планшетного сканера, разобрать особенности процесса сканирования и дать некоторые рекомендации в приобретении планшетного сканера.

Настольный сканер незаменим при работе с компьютером, если у Вас есть потребность делать вставки графических изображений или текстов с бумажных носителей в документы, создаваемые при помощи компьютера. Современные настольные сканеры достаточно просты в использовании, имеют интуитивно-понятный интерфейс, но существует ряд характеристик и особенностей, на которые следует обращать внимание при выборе сканера - оптическая система, программная часть TWAIN-модуль и интерфейс. Разберем все три части по отдельности.

Оптика и механика

Данная часть состоит из сканирующей каретки с источником света, фокусирующего объектива или линзы, прибора с зарядовой связью и аналого-цифрового преобразователя (АЦП).

Собственно весь процесс сканирования с участием всего перечисленного выглядит следующим образом. На прозрачное стекло под крышку сканера кладется изображение (текст, графика, фотография), подлежащее сканированию, "лицом" вниз. Дальше начинает движение каретка, совершающая путь, равный длине стекла. Расположенная на ней лампа с холодным катодом освещает изображение. При помощи фокусирующего объектива световой поток от изображения проецируется на прибор с зарядовой связью, где преобразуется в аналоговую информацию. Последняя в АЦП становится цифровой, т.е. битовой, и тем самым понятной компьютеру. Похожее аналого-цифровое (и наоборот) преобразование проделывает модем, поскольку информация по телефонным линиям передается в аналоговой форме.

Точная цветопередача при сканировании цветных изображений происходит путем разделения сканируемого цвета по трем основным составляющим - цветам: красному, зеленому и синему.

Здесь пару слов хочется сказать про понятие "глубина цвета", поскольку если информация о цвете хранится в битах, то глубина цвета - это определенное число бит. Стандартной ("истинной") можно считать глубину цвета в 24 бита на каждую точку, когда на цвета RGB приходится по 8 бит. Соответственно, при такой разрядности сканер воспринимает 16,77 млн. цветовых оттенков одной точки. Помимо 24-битных сканеров на сегодняшний день широко распространены 30-, 36-, 42- и даже 48-битные сканеры. Но что интересно: человеческий глаз "не рассчитан" на глубину цвета более 24 бит. Увеличение разрядности сканеров вызвано не желанием производителей подзаработать на истерии вокруг технологических гонок, причина в другом: аналого-цифровое преобразование приводит к появлению искажений в младших, наиболее "ранимых", битах, - 30-битные (и выше) системы не пропускают пустую информацию в компьютер, "вытягивая" на выходе глубину цвета до полноценных 24 бит.

Раньше для цветного сканирования приходилось использовать трехпроходную технологию. То есть первый проход с красным фильтром для получения красной составляющей, второй - для зеленой составляющей и третий=- для синей. Такой метод имеет два существенных недостатка: малая скорость работы и проблема объединения трех отдельных сканов в один, с вытекающим отсюда не совмещением цветов.

Решением стало создание True Color CCD, позволяющих воспринимать все три цветовые составляющие цветного изображения за один проход. True Color CCD является стандартом на данный момент и в мире уже никто не выпускает трехпроходные сканеры. Аналогично в свое время прекратили существование черно-белые планшетные сканеры.

Рядовой пользователь может запутаться в разнообразии различных разрешений, которые нам предлагает производитель. Данное понятие можно разделить на две группы:

  1. Оптическое разрешение

    Определяется количеством ячеек в линии матрицы, поделенным на ширину поля сканирования. Обычно разрешение сканера обозначается двумя цифрами: 300х600 ppi, 600х1200 ppi и т.п. Хочется, чтобы читатель обратил внимание, что обозначение ppi (pixels per inch - пикселов на дюйм) более точно по отношению к разрешению сканирования, по отношению к распечатанному на принтере изображению - dpi (dots per inch - точек на дюйм).

  2. Интерполированное разрешение

    Выбирается пользователем и может в несколько раз превышать реальное разрешение сканера. Например, программное разрешение 600 ppi сканера HP ScanJet 5100C можно довести до 1200 ppi. Однако больше - не значит в данном случае лучше. Качественное сканирование получается при разрешении равном оптическому, либо меньшим, но ему кратным. Эту характеристику очень любят производители настольных сканеров, часто включая в название и нанося большими буквами на красочной коробке. Вы можете увидеть 4800, 9600 и т.д.

    При покупке сканера следует понимать, что общий подход в компьютерной технике "чем больше, тем лучше" (память, частота процессора и т.д.) в общем случае не относится к сканерам. То есть, конечно, лучше и конечно дороже, но Вам это может, никогда не пригодится! Разрешение, которое необходимо использовать при сканировании, определяется устройством вывода, которое вы используете.

    При сканировании изображений необходимо отталкиваться от оптического разрешения сканера. Т.е. если для сканера указано разрешение 300х600 ррi, сканируйте в режиме 300х300 ppi или 150х150 ppi. Файлы с интерполированным разрешением (в данном случае это может быть 600, 1200, 2400 и более ppi) не только велики по объему, но и содержат множество нереальных, программно "придуманных" пикселов, что сказывается на качестве получаемой картинки.

    Для вывода на экран один к одному (презентации, Web дизайн) достаточно задать 72 точки на дюйм или 100 точек на дюйм, так как все мониторы выдают либо 72, либо 96 точек на дюйм.

    При использовании струйного принтера при выводе цветных изображений достаточно задать разрешение сканера = разрешению принтера/3, так как производители принтеров указывают максимальное разрешение принтеров, при печати в цвете струйные принтеры используют три точки для создания одной точки, получаемой со сканера. То есть и здесь Вам хватит 200 - 250 точек на дюйм.

    Тогда в каких случаях нужно большое разрешение? Ответ прост: если требуется увеличивать или растягивать изображение, снятое с оригинала. Подумайте: может быть у Вас никогда и не возникнет такой потребности, а переплачивать придется достаточно много.

    Одной из основных характеристик сканера является динамический диапазон. Немножко поясним эту характеристику. Любое изображение имеет оптическую плотность: от 0.0 D (абсолютно белое, прозрачное) до 4,0 (абсолютно черное, непрозрачное). Динамиче-ский диапазон сканера определяется его способностью воспринимать оптическую плотность сканируемого изображения. Если сканер имеет динамический диапазон равный 2,5 D, то он сможет справиться с фотографиями, но будет "пас" при работе с негативами, имеющими оптическую плотность более 3,0 D. Это значит, что сканер не воспримет наиболее темные участки изображения и произведет неполноценное сканирование. Чтобы было понятно, приведу, как пример, советскую цветную фотопленку. Кто имел с ней дело, сравнение поймет отлично. Советская фотопленка выпускалась с низкой глубиной цвета и потому имела большие проблемы с отображением светлых и темных тонов.

    Дешевые планшетные сканеры имеют динамический диапазон 2.0 - 2.7D, хорошие 3.0=- 3.3D, новейшие модели 3.6D.

    Один из важнейших параметров матрицы - уровень производимого ею шума. Высокий уровень "шумности" крайне отрицательно влияет на качество сканирования, сокращая динамический диапазон и число разрядов с действительно полезными данными. Допускаемый уровень шума CCD-матриц сканеров SOHO-сектора - 3-4mV.

    В данной статье автор пытается дать некоторый обзор сканеров с традиционной CCD - технологией. Справедливости ради надо сказать, что на рынке присутствует альтернатива - CIS-технология. Последняя известна достаточно давно, но сканеры с использованием этой технологии появились относительно недавно. В таких сканерах полностью отсутствуют оптика и зеркала, приемный элемент равен по ширине рабочему полю сканирования и представляет собой линейку из нескольких одинаковых матриц. Помимо иных относительно незначительных недостатков этому варианту присущи два принципиальных: слабая фокусировка (оптики-то нет-) и небольшие зазоры между соседними матрицами. Сканированию текста это не мешает, но для работы с полноцветной графикой лучше выбрать сканер, построенный на основе традиционной CCD-технологии.

TWAIN-модуль

Парадоксально, но факт: сканер не является стандартным устройством для Windows. (Можно было бы оспорить данное утверждение, ведь в Windows`98 драйверы для сканеров установлены. Однако мне еще не попадался такой сканер, который бы работал с драйверами "девяностовосьмерки". Может быть, потому, что драйверы написаны для USB, а сканеров с таким интерфейсом на рынке еще мало.) Для взаимодействия графических приложений компьютера и оптико-электронной системы сканера необходима специальная программа, в роли которой выступает TWAIN-модуль. Ничего особо сложного он не представляет, но надо принять во внимание то обстоятельство, что разные версии TWAIN-модуля одного производителя могут вести себя неадекватно по отношению к разным версиям Windows, вплоть до полной их несовместимости. Это легко можно понять, если учесть сходность TWAIN-модуля с обыкновенным драйвером, подлежащим обновлению, например с выходом нового "детища" Билла Гейтса. Собственно, благодаря TWAIN-модулю пользователь способен управлять на экране монитора процессом сканирования. Модули эти как "произведения искусства" конкретных производителей сканеров отличаются различным набором своих функциональных возможностей. В модулях недорогих цветных планшетников, скорее всего, пользователь найдет такие функции, как: окно предварительного просмотра, автоматическое определение области сканирования, возможность выбора разрешения и режима сканирования, регулирование контрастности, яркости и гаммы, фильтр подавления печатного растра и др. Помимо названных, существует масса других, более специфических, функций - их можно встретить в модулях профессиональных сканеров, называть их здесь мы не будем.

Аппаратный интерфейс

Интерфейс влияет на скорость процесса сканирования будучи ответственным за быстроту обмена данными между компьютером и сканером. Сейчас к LPT- и SCSI-сканерам прибавились модели, оснащенные перспективным и шустрым интерфейсом USB. К примеру, существуют три разновидности модели Astra 1220 (производства UMAX): Astra 1220P, подключаемая к порту принтера, Astra 1220U, использующая интерфейс USB, и Astra 1220S=- SCSI-устройство. Наиболее скоростной из них является модель с интерфейсом SCSI, с USB - помедленнее, а с LPT - самая "тихоходная". Вообще соотношение SCSI/USB/LPT считается равным 3/2/1. В то же время следует заметить, что в отдельных случаях скоростные показатели сканеров с тем или иным интерфейсом могут значительно отличаться от ожидаемых. Однако такие моменты лишь подтверждают правило, поэтому разница в цене, существующая между LPT-, USB- и SCSI-сканерами, вполне оправдана.

Тем не менее существует ряд условий, выполнение которых может несколько ускорить работу интерфейсных устройств Вашего сканера.

  • Если Ваш аппарат подключается к параллельному порту компьютера, стоит обратить внимание на режим, в котором работает контроллер порта. Традиционно рекомендуется устанавливать ЕРР\ЕСР, однако большинство современных BIOS поддерживает различные варианты этого режима: EPP v.1.7, EРP\EСP v.1.9, и так далее. В общем случае определить оптимальный вариант можно только экспериментально.
  • Большинство SCSI-сканеров класса SOHO комплектуется сейчас контроллерами типа DTC3181 либо аналогичными. Эти контроллеры не имеют собственного BIOS, единственный доступный пользователям элемент управления - перемычки (jumpers) J1, J2, задающие поддержку Plug"n"Play и величину wait state (WS) соответственно; второй параметр по умолчанию имеет значение "1". Распространено заблуждение, согласно которому установка WS=0 приводит к "ускорению" сканирования. К сожалению, это не так: в лучшем случае скорость сканирования не изменится, в худшем - Вы получите сообщение типа "Scanner not ready"...

    Известны случаи, когда к существенному замедлению работы сканера приводил конфликт двух SCSI-контроллеров. Если такую проблему не удается решить переназначением ресурсов конфликтующим устройствам, рассмотрите вариант установки сканера в составе SCSI-цепочки на более мощный контроллер. При этом сканер должен быть последним устройством цепочки, его следует терминировать, а SCSI ID выставить в положение, соответствующее требованиям используемого контроллера (допустимые положения: 1...6). Имеющийся опыт использования сканеров Mustek с быстродействующими контроллерами Adaptec 2940 AU и Asus SC-200 PCI показывает, что подключенный таким образом сканер работает быстрее, чем с "родной" SCSI-II картой DTC3181.

