Ремонт плазменных телевизоров. Пропадание контактов в соединительных лентах

Ожидается, что к 2005 году плазменные дисплейные панели (ПДП) станут одним из основных средств отображения информации для бытовых и бизнес-применений, а мировой спрос на эти устройства достигнет 4 млн. единиц.

Плазменные панели (ПДП) - относительно новые устройства на российском рынке, особенно по сравнению с телевизорами и мониторами на основе электронно-лучевой трубки. Между тем ПДП уже начали завоевывать популярность на рынке устройств отображения информации, и для того, чтобы наши читатели имели более четкое представление о том, что же это такое, мы совместно со специалистами компании Polymedia решили подготовить обзорный материал по этой теме. Начнем знакомство с рассмотрения принципов работы плазменных панелей.

Взгляд изнутри

Как и в электронно-лучевой трубке, изображение в ПДП формируется посредством света, излучаемого специальным веществом - люминофором, только в отличие от ЭЛТ в плазменной панели на люминофор воздействует не поток электронов, а ультрафиолетовое излучение, инициируемое электрическим разрядом (пространство внутри плазменной панели заполнено инертным газом, обычно гелием или ксеноном). Наименьшим структурным элементом ПДП является светоизлучающая ячейка. Три ячейки (синяя, зеленая и красная) в совокупности образуют один пиксел экрана. Для включения ячеек может использоваться переменный или постоянный электрический ток. Большинство выпускаемых в настоящее время цветных ПДП работают от переменного тока и построены по трехэлектродной схеме поверхностного разряда (рис. 1). Электрический разряд, возникающий между управляющими электродами, вызывает ионизацию содержащегося в ячейке газа (так называемое состояние холодной плазмы), в результате чего возникает ультрафиолетовое излучение, воздействующее на люминофор, который, в свою очередь, излучает свет видимого диапазона.

Теоретически все довольно просто, но, как это обычно и бывает, практическая реализация любого решения всегда сопровождается определенными трудностями. Для достижения конкурентоспособного качества изображения, позволившего ПДП успешно соперничать с проекторами, а также с ЭЛТ- и ЖК-мониторами, разработчикам пришлось решить ряд серьезных проблем.

Во-первых, необходимо было сохранить высокую четкость изображения, избежав при этом потери яркости. Дело в том, что при увеличении количества пикселов на экране площадь каждого из них уменьшается, что влечет за собой снижение яркости.

Во-вторых, для качественного воспроизведения темных участков изображения и расширения динамического диапазона требовалось достичь высокой контрастности . Проблема здесь заключается в том, что для нормальной работы цветных ПДП необходим предварительный разряд, создающий условия для возникновения основного разряда и излучения видимого света. Под действием предварительного разряда возникает тусклое свечение, создающее на экране фоновую засветку, заметную даже при выводе абсолютно черного изображения.

В-третьих, определенная сложность состояла в обеспечении точности цветопередачи. Дело в том, что газ, которым заполнено внутреннее пространство ПДП, имеет примесь неона, под воздействием электрического разряда светящегося оранжевым цветом. Примешиваясь к свету люминофора, это излучение снижает контрастность и искажает цветопередачу.

Технологические решения

Рассмотрим технологические решения, внедренные в выпускаемых в настоящий момент изделиях и направленные на устранение описанных выше препятствий. Начнем c повышения яркости.

Поскольку в ПДП интенсивность свечения ячейки определяется числом инициирующих импульсов за единицу времени, для повышения яркости белого цвета необходимо увеличивать количество таких импульсов, что, в свою очередь, требует повышения скорости работы системы управления. Однако в силу ограничений, связанных с конечной скоростью возникновения разряда и ресурсом защитной пленки на электродах, возможности увеличения частоты зажигания небезграничны. Для повышения яркости и расширения динамического диапазона компанией Matsushita Electric Industrial была разработана система обработки сигнала Advanced Plasma AI (Adaptable brightness Intensification system - адаптивное повышение яркости), примененная в моделях Panasonic TH-42PWD3E и TH-5OPHD3 (см. врезки). Автоматическая коррекция соотношения между самой яркой и самой темной точкой на экране производится с учетом подаваемого на вход видеосигнала. Сочетание технологии Advanced Plasma AI и разработанной ранее асимметричной структуры ячеек (рис. 2) позволило повысить яркость плазменной панели до 650 кд/м 2 при размере экрана 40 дюймов по диагонали (ранее типичные для ПДП значения находились в пределах 350-400 кд/м 2), что уже сопоставимо с параметрами телевизоров и мониторов на основе ЭЛТ.