    Выбор сканера

    Перво-наперво хочется, чтобы покупатель имел в виду, что сканер всегда покупается для конкретных работ, и не пытайтесь здесь крутить пальцами перед своими друзьями, показывая им модель, которую вы приобрели, ну с очень крутыми характеристиками - опытный, знающий пользователь может над вами посмеяться. Если вы не представляете, какие работы будете выполнять, то вам, скорее всего, необходим сканер для дома, и ниже мы подберем сканер и для вас.

    Работы по сканированию текста

    Для этих работ подойдут любые сканеры, так как черно-белый текст способны хорошо отсканировать практически любые из представленных на рынке сканеров - смело выбирайте самый дешевый вариант одного из известных производителей.

    Домашние работы

    Если вы не ставите перед собой глобальных, крупномасштабных задач и у вас рядом не стоит какой-нибудь "супер-пупер-лазерный цветной" принтер, с "офигительными" характеристиками, с помощью которого вы тихой сапой намереваетесь заняться тем, чем у нас занимается фабрика "Гознак", то вам подойдет серия Scan Express фирмы Mustek, при минимальной цене она даст вам вполне приемлемое качество. Для просмотра изображений на мониторе вам достаточно разрешения сканера 100 точек на дюйм, для распечатывания на принтере с небольшим увеличением, хватит 600 точек на дюйм. Если же вы собираетесь создать огромный домашний фотоархив, то вам стоит обратить внимание на более мощные модели - серия Mustek Paragon, рассчитанная на большие объемы работ, и сканеры Umax Astra с улучшенной цветопередачей, для тех, кто не понаслышке знаком с PhotoShop и может на простом уровне откалибровать свой монитор.

    Если вы не знакомы с внутренним устройством компьютера - выбирайте сканеры с подключением к параллельному порту - они немного медленнее, но проще устанавливаются. Если вам посчастливилось, и вы = обладатель компьютера последнего года выпуска с USB-шиной, то сканер на USB v порт для вас окажется более предпочтительным - он быстрее, чем сканер на LPT. Для тех, кто не боится самостоятельно установить SCSI-карточку, сканеры со SCSI-интерфейсом подойдут лучше всего.

    Офисные работы

    Сканеры для офиса должны быть рассчитаны на большой объем работ и лучше передавать цвета, так как в офисах стоят, как правило, более качественные цветные принтеры. Сканер должен позволять подключать слайд-адаптер, желательно также подключение автоподатчика документов. Для таких работ подходит серия Paragon Mustek, как сканеры начального уровня. Для создания и распечатки собственных красочных листовок и презентаций необходимы сканеры с лучшей цветопередачей - Umax Astra и Agfa Snap-Scan (Сканеры AGFA предоставляют более широкие возможности подготовленному оператору). Наиболее мощный сканер из этого класса - Umax Astra 2400S Plus, рассчитанный на большие объемы работ.

    Довольно большую популярность как во всем мире, так и у нас на рынке приобрели сканеры фирмы Hewlett-Packard. Они в большинстве своем стоят в различных офисах нашей страны, имея под собой довольно неплохие межгородские сервисы и мастерские по ремонту и обслуживанию. Наиболее популярными моделями для офисной работы можно считать ScanJet 5200C и ScanJet 6200C

    Сканеры для рекламных агентств

    Основные задачи для этих сканеров - качественное сканирование небольших объемов слайдов и бумажных оригиналов. Сканер должен обладать высоким разрешением (Для сканирования слайдов с выводом их на печать, форматом распечатанного изображения 10х15 см (формат стандартной фотографии) вам необходимо будет разрешение 1200 точек на дюйм, а для распечатывания слайда на формат А4 - уже 2400 точек на дюйм.), а также хорошим динамическим диапазоном. (Для сканирования фотографий необходим диапазон 2.3D, для слайдов необходим диапазон оптических плотностей больший, чем 2.8-3.0 D, а для негативов больший, чем 3.3 D.) Наиболее дешевые сканеры в этом классе - Agfa Duoscan T1200 с отличным качеством, но невысоким разрешением 600х1200 точек на дюйм, и Mustek Paragon Power Pro с хорошим разрешением 1200х2400 точек на дюйм, но с невысоким динамическим диапазоном, - для фирм, которые не могут позволить себе значительные финансовые затраты. Для более требовательных пользователей подойдут сканеры AGFA Duoscan и Umax PowerLook III, HP ScanJet 6350C с хорошей цветопередачей и динамическим диапазоном (3.4D) и с высоким разрешением (1000х2000 и 1200х2400 соответственно).

    Сканирование большого количества слайдов

    Для сканирования больших объемов слайдов необходимы сканеры с теми же характеристиками, что и у предыдущей группы, но большего формата - А3. На стекле такого сканера располагаются сразу несколько слайдов, которые сканируются в пакетном режиме. Если вам не нужно большое разрешение сканера, то идеальным выбором для вас в этой группе будет сканер Mirage IIse. Сканер AGFA Duoscan T2000XL с большим разрешением 2000х2000 точек на дюйм подойдет вам в случае если необходимо увеличивать сканированные слайды на формат близкий к А4. Довольно неплохое предложение на рынке имеет для этого типа работ и компания Hewlett-Packard, которая представляет на рынке свою модель - Photo Scanner S20, которая по мнению автора неплохо оптимизирована под работу с 35 мм негативами.

    Сканирование слайдов большого формата

    Сканирование рентгеновских снимков, материалов дефектоскопии и аэросъемки. Здесь представлены сканеры с невысоким разрешением, но с хорошим качеством цветопередачи и с высоким динамическим диапазоном. Это Mustek Paragon A3 Pro c разрешением 600х1200 и Umax Mirage IIse с разрешением 700х1400 точек на дюйм.

    Сканеры для Полиграфии

    Для этих задач сканеры должны обладать высочайшими характеристиками, и выбор сканера должен определяться в большей степени ценой, которую вы готовы потратить на него. Наиболее простой сканер в данной категории - AGFA Duoscan T2500 c разрешением 2500 точек на дюйм. Более мощная модель Umax PowerLook 3000 с разрешением 3048х3048. И две модели AGFA А3 формата - AgfaScan 5000 с разрешением 2500х5000 и AgfaScan XY-15 с разрешением 5000х5000 на полном А3+ формате.

    Напоследок хочется дать некоторые советы, при покупке данного устройства:

  • Не стоит забывать, что с любым сканером все прикладные программы взаимодействуют посредством "драйвера", и что это единственный интерфейс, которым возможно задавать параметры для сканирования изображения. Функциональность и возможности драйвера во многом определяют возможности, получаемые пользователем от сканера. Поэтому важно, чтобы фирма-производитель с достаточной серьезностью относилась к разработке "драйверов" для своих сканеров, а о возможностях драйверов лучше узнать еще до покупки сканера у поставщика либо на сайте производителя, возможно, нелишним окажется послушать "бывалых" полиграфистов. Часто забывают, что без "родного" драйвера (если он не работает под нужной ОС сейчас или не удастся найти новую версию драйвера через год, с выходом Windows 2000) сканер не может работать вообще.
  • Заявления продавца о том, что в его сканере есть нечто, чего нет у других (стеклянная оптика, особенно хорошее "цейссовское" верхнее стекло, встроенное в сканер выделение букв и подавление помех и прочие правдивые или бредовые вещи), вполне может иметь под собой почву, но используйте здравый смысл и задайте себе два простых вопроса:
  • Если все настолько хорошо, почему в мире еще продаются другие сканеры?
  • Если это действительно такое важное преимущество, почему производитель не пишет об этом огромными буквами на коробке сканера, в рекламе и Интернете?

    И еще: при транспортировке сканера не забывайте ставить специальную заглушку, в режим закрыто, а то иначе так и будете ездить между сервис-центром и домом.

    Вот, кажется, на первый раз и все. Да, и последнее: один мой знакомый накопил дома кучу разного компьютерного железа - видеокарт, процессоров, звуковых карточек, - продал он это и купил себе сканерочек. Уважаемый читатель, загляните к себе в кладовку, может там лежит ваш еще не купленный сканер. Так что думайте, решайте, ищите! Выбор за вами.


  • Планшетные сканеры:

    как они устроены, чем отличаются и как расшифровать характеристики

    Выбирающий сканер человек встречает такое количество числовых характеристик, названий «патентованных и только у нас» технологий и просто загадочных фраз, что несложно растеряться. Тестирование в компьютерной прессе обычно проводится по случайно выбранным критериям, при этом важные для конкретного человека возможности остаются за кадром. Некоторые продавцы сканеров приводят убойные для непосвящённого человека аргументы вроде «у сканера А нет разрывов в полутонах, а сканер Б имеет несколько завышенное механическое разрешение». Как «перевести» их высказывания и вообще есть ли в них смысл, за какие функции именно в Вашем случае стоит платить, а какие останутся «про запас» — вот о чём эта статья. Ниже мы попытаемся рассмотреть конструктивные принципы, применённые в планшетных сканерах, с точки зрения электроники и оптики, и оценим значение основных характеристик сканеров, как выражаемых в цифрах и приводимых в рекламе и руководствах, так и менее очевидных, но не менее важных. Ручные и протяжные (листовые) сканеры мы отдельно рассматривать не будем ввиду общности используемых технологий, одинакового значения численных характеристик и ограниченности их применения для работы с полноцветным изображением. Все приводимые сведения по умолчанию относятся только к ценовой категории «до 10000 у.е.».

    Современный сканер функционально состоит из двух частей: собственно сканирующего механизма (engine) и программной части (TWAIN-модуль, система управления цветом и прочее). В процессе покупки часто забывают о том, что без собственного драйвера сканер работать не сможет, так как не является стандартным для Windows устройством. Надёжность же работы и функциональные возможности (точнее, их отсутствие) TWAIN-модулей особо дешёвых сканеров сильно напоминают драйвера «безродных» видеокарт, с той разницей, что для сканеров нет «универсальных» драйверов от производителя чипа или из комплекта поставки Windows. Если Вы работаете под WindowsNT, будьте внимательны вдвойне!

    Механизм:

    Сканирующие механизмы планшетных сканеров выпускает весьма ограниченный круг производителей, которые поставляют их по OEM-соглашениям другим компаниям. Те комплектуют их своим набором программного обеспечения и продают под собственной торговой маркой. «Добавленное» программное обеспечение может быть действительно очень хорошим, но нельзя не упомянуть о некоторых «подводных камнях» при покупке такого сканера «из третьих рук».

    Во-первых, цена обычно выше, чем у «исходной» модели, хотя механизм остаётся тем же самым.

    Во-вторых, неизбежная потеря времени на взаимодействие производителя механизма и компании, продающей сканер под своей маркой, приводит к некоторому моральному устареванию модели к моменту выпуска в продажу, иногда довольно значительному. Так, в некоторых моделях сканеров очень известных фирм используются механизмы «образца» 1993 года!

    В-третьих, не всегда есть совместимость «переименованной» модели с новыми версиями драйверов от производителя механизма, в таком случае новые драйвера будут доступны только после их «доработки» продавцом, в худшем же случае, если продавец перестал торговать сканерами под своей маркой, никогда.

    Планшетные сканеры, особенно предназначенные для чего-то кроме подарка или использования в качестве игрушки, при внешней простоте являются весьма интересными и довольно сложными опто-электронно-механическими устройствами. Однако конструкция их устоялась, производство хорошо налажено и технологически не является чем-то запредельным, так что обычно планшетные сканеры в ценовом диапазоне до 10000 долларов (включая такие известные имена, как AGFA, Linotype-Hell и UMAX) производятся на Тайване.

    Для понимания значения характеристик нужно представлять себе конструкцию типового планшетного сканера (конструкция дорогих моделей немного отличается).

    Оригинал располагается на прозрачном неподвижном стекле, вдоль которого передвигается сканирующая каретка с источником света (если сканируется прозрачный оригинал, используется так называемый слайд-модуль — крышка, в которой параллельно сканирующей каретке сканера перемещается вторая лампа).

    Оптическая система сканера (состоит из обьектива и зеркал или призмы) проецирует световой поток от сканируемого оригинала на приёмный элемент, осуществляющий разделение информации о цветах — три параллельных линейки из равного числа отдельных светочувствительных элементов, принимающие информацию о содержании «своих» цветов. В трёхпроходных сканерах используются лампы разных цветов или же меняющиеся светофильтры на лампе или CCD-матрице. Приёмный элемент преобразует уровень освещенности в уровень напряжения (все ещё аналоговую информацию). Далее, после возможной коррекции и обработки, аналоговый сигнал поступает на аналого-цифровой преобразователь (АЦП). С АЦП информация выходит уже в «знакомом» компьютеру двоичном виде и, после обработки в контроллере сканера через интерфейс с компьютером поступает в драйвер сканера — обычно это так называемый TWAIN-модуль, с которым уже взаимодействуют прикладные программы.

    Источник света:

    В старых разработках —обычная флуоресцентная лампа (родственна обычным лампам дневного света). Недостаток — слабая стабильность характеристик освещения и ограниченный срок службы. В современных моделях — лампа с холодным катодом, имеющая лучшие параметры и значительно больший срок службы. Как лампа влияет на результат сканирования? Достаточно очевидно — при изменении характеристик источника освещения оригинала изменяется падающий на принимающую матрицу световой поток, несущий информацию о сканируемом оригинале. Если свойства лампы за 2-3 месяца работы изменяются «до неузнаваемости» — говорить о правильной цветопередаче сканера уже не приходится.

    Вообще, характеристики светового потока меняются даже при прогреве сканера. В этой связи несколько настораживает конструкция текущих моделей Epson — единственные из известных марок сканеры с тремя раздельными лампами разных цветов, ведь каждая лампа может «плыть» по-своему.

    Качество лампы оценить сложно. Убедитесь, по крайней мере, что используется лампа с холодным катодом (если это так, то обязательно отражено в описании). Ориентированные на профессиональную работу с цветом сканеры содержат помимо встроенной процедуры самокалибрации по интенсивности светового потока от лампы еще и схемы поддержания стабильности потока при изменении температуры.

    Кстати, косвенным признаком пригодности к «полноцветной» работе может служить время первичного прогрева лампы после того, как лампа была автоматически погашена при неиспользовании сканера в течении некоторого времени (кстати, обычно время прогрева и время ожидания до погашения лампы можно изменить, но где-то внутри файлов настроек).

    Оптическая система:

    Световой поток от оригинала проецируется на матрицу CCD (прибор с зарядовой связью), которая преобразует его в электрический сигнал. Обычно используется один фокусирующий обьектив (или линза), который проецирует полную ширину области сканирования на полную ширину матрицы CCD. Требования к качеству оптики для такой задачи весьма высоки, особенно сложно обеспечить приемлемое качество проецирования краёв рабочей области для цветных оригиналов. Оценить качество фокусировки и разрешающую способность оптики легко можно визуально при сканировании специальной тестовой мишени или защитных участков банкноты.

    В наиболее мощных моделях планшетных сканеров встречаются сменные объективы: при работе в обычном режиме оптика работает аналогично однолинзовым механизмам, при переключении на второй, «усиленный» режим используется другой объектив, который проецирует на полную ширину CCD-матрицы только часть ширины рабочего стола сканера. Таким образом, на постоянное число приёмных ячеек CCD-матрицы проецируется участок меньшей ширины и соответственно возрастает оптическое разрешение. Обычно в документации указано число ячеек CCD-матрицы. Новейшие матрицы 42-битных сканеров имеют 10600 ячеек (хотя в однопроходных сканерах матрица имеет три параллельных линейки приёмных ячеек — по одной на цвет, указывается число элементов в одной). Поделив число ячеек на ширину поля сканирования, получим оптическое разрешение. Заметим, что некоторые профессиональные плоскостные сканеры имеют больше двух (до 5) переключаемых объективов, но это уже категория «выше 10000».

    Для сканеров, эксплуатируемых на территории бывшего СССР, большое практическое значение имеет защищённость их зеркал, оптической системы и CCD-матрицы от пыли и насекомых. Даже мелкие пылинки и ворсинки непосредственно на матрице или объективе приводят к заметным дефектам.

    Разрешение: оптическое, механическое, физическое и разное.

    Оптическое : количество элементов в линии матрицы, поделённое на ширину рабочей области. Определяется матрицей и шириной рабочей зоны, меньшая из всех приводимых цифр разрешения. Но может и не приводиться вовсе! Первый кандидат на использование в качестве примера: в характеристиках на HP ScanJet 5100 «Resolution, Optical: 600dpi Hardware Super Sampling». Про модель ScanJet 6100, которая где-то в два раза дороже, написано просто «Resolution, Optical: 600dpi».

    Механическое : количество раз «считывания» информации CCD-матрицей, поделённое на длину пути, пройденного за это время сканирующей кареткой. Иногда его тоже называют оптическим («оптическое разрешение 300×600»), но на самом деле это не так (оптическое будет 300, а 600 — это тоже реальное разрешение, но механизма, а не оптики). Как правило, механическое разрешение задаётся изготовителем в 2 раза больше оптического (иногда равным ему или в 4 раза большим), при этом, поскольку CCD-матрица не может сканировать с разрешением выше оптического, а сканируемый квадрат должен остаться квадратом, недостающие «по ширине» точки рассчитываются (интерполируются). Интерполяция же не только не даёт видимого повышения качества при сканировании полноцветных оригиналов, но и может ухудшить чёткость и заметно понизить скорость сканирования.

    Физическое разрешение, истинное разрешение, реальное разрешение : всё, что как-то определяется механизмом сканера.

    Интерполяционное — произвольно выбранное разрешение, до которого программа сканера якобы берётся «сама рассчитать» недостающие точки (например, выдать 16×16 точек, получив со сканера 3×3 точки). Ценность величины этого показателя сомнительна и он не имеет совсем никакого отношения к механизму сканера. Заметим, что оригиналы типа гравюр иногда действительно лучше увеличивать, сканируя с интерполяционным разрешением, масштабирование же цветного изображения обычно всегда лучше делать в Adobe Photoshop и сканировать при этом с разрешением, равным оптическому (то есть для сканера с указанным «оптическим» — на самом деле физическим — разрешением 300×1200dpi надо выставлять 300 dpi). Если Вам нужно отсканировать полноцветное изображение с разрешением меньше оптического, то лучше задавать разрешение, кратное оптическому (то есть для сканера 300×1200 dpi выставлять 300 dpi или 150 dpi, но не 200 dpi!) или ближайшее большее и масштабировать в Adobe Photoshop.

    Важно : главная задача при сканировании полноцветного изображения — получить на выходе сканера максимум РЕАЛЬНОЙ информации. Информация с отдельной ячейки CCD-матрицы реальна, а вот результат, например, сканирования с разрешением 2/3 от оптического — интерполяция драйвером или контроллером сканера информации с трёхсот ячеек в двести пикселов.

    Какое оптическое разрешение нужно для Вашей работы:

    Для программ распознавания текста обычного размера (не микрофильмов) 200-300 dpi, для работы с графикой определить чуть сложнее. Максимальное разрешение, с которым ещё имеет смысл сканировать, можно посчитать по формуле «для обеспечения хорошего запаса по качеству разрешение сканирования должно в 1,5-2 раза превышать умноженное на коэффициент масштабирования разрешение файла, подающегося на устройство печати ». Если оригинал напечатан офсетным способом (это вся печатная продукция) и подавление растрового муара выполняется не драйвером сканирования, а в программе Adobe Photoshop — разрешение при сканировании установите выше ещё в 2 раза. Сканирование с более высоким разрешением будет просто тратой времени. Нижняя граница разрешения сканирования определяется возможностями компьютера, на котором будет обрабатываться отсканированное изображение (растровый файл полноцветной картинки формата А4 с разрешением 300 dpi имеет размер более 20 Мб), и визуальным восприятием готового отпечатка. Например, растровые файлы для печати больших полноцветных плакатов для наружной рекламы готовятся с разрешением 50-100 dpi не только из-за огромного размера этих файлов (сотни мегабайт), но и потому что дальнейшее увеличение разрешения уже не улучшает восприятие плаката.

    Обратите внимание : разрешение полноцветного файла для печати на цветном принтере — это отнюдь не разрешение печати принтера! Так как каждая точка полноцветного изображения с «8 бит на цвет» может иметь 256 градаций по каждому цвету, а точка, печатаемая обычным принтером, в данном месте либо есть, либо её нет. На практике для печати в масштабе 1:1 разрешение исходного растрового изображения обычно должно быть от 150 до 300 dpi. При этом напечатанное с файла 300 dpi изображение визуально может быть оценено как отличное. Принтер с одноцветными точками использует свои 600, 1200 или 1440 точек на дюйм для передачи полутонов, так что его полутоновое разрешение будет равно одноцветному, поделённому на 16 (грубое упрощение, но в общем верно). Для сублимационной и других Contone-технологий каждая печатаемая точка может иметь некоторое число оттенков (для сублимации любая точка может быть любого из 16 млн. цветов и его полутоновое разрешение равно одноцветному).

    Сканер с оптическим разрешением 600 dpi позволит отсканировать фотографию 10×15см с количеством точек, достаточным для печати её на разворотё журнала. Сканируя с оптическим разрешением 3048 dpi для рекламного уличного щита, вы можете увеличить ваш оригинал в 50 и более раз.

    Файл для вывода на плёнки, передаваемые в типографию, рекомендуется готовить с разрешением в 1,4 раза выше линиатуры вывода (некоторые эксперты рекомендуют разрешение файла в 2 раза выше линиатуры, но никак не ещё более высокое).

    Кстати, встретив занимающегося цветом в издательстве человека, проникновенно попросите его объяснить смысл понятия линиатуры (здесь названа условным термином «полутоновое разрешение»). Сведущий человек ощутит необходимость немедленно и как следует выпить пива для обсуждения столь концептуального вопроса — линиатура может быть и задаваемым входным параметром…

    Количество бит на цвет (глубина цвета, разрядность)

    Обычное количество двоичной информации о цвете одной точки полноцветного изображения в компьютере — 24 бита на каждую точку, по 8 бит на каждый из основных цветов RGB, что даёт свыше 16 млн. вариантов цвета этой точки. Более тонкие оттенки глаз не различает, и устройства вывода обычно не воспроизводят. Почему же сканеры и графические пакеты бывают 48-битными? Технологический ответ: CCD-матрица в сканерах более высокой разрядности обычно чувствительнее и имеет меньший собственный шум, аналого-цифровой преобразователь качественнее и имеет меньший собственный шум, и так далее.

    Математический ответ : потому что на каждом этапе преобразования информации — при гамма-коррекции, работе программы цветосинхронизации, обработке изображения в графическом редакторе, цветоделении при выводе на печать — младшие разряды перестают содержать полезную информации. Дорогие 36-битные (и выше) сканеры используют так называемые загружаемые кривые гамма-коррекции, в них корректировка информации о цвете точки производится не пересчётом в драйвере полученных уже с выхода сканера данных, при котором теряется полезная информация в младших битах, а внутри сканера, возможно даже ещё на этапе аналого-цифрового преобразования. В некоторых 30-битных моделях используются подобные технологии, и, по заявлениям производителя данные от них содержат столько же полезной информации, сколько обеспечивают «обычные» (видимо, без аппаратной гамма-коррекции) 36-разрядные сканеры. И ещё: сканер, оперирующий данными большей разрядности, может иметь больший динамический диапазон и может «различить» больше деталей на изображении, особенно в тенях (здесь под деталями имеются в виду не мелкие штрихи, а градации насыщенности или яркости — «белый медведь в снежном буране »).

    Важно : очевидно, что аналого-цифровой преобразователь большей разрядности (например, 36-битный) может быть подключен к такой же CCD-матрице, что и в 24-разрядном сканере. На практике сканер большей разрядности не обязательно будет иметь больший РЕАЛЬНЫЙ динамический диапазон.

    Если устройство печати использует красители CMYK и может воспроизвести 256 оттенков по каждому из этих цветов для каждой данной ему на входе полноцветной точки, то совсем не будут излишеством полученные со сканера 36 бит описания цвета этой точки, заметим, в цветах RGB.

    Обратите внимание : разрядность данных, передаваемых в компьютер (а именно в модуль сканирования), может быть меньше разрядности данных внутри сканера.

    Профессиональные модели обычно имеют возможность выбора разрядности передаваемых данных (например, 36 или 24 разряда) и динамический диапазон 3D и выше. Однако и в категории цен «от 1000у.е.» встречаются модели (обычно они заметно дешевле «полноразрядных»), у которых в компьютер передаются только 24 разряда. Объясняется это наличием некоего «фирменного» алгоритма преобразования цветовой информации из разрядности сканирования (30 или 36 бит) в 24 бита на выходе. Заметим, однако, что у продукции лидеров издательского рынка подобных «улучшений» не замечено.

    Кстати, в цветном режиме сканеры большей разрядности обычно сканируют чуть (процентов на 10) медленнее, чем предыдущие модели. Оно и понятно — данных стало больше на 20 процентов.

    Диапазон оптических плотностей, максимальная плотность.

    Параметр, о котором не все продавцы бытовых сканеров слышали и который у сканеров до $500 не всегда сообщается производителем. Оптическая плотность — это характеристика оригинала. Вычисляется как десятичный логарифм отношения света падающего на оригинал к свету отраженному от оригинала (для непрозрачных оригиналов) или прошедшему (для слайдов и негативов). Минимально возможное значение 0.0 D — идеально белый (прозрачный) оригинал. Значение 4.0 D — предельно черный (непрозрачный) оригинал. Применительно к сканеру его диапазон оптических плотностей характеризует способность сканера различить близлежащие оттенки (это особенно критично в тенях оригинала). Максимальная оптическая плотность у сканера — это оптическая плотность оригинала, которую сканер еще отличает от «полной темноты ». Все оттенки оригинала «темнее» этой границы сканер не сможет различить. На практике это означает, что «офисный» сканер может потерять все детали как в тёмных, так и светлых участках даже обычной фотографии, не говоря уже о сканировании слайда и тем более негатива.

    Какие бывают оригиналы и сканеры ?

    Обычная цветная фотография и печатная продукция — до 2.5D. Негативы и рентгеновские снимки - 3.0-3.6D. Недорогие планшетные сканеры имеют динамический диапазон 2.0-2.7D, хорошие 36-битные 3.0-3.3D, новейшие модели — 3.6D. Диапазон оптических плотностей сканера определяется отнюдь не яркостью лампы, как может показаться, а связан с качеством (а так же типом и разрядностью) АЦП, CCD-матрицы и алгоритммом работы контроллера сканера. При большой освещённости — матрица «слепнет», а АЦП имеет верхний предел, напряжение выше которого не различается. При малой освещённости — матрица имеет порог чувствительности и собственный шум, а АЦП имеет вес младшего разряда, напряжение ниже которого не различается. Если я не ошибаюсь, математический предел динамического диапазона для сканера с 30-бит АЦП — 3.0D, 36-бит — 3.6D (десятичный логарифм от числа возможных градаций для каждого цвета, которое равно 2 в степени количества разрядов на один цвет). Реально часть разрядов «сьедают» преобразования и шумы.

    ВАЖНО : производители могут указывать совершенно разные данные о диапазоне оптических плотностей. Реальный диапазон — определяется по результатам сканирования образцового оригинала.

    Расчётный диапазон - некая цифра, видимо являющаяся компромиссом между запросами отдела маркетинга и реальными показателями. Необычно высокое значение наверняка относится сюда.

    Все встретившиеся пока сканеры ценой до 1000 долларов выдавали 24-разрядные данные и имели реальный оптический диапазон 1.8-2.5D (в документации при этом может быть и 2.7D и даже 3.0D).

    Максимальная встреченная разница между заявленным и реальным динамическим диапазоном - 0.6D.

    Dmax — максимальная оптическая плотность. Динамический диапазон меньше этого значения на величину Dmin — обычно Dmin=(0.1-0.2)D . (Способность сканера различать яркие участки тоже ограничена).

    Обратите внимание : не удастся с приемлемым качеством отсканировать негатив с помощью обычного 30-разрядного планшетного сканера, даже если к нему и продаётся слайд-модуль. Даже имеющий лучшее в своем классе значение реального динамического диапазона 30-bit сканер позволяет терпимо сканировать цветные слайды — но не надо рассчитывать на приемлемые результаты с художественными чёрно-белыми негативами, снятыми профессиональным фотографом. Для негативов нужен сканер другого класса. Вообще, для использования в полиграфии негативы и требующие дополнительной цветокоррекции слайды владельцу сканера с максимальной оптической плотностью ниже 3.0D лучше сканировать «на стороне», а на слайд-модуле сэкономить, тем более что стоят они для некоторых моделей до 700 долларов. Недорогие слайд-сканеры не являются выходом из положения — обычно их характеристики и качество сканирования не лучше, чем у планшетных сканеров.

    Приёмный элемент — CCD-матрица

    Один из важнейших узлов, влияющих на качество сканирования. Приводимая в документации характеристика — число элементов на линию (на цвет). Число элементов, поделённое на ширину рабочей зоны сканера, равно оптическому разрешению (оно собственно этими двумя параметрами и определяется).

    Не сообщаемые, но чрезвычайно важные параметры матрицы:

    • уровень шума — ограничивает динамический диапазон и реальное число разрядов данных, содержащих полезные данные. В принципе ничто не мешает к дешёвой шумящей матрице подключить 36-битный АЦП, но вряд ли качество получаемого изображения от этого улучшится. Правда, и не ухудшится.
    • разброс чувствительности от ячейки к ячейке — даже если в сканере предусмотрена калибрация, она выполняется по усреднённым значениям с нескольких ячеек.
    • уровень перекрёстных помех — ярко освещённая ячейка влияет на соседние.
    • совмещение цветов — в однопроходных сканерах цвета разделяются тремя линейками CCD-матрицы.

    Поскольку отбракованные матрицы явно не будут выбрасывать, а продадут как некондиционные по сниженной цене, угадайте, в каких сканерах они окажутся?

    В этом году появились сканеры начального уровня с приёмным элементом CIS, но никаких реальных преимуществ, кроме малой толщины сканера, пока ожидать от них не стоит. На деле эта технология может оказаться не совсем приспособленной к полноцветной работе, несмотря на большую разрядность.

    Качество сканирования: наличие артефактов, резкость, шумы.

    «Сканеры 30-битные 600×1200dpi» стоят по-разному. Потому что эти цифры ещё не гарантируют реальное качество отсканированного изображения. Различия между качественным механизмом и «самым дешёвым в Московской области» сродни разнице между фотоаппаратами. «Зеркалкой» с пятилинзовым (без Zoom) объективом можно снимать на такую же плёнку, что и пятидесятидолларовой «мыльницей» с пластмассовой линзочкой и фиксированным фокусом, но снимки с «мыльницы» могут заставить пожалеть не только о потраченных на неё и печать фотографий деньгах, но и подпортить удовольствие от отпуска.

    Разноцветные повторы вокруг контура объекта, цветные пятна, «мутность» и нерезкость изображения — все эти неприятные сюрпризы почти гарантированно встретятся в радикально дешёвых моделях.

    Контроллер сканера

    Трудно познаваемая в силу закрытости информации о применяемых алгоритмах функциональная часть сканера, оказывающая огромное влияние на скорость работы сканера и точность цветопередачи.

    Зачастую производитель упирает на то, что в его сканерах (читай — в контроллере) применены уникальные технологии. Видимо, покупатель должен проникнуться верой в небывало высокое качество изображения именно этого сканера, обеспечиваемое наличием этих технологий только в нём одном. Действительно, названия «фирменных» технологий у каждой фирмы свои. Лучшее, что можно узнать о них, это обещаемый результат. Общие слова типа «небывало четкого изображения с яркими и сочными цветами » лучше отбросить сразу. При работе с полноцветным изображением есть эталонная точка отсчёта — профессиональные издательские модели. Если уж «машинный разум», своими тайными методами делающий без участия человека из нерезкого слайда со сдвинутыми цветами конфетку, не реализован в них — откуда ему взяться в сканере ценой до 1000 долларов, произведённом фирмой, никогда не имевшей отношения к разработке техники для профессиональной работы с цветом?

    Интерфейс может быть разным.

    Собственные (совсем нестандартные) интерфейсы, сканер поставляется со своей уникальной картой и работает только с ней. Эта карта может не заработать в компьютере после Upgrade или выйти из строя.

    SCSI (более или менее, не всегда Fast SCSI-2). Если Вы собираетесь использовать сканер не с поставляемой в комплекте картой, учтите, что лёгкая совместимость получается только с контроллерами Adaptec, причём не UltraSCSI модификациями. Все остальные варианты могут принести проблемы (я вполне понимаю, что значит ASPI-compliant, но уж поверьте — в данном случае лучше «жить с ISA», чем с не-Adaptec для PCI.)

    Поставляемые в комплекте со SCSI-моделями интерфейсные карты «не-Adaptec» не обещают подключение других SCSI-устройств, хотя бы потому, что не снабжены драйверами (но для некоторых драйвера можно найти самостоятельно). Однако такие карты напрямую понимаются драйвером сканера и обеспечивают максимально простой и удобный процесс первоначального подключения сканера и перехода на новые версии операционных систем. Некоторые из этих карт не требуют выделения фиксированного прерывания.

    Adaptec позволит подключить что угодно, но требует прерывания и некоторой возни с установкой. Размер буфера данных в планшетных моделях варьируется от 64 кБ до 3 МБ.

    LPT (и его варианты, с поддержкой или требованием EPP или Bi-Directional).

    Важно : сканеру может быть необходимо наличие одного из скоростных вариантов параллельного порта. Если EPP обычно есть всегда, то необходимый для сканеров Epson вариант 8-бит Bi-Directional реализован не везде. «Проходной» разьём для подключения принтера ещё не гарантирует работу с ним любого принтера.

    PCMCIA (PC CARD) — данный сканер с данным Notebook могут вместе работать или нет, лучше пробовать!

    Программная часть

    Современные программы, работающие под Windows, общаются со сканером через поставляющуюся с ним в комплекте специальную программу — TWAIN-модуль (на Macintosh модуль сканирования выполняется как Plug-In для Photoshop). Все программы, поддерживающие стандарт TWAIN (таковы все известные программы, как графические, так и OCR), в теории должны работать с любым поддерживающим его сканером (таковы все современные сканеры). На практике некоторые программы распознавания русского текста могут не работать со сканером, с которым предварительно не тестировались разработчиком.

    ВАЖНО : поскольку TWAIN-модуль сканера является обычной программой, эта программа может не работать под некоторыми операционными системами вообще (а различаются даже версии Windows 95), или работать из рук вон плохо. Здесь справедлив общий закон «качества драйверов» — драйверы неведомого производства работают не очень надежно, и с выходом очередной версии Windows для нормальной работы понадобится новый драйвер.

    Некоторые полезные свойства, не всегда встречающиеся в TWAIN-модулях:

    • возможность автоматического определения настроек сканирования.
    • окно предварительного просмотра с выбором сканируемого участка и отображением результата производимых настроек и коррекции изображения в реальном времени.
    • плавные регулировки яркости, контрастности, гамма-коррекции.
    • выбор точек чёрного и белого, желательно и «пипеткой» и заданием значения.
    • фильтр подавления печатного растра, многоуровневый или настраиваемый.
    • инверсия (негатив) и отражение (переворот) оригинала.
    • встроенная система цветосинхронизации с набором профилей, позволяющая скорректировать сканируемое изображение под конкретное устройство вывода или преобразовать его в CMYK.
    • возможность сканирования через сеть.
    • разнообразные встроенные в драйвер фильтры коррекции резкости и подчёркивания границ изображения. Уступают имеющимся в Adobe Photoshop (исключение — программа LinoColor сканеров Linotype-Hell).

    Функциональные возможности, встречающиеся в профессиональных моделях:

    • тональная коррекция раздельными по RGB/CMYK кривыми, раздельно в светах, тенях и полутонах.
    • компенсация «цветового сдвига » оригинала, численным заданием вычитаемого цвета или указанием образцового цвета, который должна иметь указанная оператором точка изображения после сканирования.
    • автоматическое вычитание цвета фотоплёнки слайда (не заменяет собой компенсацию цветового сдвига ввиду возможных собственных искажений цвета на слайде, но и не повредит).
    • возможность пакетного и группового сканирования, автоматическое распознавание слайдов в рамках.
    • выполнение цветоделения с заданием соответствующих профилей и параметров печати. Издательские пакеты обычно сложнее в настройке цветоделения, но выполняют его качественнее, чем драйвер сканера (исключение — программа LinoColor сканеров Linotype-Hell. Но и обходится она в настоящие деньги).
    • фильтр подавления печатного растра с возможностью тонкой настройки оператором.

    Калибрация, характеризация, цветокоррекция и цветные мишеньки

    Важно понимать разницу между двумя типами калибрации сканеров:

    • периодически проводимая калибрационная процедура по двум или даже одному оттенку серого цвета предназначена для компенсации старения лампы.
    • характеризация сканера — создание цветового профиля сканера для системы цветосинхронизации.

    Первая лишь слегка меняет форму корректировочной кривой и не способна внести фатальные изменения в информацию о цвете точки. Цветовой профиль устройства же может выдавать советы типа «будем считать все 40-процентные чисто красные участки имеющими на самом деле ещё и 10 процентов синего, а все 50-процентные оставим без изменений ». Берётесь восстановить правильные оттенки у обработанных таким образом изображений?

    Применяемые в производстве средства характеризации заметно мощнее идущих в комплекте с распространёнными типами сканеров, поэтому не стоит с ходу отвергать заводской профиль и считать, что некая процедура с участием цветной мишени даст заведомо лучший результат. Современные препресс-сканеры обычно поставляются откалиброванными под прилагаемый типовой профиль на заводе (как? «прошиванием» корректировочной таблицы) или же в комплекте с индивидуальным профилем и обеспечивают вполне приемлемую точность цветопередачи.

    Обычные фотографии или слайды сами нуждаются в коррекции цвета - цвета даже на плёнке разных производителей передаются совершенно по разному, а фотографии из «экспресс-печати» обычно имеют радикально сбитый цветовой баланс, так как печать по умолчанию выполняется в режиме автоматической цветокоррекции.

    Мораль : нет смысла создавать профиль сканера по цветной мишеньке на фотобумаге AGFA (заметим, срок годности этих мишеней — 1 год) для того, чтобы сканировать слайд на плёнке FUJI.

    Также нет явной пользы от вычитания драйвером сканера цвета чистой плёнки при сканировании слайда, если всё равно будет производиться цветокоррекция.

    Предназначенные для многократного использования изображения лучше сканировать без каких-либо коррекций, «как есть». Сохранив уже скорректированное изображение и подвергая его повторной коррекции, потеряете в качестве или вообще не сможете получить приемлемый результат.

    ДЕЙСТВИТЕЛЬНО ВАЖНО : производя коррекцию цвета по изображению на мониторе, нужно хотя бы выставить его цветовую температуру (5000K, если это изображение будет печататься на бумаге) и гамму (1.8).

    Также необходимо представлять себе работу систем цветосинхронизации: полученные драйвером сканера цвета точек могут быть вначале изменены им самим по не-всегда-понятно-для-каких-случаев-предназначенному профилю, если активизирована встроенная система управления. Причём попутно драйвер может пытаться подстроиться к монитору, тоже непонятно к какому, и внести предварительную коррекцию для принтера, в надежде что изображение не будут рассматривать, а будут печатать без всякой цветокоррекции. Далее данные передаются в программу, из которой производится сканирование. Если активирована её встроенная система управления цветом, может быть ЕЩЁ РАЗ проведена коррекция полученных данных по профилю неведомого сканера, затем по профилю неведомого монитора при выводе на монитор и по профилю неведомого принтера при печати. Поверх всего этого ещё есть операционная система и специальные программы цветосинхронизации, которые могут «подправить» передаваемые на принтер и монитор данные, ну и возможность автоматической цветокоррекции в драйвере или растеризаторе принтера.

    Важно понять, что только одна система цветосинхронизации должна производить эти коррекции. Если в драйвере сканера уже выбрана цветокоррекция под принтер — прикладная программа и операционная система должны посылать данные на принтер без изменений, а цвета на мониторе будут «не те».

    В полиграфии, кстати, цвет часто проверяют «вслепую» — не по монитору, а по процентному соотношению цветов в данной точке. Известно, какие значения соответствуют телесному цвету, траве, небу и так далее.

    Как же выбирать сканер?

    Ответ неожиданно прост — под поставленную задачу. Нужно всего лишь ответить себе — как будет использоваться отсканированное изображение, какими программами оно будет обрабатываться, на каких устройствах выводиться, какие требования к качеству изображения предъявляются, какая операционная система будет использоваться на компьютере, к какому интерфейсу должен подключаться сканер.

    Если Вы собираетесь сканировать полноцветные изображения и затем печатать их — ищите в сканере признаки предназначения к издательской и дизайнерской работе. Для того, чтобы помещать цветные оригиналы на WEB в 256 цветах, высокое разрешение и большой динамический диапазон ни к чему, а вот стабильно работающий TWAIN-модуль и фильтр Descreen весьма желательны.

    Если же нужно сканировать 35мм негативы с увеличением на всю страницу А4 цветного каталога на глянцевой бумаге, а на покупку сканера выделено 500 у.е. — лучше приберегите эти деньги для бюро сканирования.

    Вообще, современный маркетинг почти всегда ещё на этапе разработки позиционирует товар только на одну типовую группу потребителей, и если, например, как основное достоинство видеомагнитофона активно рекламируется простота его использования (видимо, домохозяйками) — вряд ли в нем окажутся функции, необходимые для монтажа материала с камкордера. Позиционируйте свои требования к сканеру на рынке подобных устройств — почти всегда продукт нацелен на конкретный круг типичных задач и покупателей, и второстепенные для них функции могут быть реализованы крайне слабо. Ищите модели, у которых как наиболее выигрышные рекламируются полезные для Вашей задачи свойства, а не явно «посторонние» для неё. Фильтр подавления растрового муара и способность работать с мятыми чертежами формата А0 на «синьке» с неравномерным цветом фона обычно взаимоисключают друг друга.

    Распространённая ошибка — попытка выбрать сканер для издательских работ из ориентированной на сегмент «типичное среднеамериканское офисное использование» продукции.

    Обратите внимание : специализированные слайд-сканеры обычно имеют впоне обычную, сходную с планшетными сканерами конструкцию. Это означает, что их «слайдовая ориентация» сама по себе не даёт никакого преимущества в качестве сканирования, цена при этом сопоставима с ценой планшетного сканера со слайд-модулем, имеющего аналогичные характеристики.

    Преимущества недорогих слайд-сканеров — высокая скорость работы и автоподатчик слайдов. Но они реализованы отнюдь не во всех моделях.

    Положительные отзывы прессы и получаемые изготовителем призы на протяжении нескольких лет — очень неплохо. Совет незаинтересованного знакомого, подходящего на роль эксперта — еще лучше.

    Важно, однако, особенно применительно к издательским задачам, правильно интерпретировать прочитанное и услышанное: дело в том, что абсолютное большинство издательств мира (не России) работает на платформе Apple Macintosh, и если механически следовать восторженным отзывам «яблочных фанатов», выбирая сканер для работы в среде Windows, можно довольно сильно промахнуться. Многие ветераны производства издательской техники с давними традициями работы с Macintosh уделяют до невероятного мало внимания работе программного обеспечения своих устройств под Windows.

    К тому же, тестирование в компьютерной прессе обычно проводится по случайно выбранным критериям, при этом важные для конкретного человека возможности остаются за кадром. Рекомендую внимательно прочесть данные в обзоре факты и оставить в стороне выводы. При чтении последнего обзора меня заинтересовало, а что бы этот человек сказал о высококлассном плоскостном сканере за 40000 у.е.? Наверное, что-нибудь вроде этого:

    «Возможности автоматической пересылки данных на факс-модем нет, в тесте на сканирование текста показал самую низкую скорость из всех, использует устаревший интерфейс SCSI-II, подключение сложно для неспециалиста, интерфейсной карты в комплекте поставки нет, лампа долго прогревается. Правда, есть и плюс — хорошее качество сканирования фотографий, но в комплекте нет системы распознавания текста ».

    При наличии соответствующих навыков полезно визуально оценить качество сканирования. Стоит проверить способность различать мелкие детали, например, концентрические линии и мелкий текст на банкноте. Проверить правильность цветопередачи на незнакомом компьютере представляется малореальным, особенно учитывая возможные искажения, вносимые неправильно настроенными системами цветосинхронизации сканера, графического редактора или операционной системы.

    Рекомендую сразу отсеять модели от относительно небольших фирм, предлагающих сканеры менее двух-трёх лет (ввиду опасений в том, что через год им надоест торговать сканерами и заодно поддерживать уже проданные), а также модели, драйвера к которым нельзя свободно получить с Интернета. Помните, что без стабильно работающего драйвера (TWAIN-модуля) сканер не может быть использован по своему прямому назначению, «прикрутить» же к нему драйвер другого сканера не удастся и в комплекте поставки Windows «фирменных» драйверов для сканера тоже нет. Особенно актуально это в ожидании Windows98/NT5.

    Насколько плохими могут быть драйверы?

    РАДИКАЛЬНО плохими. Могут совсем не работать (или «виснуть через раз») под одним из вариантов Windows или с некоторыми программами (в частности, русскоязычными OCR).

    Автору довелось подключать «недорогой» сканер одного из наиболее известных их производителей, который с драйвером из стандартной поставки (в цветной коробке с приличным набором программ!) не работал никак — ни под Win3.1, ни под Win3.11, ни под Win95, ни с русскими ни с английскими их версиями, ни через идущие в комплекте поставки программы, ни через OCR, ни через известные графические редакторы. Новая версия драйвера решила проблему, но как можно было запускать такой «подарок» в продажу?!

    В статье Евгения Козловского «Дарёному коню…» в «Компьютерре» описан ещё более мрачный пример попыток работы со сканером Primax Phodox.

    Обязательно убедитесь в возможности бесплатно получить новые версии драйверов и программного обеспечения сканера через Интернет. Некоторые производители не выкладывают свежую версию драйвера в свободный доступ, а предлагают бесплатно выслать её почтой купившим сканер за последние полгода и за 50-90 долларов остальным. «Выслать почтой за деньги » в Россию — для этого как минимум надо иметь кредитную карточку, причём имеющую реальное хождение за рубежом. Получить драйвер там, где вы купили сканер, бывает проблематично — обычно для этого приходится переписывать весь CD-ROM.

    Лично я при выборе техники (особенно незнакомой группы) практикую субьективную оценку товара и производителя по вторичным признакам. Сразу отбрасываю производителя с явно скользкой рекламой на грани обмана, либо заявлениями «идеальное качество изображения и надёжность ». Если производитель обманывает хотя бы в одном случае, зачем смотреть дальше?

    Индикатор качества техники — пластмасса. Попробуйте пальцем корпус ноутбука IBM и запомните ощущение. Заодно можно потрогать и соседние модели. Пока что не удалось встретить нормальной техники в корпусе из совсем плохой пластмассы.

    Дополнительную информацию даёт упаковка. Коробка из мелованного картона с яркими картинками противоречит понятию «для европейского рынка». Идеал — картон вторичной переработки с неяркой маркировкой, при этом уплотнитель внутри —не пенопласт, а объёмные картонные элементы!

    Так как в этой статье мы будем говорить исключительно о сканировании прозрачных оригиналов - слайдов и негативов, - то я опущу все рассуждения о непрозрачных образцах. Статья написана для читателя, подготовленного в области фотографии и компьютерной обработки изображения, а также владеющего основными понятиями: интервал оптических плотностей, полезный интервал оптических плотностей, широта фотоматериала, контраст, средний градиент и т.п.

    А что имеем?

    Д ля начала рассмотрим параметры сканера Epson Perfection 1650 photo. Он единственный, который у меня есть, и было бы странным, если бы я описывал нечто иное. Итак, по некоторым данным этот сканер в режиме сканирования прозрачного оригинала может воспринимать разницу плотностей ΔD scanner =3,2, по другим данным его динамический диапазон составляет ΔD scanner =3,0. Проведенные мною исследования говорят о гораздо более скромных характеристиках по этому параметру, стало быть, производители лукавят (хотя, они вообще не указывают динамический диапазон, по крайней мере для сканеров этого уровня), говоря, что мы можем «безболезненно» сканировать цветной негатив. Я утверждаю, что в том виде в каком сканер поставляется, цветной негатив без потерь отсканировать невозможно. Итак, приступим.

    Что означают все эти буквы, цифры?

    D - плотность, или десятичный логарифм непрозрачности. Известно, что человеческий глаз воспринимает равномерно увеличивающейся по яркости такую шкалу, поля которой по коэффициенту отражения (или пропускания) идут не в арифметической прогрессии (10%, 20%, 30%…), а отличаются друг от друга в геометрической прогрессии (1%, 2%, 4%, 8%…) - а это есть ни что иное, как логарифмическая зависимость. Вы, наверное, знаете, что и нотный ряд, его частоты (колебания струны) отличаются друг от друга тоже в геометрической прогрессии. Тоже самое можно сказать и о силе звука, которая измеряется в известных вам децибелах.

    Итак, человеческий глаз воспринимает соотношение оттенков по логарифмическому закону, поэтому в технике сканирования и т.п. используется именно эта шкала. Изменение на D=0,3 в большую сторону говорит о том, что глаз видит объект в 2 раза темнее. Измеряется плотность в белах.

    D max - максимальная плотность; D min - минимальная плотность; ΔD - соотношение неких плотностей, как правило D max -D min ; ΔD scanner - диапазон плотностей (D max -D min), которые способен воспринимать сканер.

    Как проводились исследования

    Д ля того, чтобы иметь большой диапазон плотностей, я использовал сенситограмму черно-белой фотопленки, мне известны все абсолютные плотности ее полей (с учетом минимальной плотности D min , или, проще, с учетом «плотности вуали»), промер за статусом «М» денситометра. Сканирование ч/б негатива, как правило происходит в «смешанном» канале, поэтому сканировать я буду именно его. За поле с плотность D=0,0 я принял само свечение лампы, т.е. отсканированный участок изображения без пленки. Сенситограмма имела максимальное почернение D max =2,3, для того что бы получить почернение с плотностью D max =2,6 я использовал нейтрально-серый фильтр с плотностью D=0,3, прижатый к области макимального почернения сенситограммы. Сканирование производилось программой Xsane (платформа Линукс) на разрешении 300 dpi в ч/б режиме без каких-либо корректировок (яркость, контраст, уровень «серого»), предостовляемая Xsane возможность задать яркость «железом» не использовалась. Полученный 16-битный файл измерялся «пипеткой» 5×5 пикселей в Photoshop"е.

    Полученные результаты:

    D test 0,0 0,3 0,35 0,4 0,48 0,54 0,65 0,8 0,9 1,0 1,15 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,96 2,06 2,1 2,2 2,3 2,36 2,4 2,5 2,6
    D scan 0,0 0,17 0,2 0,22 0,26 0,3 0,36 0,43 0,5 0,57 0,63 0,72 0,8 0,85 0,92 0,96 1,1 1,1 1,15 1,15 1,2 1,3 1,3 1,4 1,4 1,4 1,4
    % 0,00 33 38 41 46 51 57 63 68 73 77 81 84 86 88 89 92 92 93 93 94 95 95 96 96 96 96

    Где: D test - плотность в испытуемом негативе;

    D scan - значение персчитанное из процентов почернения Photoshop"а в белы;

    % - процент почернения измеренный Photoshop"ом.

    Анализировать полученные значения без подготовки достаточно трудно, да и не нужно. На основании этих данных был построен график (характеристическая кривая), по оси X были отложены значения D test , по оси Y - значения D scanner .

    Анализ полученных данных

    Т еперь анализировать график гораздо легче:-) Итак, что мы видим: кривая графика до D test =1,6 достаточно ровная и плавная (обозначена зеленым цветом), значит сканер передает значения до этой плотности почти пропорционально, без искажений.

    Между D test =1,6 и D test =2,35 кривая имеет вид ломаной линии (обозначена желтым цветом), поэтому осмелюсь предположить, что на этом участке характеристической кривой сканер выдает «додуманные значения». Т.е. матрица их воспринимает, но выдает что-то невразумительное, что бы «переварить» их в «нормальный» вид, сканеру приходиться корректировать эти значения. Это можно сравнить с «децибельником» в профессиональных видеокамерах. Когда уровня освещенности объекта недостаточно, оператор включает «децибельник», камера начинает увеличивать уровень сигнала получаемого от матрицы, фактически происходит усиление электрического сигнала. Увеличивается и то, что нужно, и то что не нужно. Таким образом, одновременно c изображением, происходит усиление шумов. В сканере происходит нечто похожее: на этом участке D test появляются шумы, поэтому кривая и имеет вид ломаной.

    А теперь самое веселое. Кто там писал про ΔD scanner =3,0 у этого сканера? Ну-ну… За значением D test =2,35 этот сканер вообще ничего не воспринимает! Так что ΔD epson_perfection_1650_photo =2,4! , да и то, только потому, что D test =2,35 является последним полем, которое имеет возвращенное сканером значение отличное от предыдущего. Сами понимаете, кроме как красным цветом я это выделить не мог:-)

    Итоги:

    • Сканер способен нормально, почти без искажений воспринимать плотности прозрачного оригинала до 1,6;
    • Сканер, внося искажения и «шумы», но все же способен воспринимать плотности от 1,6 до 2,35;
    • Сканер слеп за плотностью 2,4, любую плотность выше этого значения он воспринимает как черное.

    Что делать?

    Д авайте посмотрим, что нам предлагает производитель сканера. В Xsane (если быть точным, то в backend"е Sane) есть возможность регулировать яркость с помощью «железа». Т.е. сканер как бы повышает яркость лампы, для того чтобы «пробить» D max =2,4. На самом деле, никакого повышения яркости лампы не происходит, сканер (а точнее его firmware) обрабатывает получаемые значения, в результате мы должны получить более высокое значение максимальной плотности, которое сканер интерпретирует как черное. Итак, будем использовать возможности предоставленные производителем. Устанавливаем значение Brightness в Xsane на максимум, который позволяет «железо». В нашем случае это 3.

    Как и в предыдушем тесте, строим график по полученным результатам (дабы не перегружать читателя информацией, я их не привожу).

    Для сравнения была оставлена первая характеристическая кривая (test 1 ), новая кривая (Brightness=3) обозначена красным цветом цветом (test 2 ). Приступим к сравнительному анализу: сканер как имел ΔD scanner =2,4 так и имеет, на основании чего можно судить о том, что «децибельник» (режим усиления сигнала) включен всегда, и работает на участке D test =1,6 D test =2,4, так как никаких новых, более высоких значений D max_test сканеру различить не удается.

    Характерная ломаная линия на участке D test =1,6-2,4 стала плавной, что говорит о том, что firmware сканера, при включении опции повышения яркости, преобразует получаемые от матрицы значения более правильно с точки зрения тонопередачи. Но если судить по изображениям, «шумов» от этого меньше не становится, их становится только больше, так как происходит их усиление, или, возможно, «шум» становится более ровным. Скорее всего, верно последнее.

    Теперь взглянем на участок от D test =0,0 до D test =0,5, кривая на этом участке имеет низкое значение гаммы. То есть света будут переданы мягко, и светлее чем они есть на самом деле.

    Оценим полученный результат в целом: повышение яркости происходит не за счет эффективного использования плотностей, а за счет изменения уровня всех плотностей (обратите внимание, каким тоном передается значение «черного», если в test 1 он находится на значении D scanner =1,4, то в test 2 на значении D scanner =1,2). Применять эту опцию не имеет смысла. Никакого полезного увеличения яркости мы не получим. «Серое поле» станет светлее; «белое поле» останется таким же, каким и было; «черное поле» тоже станет светлее, но никаких новых деталей там не появится. Сканер как «видел» D scanner =2,4, так и «видит». Зато повыситься уровень «шумов».

    Честно говоря, когда я делал этот тест, то думал, что Epson все же «сдвинет» кривую вправо, т.е. мы потеряем детали в светах, но получим в тенях, т.е. D scanner не измениться, но будет работать на другом участке D test =(D max -D min). Возможно, производитель пытался реализовать эту возможность. На это указывает характеристическая кривая в диапазоне D test 0,0-0,5. Предположу, что сделано это для того, чтобы не терять детали в светах в случае смещения кривой вправо. На практике, уменьшился только средний градиент.

    Сканирования черно-белых негативов.

    П опытаемся доказать на практике полученные результаты. Для «чистоты» эксперимента я буду все время использовать один единственный черно-белый негатив. Замечу, что используемый негатив имеет нормальные плотности, а также проявлен до среднего градиента 0,62, что де-факто является стандартом. В кинолаборатории он печатается на 11-м свету, что является нормой.

    Как мы уже выяснили, одной из проблем сканирования как негативов, так и слайдов является наличее «шумов» в изображении. Это явление особенно заметно при сканировании достаточно плотных (темных) оригиналов. Связано это с ограниченностью диапазона оптических плотностей ΔD scannner =D max -D min .

    Например: сканер Nikon Coolscan 4000 способен воспроизвести диапазон оптических плотностей 4,2 (так не хочется никого огорчать… про Epson 1650, я уже выяснил его ΔD=3,0:-)). Сканеры попроще имеют более скромные показатели.

    Максимальный интервал оптических плотностей ч/б негатива 2,5, ΔD max слайда = 3,0, цветного маскированного негатива около 2,5, но из-за наличия маски этот тип негативов обладает большим D min .

    Я убежден, что ΔD scanner =3,0 вполне достаточно для сканирования чего угодно, кроме, пожалуй, рентгеновских снимков. Проблема состоит в том, на каком участке негатива (слайда) находится этот ΔD scanner =3,0. Попробую объяснить почему.

    Отбросим знания о фотобумаге, она бывает особоконтрастная, контрастная, нормальная, полумягкая, мягкая. Будем использовать в примере нормальную бумагу, потому что регулировать контраст позитивным материалом - «преступление». Позитив должен быть стандартным (такие правила в кинематографе, да и в фотолабораториях тоже), надо уменьшить/увеличить контраст - работай с негативом (меняй время проявления, делай ДДЗ, используй фильтры, контратипы и т.д.). Итак, используем стандартный позитив.

    Знаете, какой диапазон плотностей позитив способен воспроизвести? ΔD=1,0! Всего!

    Данные даны без учета минимальной плотности.

    Вот так-то! Таким образом фотобумага не воспроизводит весь интервал плотностей негатива, это не нужно, это вредно! Получится дико «мягкая», малоконтрастная, «не сочная» картинка, даже если на отпечатке будет присутствовать и белое, и черное поле! Не верите - найдите негатив с таким интервалом (ΔD=2,5), и отсканируйте! Его еще найти - проблема… Здесь я использовал сенситометрический клин (тот самый), его плотности мне известны: черное поле (вуаль) - 0,3; белое поле (максимальное почернение) - 2,3, таким образом ΔD нег =2,0. Точке с плотностью 0,3 присвоил «черное», точке с плотностью 2,3 присвоил «белое», затем в этом же режиме отсканировал образец нашего негатива. «Красотища», правда? Надо признаться, что я приподнял немного уровень серого, негатив получался совсем темным. Но критические точки черного и белого остались на своих местах. Так, что средний градиент не изменился.

    Далее, я присвоил в соответствии с сенситограммой, полю с плотностью 0,1 (над вуалью) «точку черного», полю с плотностью 1,1 - «точку белого», и для поля с плотностью 0,6 присвоил «точку серого», т.е. я сымитировал нормальную фотобумагу. Вот, что получилось:

    Какой вывод можно сделать из всего выше сказанного - да то, что негатив содержит огромное количество плотностей, которые в позитиве не пропечатаются. В начале XX века ходила байка, что средний градиент (коэффициент контрастности) негатива при умножении на средний градиент позитива должен давать 1,0, тогда, мол, градации будут переданы правильными тонами. Что в итоге? - вялые изображения! Произведение должно быть 1,7~2,2.

    Таким образом, для сканирования негатива достаточно даже ΔD scanner =1,7 на случай, если мы захотим сымитровать «особомягкую» бумагу.

    Для наглядности на графике характеристической кривой я отметил полезный интервал плотностей негатива. Тест-объект с такими плотностями (симпатичная девушка и ряд серых плотностей) поставляется фирмами-производителями фотопленок для отстройки работы минилабов.

    Как видите, полезный интервал плотностей негатива без каких-либо трудностей помещается в «безопасный» интервал плотностей воспринимаемых сканером. Если мы правильно экспонировали пленку, то мы можем позволить себе даже D min =0,5, но для ч/б негатива (не маскированного) это очень большая минимальная плотность.

    Какой вывод можно сделать? Для сканирования нормального ч/б негатива более чем достаточно ΔD scanner =1,6~1,7.

    Сканирование цветных маскированных негативов

    К ак было сказано выше, цветной маскированный негатив имеет ΔD max =2,5, обладая при этом высокими значениями минимальной плотонсти D min . Для примера, измеренный мною цветной негатив Fuji имел следующие значения D min:

    Если рассуждать грубо, то это почти норма (под рукой нет ГОСТа). Теперь сложим значения полезного интервала плотностей цветного негатива (они такие же, как у ч/б пленки) со значениями D min по каждому каналу.

    Для наглядности, отметим это на нашем графике характеристической кривой (характеристические кривые всех трех каналов похожи; вполне допустимо изобразить одну)

    Не сложно заметить, что красный канал, без проблем помещается в «безопасной» зоне, имеется даже небольшой запас; зеленый канал заходит в «опасную» зону темными участками негатива (в позитиве они станут светами); синий канал заходит в «опасную» зону наполовину, от серого до белого участка в позитиве.

    Следовательно, в красном канале «шумов» не будет; в зеленом канале канале «шумы» появятся в светлых участках позитива; в синем канале «шумы» будут от серого до белого. Давайте попробуем это подтвердить.

    Как я уже говорил, я буду использовать один и тот же ч/б негатив. Чтобы сымитировать цветную маскированную пленку, на негатив был наложен неэкспонированный отрезок цветной негативной пленки Fuji. Также я продемонстрирую гистограммы получаемых результатов. Итак, сканируем «цветной» негатив!

    Из-за наличия оранжевой маски, которая обернулась и стала голубой, позитив выглядит голубым. Голубым мы его видить не хотим, что делать? Увеличить «софтом» гамму синего слоя так, чтобы «белое» поле стало не голубым, а белым. Ну что же, попробуем. Подвинем «движки» на гистограмме так, чтобы изображение стало нейтрально-серым во всех плотностях, от черного до белого.

    И, о чудо! Нормальная по цвету картинка, ну, почти:-). А теперь давайте откроем ее в графическом редакторе, и поглядим на разобранное по каналам изображение:

    Красный Зеленый Синий

    В красном канале шумов почти нет, в зеленом не велики и вполне допустимы, а вот в синем шумов много. Это не шум сканера, это проблема сканирования маскированных пленок, а точнее «растягивания» синего канала. Чтобы доказать это, я отсканировал этот же ч/б негатив, но без маски в режиме RGB и тоже продемонстрирую в разобранном на каналы виде:

    Красный Зеленый Синий

    Как видите шумов нет ни в одном из каналов. Итак, наш «враг № 1» - желто-оранжевая маска! А точнее, высокая минимальная плотность за синим фильтром. И с ней приходится бороться.

    Конечно, при фотопечати этих проблем не возникает, фотобумага (не советская:-)) уже сбалансирована по светочувствительности слоев под оранжевый цвет маски. У современных цветных фотобумаг светочувствительность к синим лучам примерно в 20-30 раз выше, чем к красным. Дело в том, что фотобумага (в фотоувеличителях, в фотопринтерах) экспонируется не белым светом, а желтоватым светом лампы накаливания, да еще прошедшим через оранжевую маску. В сканерах, которые специально не предназначены для сканирования негативов, матрицы балансируются для оцифровки слайдов и НЕмаскированных негативов.

    Производители сканеров пытаются решить эту проблему разными путями. Мой Epson, например, позволяет сканировать 48-ми битное изображение, по 16 бит на канал, чтобы было чего «растягивать». Эффект, конечно, есть. По сравнению с 8-ми битной картинкой разница колоссальная. Nikon же в своих сканерах использует дорогую матрицу, способную «видеть» ΔD=4,2, но там другие проблемы, как раз из-за этого:-)

    Кстати, на Epson"е плохо сканируются не только цветные негативы, но и плотные (допустимо плотные, разумеется) ч/б негативы, а также плотные слайды. Причины смотри выше.

    Таким образом, то, что предпочтительно для фотопечати (передержка негатива на ½ диафрагмы), становится катастрофой при сканировании. Как же с этим бороться? Что делать?

    Что делать? Дубль два!

    Т о же, что при фотопечати: увеличить экспозицию!

    Если при фотопечати мы можем увеличить выдержку или приоткрыть диафрагму, то при сканировании мы сможем только увеличить яркость источника света (т.е. лампы). Хотя, в варианте «от производителя» мы даже этого сделать не сможем. Я, по крайней мере, не слышал о реализации этой возможности в «бюджетных» моделях. Это все, конечно, здорово, но применимо только к сканированию ч/б негативов. В цветном варианте необходимо использовать регулировку экспозиции по трем каналам (на самом деле достаточно двух - по синему и зеленому каналу, голубой маски я никогда не видел). Существуют разные пути для реализации этой возможности:

    1. Использовать цветосмесительную головку от цветного фотоувеличителя, или цветные фильтры, противоположные цвету маски (например, компенсационный синий фильтр для ламп накаливания), чтобы так сказать, «нейтрализовать» маску - сделать ее нейтрально-серой. И повысить яркость лампы, дабы «пробить» полученную равную по каналам D min_негатива.
    2. Использовать три прохода (по одному на канал) с разной экспозицией для каждого из каналов.
    3. Пути решения для производителей:
      • использовать лампы разного типа для сканирования цветных негативов (с более высокой цветовой температуры), и слайдов;
      • использовать лампы более высокой яркости (с запасом), и возможностью эту яркость уменьшить (хорошей идеей кажется использование серого фильтра вводимого перед лампой, никаких изменений цветовой температуры!).
      • Использовать две матрицы. Одну сбалансированную для слайдов, вторую для маскированных негативов (дорогой путь).

    Что же делать обычному пользователю? Думаю, что описанные в первом и втором пунктах решения возможно реализовать в домашних условиях. Более реальным мне кажется первый вариант. По крайней мере, сделать Preview можно без использования специфического «софта» (никто написать не хочет? :-)). Например, сделать «световой бокс» с возможностью вставлять фильтры и таким образом регулировать цветность и яркость светового потока. Или использовать цветную головку от увеличителя. А родную лампу оставить для ч/б негативов нормальной для сканера плотности, а также нормальных слайдов.

    Все-таки почему достаточно ΔD scanner =3,0

    Д а потому, что на слайде если и есть большая плотность, то скорее всего она не нужна, нужно уметь использовать хотя бы ΔD scanner =3,0, но в том месте интервала плотностей оригинала, где это действительно требуется. Проблема состоит в том на каком участке негатива (слайда) находится этот ΔD scanner =3,0. Делать ΔD scanner больше, просто нет смысла, а в случае с Coolscan"ом даже вредно. Потому, что в итоге с негатива получается достаточно мягкая (или малоконтрастная) картинка. Любое же повышение контраста, или гаммы, с помощью «софта» повышает уровень «шумов». Правда, можно отсканировать изображение с разрешением 4000 dpi, провести все корректировки, и уменьшить разрешение. Но тогда получается, что 4000 dpi нужно только для того, что бы затем его уменьшив, подавить шумы? Запутанно получилось… сорри. В любом случае это очень хороший сканер, за те деньги которых он стоит. Короче, нужно увеличивать не ΔD scanner , а добавить возможность регулировать экспозицию!

    Забери свой негатив обратно! Мне нужен слайд!

    К огда-то, я не очень хорошо себе представлял, почему полиграфисты терпеть не могут сканировать негатив, предположений было много: не хотят возиться с цветопередачей, поднимать контраст - и все в этом роде. Основная причина состоит в другом. В принципе «шумы» есть всегда, либо они видны, либо нет. Так вот, из всего вышесказанного следует, что «шумы» имеют свойство появляться в наиболее темных участках оригинала. При сканировании слайда «шумы» оказываются в тенях, а разглядеть «шумы» в тенях достаточно проблематично. При сканировании негатива «шумы» также оказываются в его наиболее темных участках. И все было бы неплохо, если не надо было негатив обращать. Уже догадались? При обращении негатива в позитив «шумы» оказываются в светах, и рассмотреть их не составляет никакого труда, а вот не заметить - действительно, проблема. К тому же, при современных реализациях сканеров, даже профессиональных, отсканировать негатив качественно практически не возможно! Для этого нужно управлять экспозицией. Вы знаете такие сканеры? Если да, пришлите мне на e-mail названия и, если возможно, ссылки.

    Что скажешь о новых ч/б маскированных пленках?

    С кажу, что Леонид Васильевич Коновалов сделал эту «новую» пленку на «Свеме» еще в 1989 году (могу соврать, но времена те), для того что бы «безболезненно» использовать ч/б кинокадры в цветной печати. Ну, да ладно… Основной цвет маски «оранжевый», следовательно, лучше всего через нее проходят красные лучи. Как следствие, маска имеет самую низкую минимальную плотность в красном канале. Просто сканируйте красный канал. Если такой опции нет в вашем драйвере, сканируйте RGB и берите красный канал; «остальное» можно выкинуть:-).

    Что нужно домохозяйке?

    Д ля того, что бы качественно отсканировать стандартный негатив, домохозяйке нужен сканер имеющий ΔD scanner >=1,7 и три «ручки». Две для регулировки количества синего и зеленого света, и «ручка» регулирующая общую яркость источника света. Для сканирования стандартного слайда нужен сканер имеющий ΔD scanner >=2,5 и «ручка» регулировки яркости лампы.

    Выводы:

    1. Сканер Epson Perfection 1650 photo имеет ΔD scanner =2,4, полезный интервал плотностей ΔD scanner =1,6.
    2. В том виде, в каком сканер поставляется производителем, он годен для сканирования:
      • ч/б негативов, в том числе маскированных (красный канал);
      • слайдов нормальной плотности с небольшим количеством темных участков;
      • немаскированных цветных негативов (помните советскую пленку ДС-4?);
      • сканер условно годен для сканирования цветных маскированных негативов (практическое применение этих «сканов» под большим вопросом; годятся только для «превьюшек»).
    3. Чем более плотный оригинал мы сканируем, тем больше имеем «шумов».
    4. Сканер можно адаптировать для сканирования цветных маскированных негативов, если «прикрутить» к нему лампу большей мощности, и использовать цветные (сине-голубые) фильтры для коррекции цветности светового потока.

    Лирическое отступление (циничное)

    В общем-то, это нормальная ситуация, когда сканеры делают люди, которые кроме фотографии жены ничего не сканировали и имеют скудные знания о негативах, позитивах, и остальной «ерунде». Кинокамеры (да и не только камеры) делают люди, которые в кино не работают. Эти же ребята (камень в огород кодака и фуджи) придумали маску для цветной пленки (если кто не в курсе, толку от нее мало, практически нет) и четвертый фиолетово-чувствительный слой, вместо того чтобы изменить спектральную чувствительность красного слоя. Именно из-за этих «друзей» в нашей стране вместо своего, нормального, был введен неправильный стандарт измерения плотностей (зато соответствует мировому!), а то, что кривые на идеальной пленке имеют из-за этого разную гамму - так это никого не волнует. Так, лирическое отступление…

    А как сканируешь ты?

    Ф ирменные эпсоновские «дрова» годятся только для проверки работоспособности сканера при покупке, ну и сканирования текстов (в 48-битном режиме:-)). Я использую линукс с программой Xsane, потому что там есть «вагон и маленькая тележка» ручных настроек, в том числе настроек железа. И главное - Xsane ничего не стоит! Почему не использую SilverFast ?, потому что его у меня нет:-), а моя демо-версия «приказала долго жить». Если кто-нибудь даст - не обижусь:-). На днях попробую VueScan , говорят неплохая программа для сканирования, и есть версия под линукс. В планах прикрутить цветную головку от «Krokus GFA» к своему сканеру. Думаю, что сделаю это в ближайшее время.

    На фото пейзаж неподалеку от станицы «Казанская» Ростовской области.

    Благодарность.

    В ыражаю огромную признательность Леониду Васильевичу Коновалову за помощь в исправление, по его собственному выражению, «орфографических» ошибок.

    Материалы использованные при написании статьи:

    • Л.В. Коновалов, «Как разобраться в кинопленках», ВГИК, 1997г.
    • В.А. Яштолд-Говорко «Печать фотоснимков», «Искусство», 1967г.
    • Материалы сайта bog.pp.ru

    Ответственность?

    А что это такое? :-)

    Мнение автора по изложенному выше вопросу не является «истиной последней инстанции». Я лишь излагаю то, что проверил, попробовал, «пощупал»… Мнения, выводы, результаты и утверждения автора могут не совпадать с вашими, или кого-либо еще. Данные в статье рекомендации не следует воспринимать как руководство к действию. Все предложения, которые вы, возможно, реализуете в вашем оборудовании после прочтения этой статьи, вы совершаете на свой страх и риск. Автор не берет на себя ответственности за любой ущерб, который может быть прямо или косвенно причинен использованием рекомендаций, изложенных в данной статье.

    Авторские права

    Э та статья, а также ее переводы, могут быть воспроизведены и распространены полностью или частично на любом носителе физическом или электронном, при условии сохранения этой заметки об авторских правах на всех копиях. Коммерческое распространение разрешается и поощряется; но автор статьи желал бы знать о таком использовании.

    Все переводы и производные работы, выполненные на основании этой статьи должны сопровождаться этой заметкой об авторских правах. Это делается для предотвращения ограничения свободного распространения этой статьи. Исключения могут составить случаи получения особого разрешения у автора, с которым можно связаться по адресу приведенному ниже.

    Автор хотел бы распространить эту информацию по разным каналам, но при этом сохранить авторские права и быть уведомленным о всех планах распространения статьи. Если у вас возникли вопросы, обратитесь к автору этой статьи по электронной почте: [email protected] .

    Василий Гладкий , 2003

    Не удивляйтесь, если вы не обнаружили этих слов в характеристиках вашего сканера - производители не всегда указывают этот показатель. Но это вовсе не означает, что данная характерисктика не играет существенной роли в качестве получаемого изображения. Наоборот, многие специалисты сходятся во мнении, что это основной показатель качества сканера.

    Что такое динамический диапазон?

    Более точно этот параметр называется диапазоном оптических плотностей.

    Оптическая плотность - это показатель, позволяющий численно измерить, насколько темным является оригинал. Для прозрачного оригинала оптическая плотность - это десятичный логарифм отношения общего потока света к потоку света, прошедшего через оригинал; для непрозрачных - отношения всего потока к отраженному свету.

    Таким образом, чем темнее оригинал, тем больше его оптическая плотность. Например, значение оптической плотности 0,01 соответствует практически белому свету, а значения 4,0 и выше - почти черному, практически неразличимому глазом.

    На любом слайде есть как светлые, так и темные области - целый набор различных оптических плотностей. Диапазон между самой маленькой и самой большой оптической плотностью на данном оригинале называется его динамическим диапазоном .

    Динамический диапазон сканера

    Динамический диапазон есть не только у оригинала, но и у сканера. Динамический диапазон сканера – это разность оптических плотностей, которую сканер может распознать.

    Белый цвет все сканеры распознают достаточно хорошо. Другими словами, с минимальной оптической плотностью у них проблем нет. У большинства сканеров она равна 0,01 или даже меньше. Проблемы возникают при сканировании темных областей, где света очень мало. Здесь все зависит от чувствительности считывающего фотоэлемента: чем чувствительнее CCD линейка, тем лучше сканер распознает темные области.

    Что значит «распознает»?

    Под этим словом подразумевается сразу два действия. Во-первых, сканер должен отличить темный оттенок от максимально черного. Иначе многие темные области на сканированном изображении будут выглядеть просто черным пятном без каких-либо деталей. Во вторых, сканер должен сканировать темную область без шумов - этакого цветного мусора в виде разноцветных точек. Ведь чем темнее оригинал, тем слабее сигнал на фотоэлементе, и тем больший вклад в изображение будет вносить шум самого фотоэлемента и других электронных компонентов сканера.

    Способность сканера отличать темные области от черных и степень зашумленности темных областей обычно связаны между собой. Они определяются качеством фотоэлемента и глубиной цвета сканера: чем более темные области распознает сканер, тем меньше шума вносит фотоэлемент.

    Поэтому эти два параметра обычно объединяют одной характеристикой - динамическим диапазоном, который показывает, насколько качественный фотоэлемент установлен в сканере, и следовательно, насколько темные области он распознает и какой уровень шумов в тенях дает при сканировании. Разумеется, чем больше значение динамического диапазона, тем лучше.

    Кроме того, динамический диапазон зависит от глубины цвета сканера, то есть от количества градаций серого (яркости), который он может передать. Это естественно: чем меньше градаций яркости передает сканер, тем меньше разница между самым светлым и самым темным оттенками, которые он распознает.

    Связаны эти параметры очень просто. Допустим, глубина цвета сканера составляет 36 бит, или 12 бит на цвет. Это значит, что он распознает 4096 градаций серого. Десятичный логарифм от 4096 дает 3,6 - это и есть максимальный динамический диапазон данного сканера. На самом деле он меньше, поскольку чувствительность фотоэлемента не идеальна. Насколько - зависит от качества фотоэлемента. Однако можно точно сказать, что динамический диапазон данного сканера не может превышать 3,6.

    По динамическому диапазону можно точно классифицировать сканеры (табл. 1).

    Динамический диапазон оригинала

    Очевидно, что значение динамического диапазона сканера должно превосходить значение динамического диапазона оригинала. Иначе при сканировании часть информации с оригинала будет утрачена: если изображение и не будет сплошь черным, то темные оттенки пропадут. Например, вместо тени на лице будет просто черное пятно. Либо же сканер поднимет яркость изображения и хорошо распознает темные области, зато вместо светлых областей получатся пятна, на этот раз - белые.

    Данные для наиболее распространенных непрозрачных оригиналов приведены в таблице 2.

    Таким образом, диапазон сканера, предназначенного для сканирования исключительно непрозрачных оригиналов, должен быть не меньше 2,3–2,5. С другой стороны, он не должен слишком уж превышать эти цифры, так как с увеличением динамического диапазона цена сканера возрастает в геометрической прогрессии.

    С прозрачными оригиналами дело обстоит несколько сложнее. Во-первых, фотоматериалы бывают профессиональными и любительскими. У последних диапазон плотностей несколько меньше.

    Во-вторых, в отличие от непрозрачных оригиналов, которые, как правило, печатаются на белой бумаге (то есть отсчет динамического диапазона ведется от белого цвета с низкой плотностью), в негативах самый светлый оттенок все равно имеет значительную плотность.

    Это значит, что при сканировании негативов и слайдов надо учитывать не только динамический диапазон, но и максимальную оптическую плотность. Например, слайд с динамическим диапазоном 3,0 может иметь плотности от 0,7 до 3,7. А ведь динамический диапазон сканера отсчитывается практически от белого цвета - от низких плотностей. Таким образом, если диапазон сканера составляет 3,5, то максимальная плотность, которую он может распознать, - это 3,55 (максимум - 3,6). Такой сканер не сможет корректно отсканировать описанный выше слайд, хотя его динамический диапазон выше, чем у оригинала.

    Поэтому для прозрачных оригиналов лучше учитывать не динамический диапазон, а максимальную оптическую плотность (таблица 3). Другими словами, максимальная оптическая плотность слайда должна быть меньше, чем максимальная плотность, которую распознает сканер.

    Чем сканировать?

    Что бы ни заявлял производитель, динамический диапазон планшетного сканера из класса «офисных и домашних», так называемого SOHO, стоимостью до $450, не превышает 2,6–2,7. Одна только CCD линейка, способная дать динамический диапазон 3,0, стоит дороже.

    Такой сканер хорошо обрабатывает непрозрачные оригиналы, но темные области на слайдах будут выглядеть сплошным черным пятном с огромным количеством шумов. Если вы попытаетесь на таком сканере отсканировать негатив, то после инвертирования все светлые области (те, что на негативе были темными), например, небо с облаками или светлая рубашка - будут выглядеть сплошным белым пятном без каких либо деталей, кроме тех же шумов.

    Поэтому, даже если к сканеру за $200 докупить слайд-модуль, качественно сканировать слайды и, тем более, негативы на нем не удастся.

    Минимальный динамический диапазон, при котором можно надеяться на более или менее приличный результат, - 3,0, а лучше 3,4. Минимальная стоимость планшетного сканера с таким диапазоном - $600. Слайд-сканер с 3,0D обойдется не намного дешевле, а для профессионального использования необходимы сканеры с диапазоном от 3,4D и выше.

    Что сканировать?

    Мы не будем пытаться классифицировать оригиналы, а лишь разберемся, каким оригиналам следует отдавать предпочтение, а каких - избегать, и почему.

    Начнем с самого простого - со сканирования текста. Высокого разрешения для этой работы не требуется, но тонкости все равно есть.

    Во-первых, при выборе способа сканирования любой сканер предлагает два варианта:

    • режим black&white (halftone) - черно белый без оттенков серого;
    • режим grayscale - с оттенками серого.

    В первом случае о рисунках можно забыть. Они превратятся в черные пятна, останется только текст. Причем, если текст не очень четкий, местами смазанный или просто бледный, то полученное изображение будет выглядеть плачевно.

    С другой стороны, режим black&white - самый быстрый и экономный с точки зрения размера файла. Применять его нужно только для очень четкого текста.

    В остальных случаях лучше предпочесть сканирование в оттенках серого. Программа распознавания текста прекрасно справится с таким файлом, да и рисунки, логотипы и т. п. отсканируются нормально.

    Если оригинал цветной, необходимо учесть возможности сканера.
    В принципе, самый лучший оригинал - слайд, чуть хуже - негатив, еще хуже - фотография, а полиграфических цветных отпечатков вроде вырезок из журналов вообще лучше избегать.

    Почему?

    Во-первых, именно в таком порядке уменьшается динамический диапазон оригиналов. Но это не самая главная причина, по которой слайд или негатив предпочтительнее фотографии.

    Дело в том, что каждый оригинал характеризуется цветовым охватом - набором передаваемых оттенков. Этот параметр не следует путать с глубиной цвета. Глубина цвета показывает количество оттенков, а цветовой охват показывает, какие это оттенки.

    Проиллюстрируем это на примере. Самый большой цветовой охват у человеческого глаза. Его можно изобразить в виде некой фигуры, на которой отражены все воспринимаемые оттенки (см. рисунок).

    Большой треугольник очерчивает все оттенки, которые передает слайд и вообще фотопленка, треугольник поменьше соответствует цветам, передаваемым монитором (контур для сканера представляет собой нечто среднее между слайдом и монитором). Наконец, внутренняя фигура отвечает набору красок CMYK, то есть цветовому охвату типографской машины (и цветного лазерного принтера, у которого цветовой охват немногим больше).

    Таким образом, зелено-голубую гамму хорошо передает фотопленка и сканер, но не принтер (известный факт: на стандартном 4 цветном принтере нельзя изобразить голубое небо).

    Отсюда мораль - если есть выбор, то надо сканировать оригинал, который передает большее количество оттенков, то есть слайд, а не отпечатанную с него фотографию. Однако сканировать слайды могут далеко не все сканеры - из за слабого динамического диапазона офисных моделей. Поэтому у владельца сканера за $100–200 часто попросту нет выбора.

    О полиграфических отпечатках надо сказать отдельно. Принтеры и полиграфические машины печатают специальными точками - растром, частота которого не слишком отличается от разрешения сканера 1. Хотите узнать, что получится, если наложить друг на друга две периодические структуры - сканера и отпечатка? Посмотрите на свет через два слоя капрона или любой другой полупрозрачной синтетической ткани. Вы увидите муар. Такой же муар получится в результате сканирования полиграфического отпечатка.

    Бороться с этим эффектом позволяет специальная функция Descreen в драйвере сканера. Она удаляет муар, слегка размывая изображение. Но при этом существенно страдает качество. Поэтому сканировать вырезки из журнала можно только с последующим уменьшением изображения, тогда эффект размытости будет не так заметен.

    Краткое резюме - если позволяет сканер, сканируйте слайды, а не фотографии. Если есть возможность - избегайте сканирования полиграфических отпечатков, а если выхода нет, то сканируйте с последующим уменьшением картинки, минимум, в 1,5 раза.