Теперь перейдем к проблеме повышения контрастности. Безусловным лидером в этом направлении является компания Matsushita Electric Industrial. Сначала ее разработчикам удалось обеспечить двукратное увеличение значения контрастности (от 300:1 до 600:1) путем снижения яркости свечения предварительного разряда относительно общего светового потока за счет ослабления пилотной подсветки: вместо одного сильного разряда было использовано несколько более слабых (рис. 3). Однако это было только первым шагом в этом направлении - совсем недавно инженеры Matsushita совершили самый настоящий технологический прорыв, добившись просто невероятного значения контрастности - 3000:1. Поскольку данная технология запатентована компанией Matsushita и является ее ноу-хау, информация о подробностях этого решения крайне скупа - известно лишь, что используется один пилотный разряд малой мощности (см. рис. 3). Результат этого поистине революционного скачка заметен даже невооруженным глазом (рис. 4). Данное решение реализовано в новых моделях ПДП Panasonic - 42-дюймовой TH-42PWD3E и 50-дюймовой TH-5OPHD3.

С плазменными панелями - в будущее

Итак, используя плазменную технологию, можно создавать экраны большого размера, которые обладают определенными преимуществами по сравнению с другими технологиями. Это позволяет широко использовать их на выставках, презентациях, в качестве информационных табло и, конечно же, в составе домашнего кинотеатра (рис. 5 и ).

Если сравнивать ПДП с изделиями на основе электронно-лучевой трубки (ЭЛТ), имеющими такую же диагональ экрана, то последние заметно проигрывают по таким параметрам, как габариты, масса и срок службы. При этом технические параметры лучших моделей современных плазменных панелей вполне сопоставимы с характеристиками мониторов и телевизоров на основе ЭЛТ. Кроме того, ПДП при работе не излучают вредных электромагнитных волн.

ПДП выглядят более выигрышно и по сравнению с ЖК-дисплеями на TFT-матрице, обеспечивая больший угол обзора и более равномерную засветку по всей площади экрана. К тому же стеклянная поверхность плазменного дисплея гораздо более устойчива к загрязнению и различным механическим воздействиям, чем пластичный экран ЖК-монитора.

В настоящее время довольно большую долю в секторе презентационного и выставочного оборудования, а также оборудования для домашнего кинотеатра занимают видеопроекторы. Однако не стоит забывать, что, например, вписать проектор в интерьер офиса и тем более квартиры довольно проблематично, так как стационарный вариант установки подразумевает необходимость монтажа специального подвеса на потолке и подведения к нему силовых и сигнальных кабелей. Полустационарное использование сопряжено с дополнительными затратами времени на развертывание экрана, а также на установку и настройку самого проектора. С ПДП в подобных случаях проблем возникает гораздо меньше: плоский корпус позволяет устанавливать ее на столе или на специальных передвижных подставках либо подвешивать при помощи кронштейнов на стене. Кроме того, плазменная панель в интерьере офиса смотрится гораздо выигрышнее проектора, а установка специальных сенсорных экранов SmartBoard позволяет значительно расширить сферу применения ПДП и их возможности.

В нашей стране плазменные панели пока еще не очень популярны, но этот факт объясняется скорее их довольно высокой ценой, нежели потребительскими качествами. Относительная новизна плазменной технологии неизбежно влечет за собой увеличение цен за счет затрат на исследовательские работы и большого процента отбраковки в процессе производства. Изменить данную ситуацию можно путем увеличения количества производимых панелей. Как только эти устройства станут более массовыми, цены на них будут существенно снижены. И если рост спроса на плазменные панели и, следовательно, повышение объемов их производства будут на уровне прогнозируемых в настоящее время, то через три-четыре года ПДП смогут составить весьма серьезную конкуренцию другим технологиям на рынке устройств отображения информации.

Редакция выражает благодарность компании Polymedia (e-mail: [email protected] ; http://www.polymedia.ru/) за предоставленные материалы и возможность ознакомления с плазменными дисплейными панелями Panasonic и сенсорным экраном SmartBoard.

КомпьютерПресс 10"2001

Состав устройства и принцип формирования изображения
Современный плазменный телевизор состоит из следующих узлов и деталей (см. фото ниже):
экран , выполненный в виде плазменного (PDP) дисплея;
— основная плата «MAIN-board» с ТВ приёмником (тюнером или ресивером);
— инвертор;
— импульсный блок питания;
— модуль формирования управляющих сигналов (видеопроцессор);
— набор соединительных шлейфов (гибких лент);
— встроенный и выносной пульты управления.
Обратите внимание : В некоторых моделях телевизоров инвертор совмещается с импульсным блоком питания.

Основой плазменного дисплея является матрица, состоящая из микроскопических герметичных ячеек, наполненных инертным газом (ксеноном или неоном) и управляемых от встроенного в телевизор электронного модуля. Каждая пиксель-ячейка такой матрицы – это своеобразный конденсатор с двумя электродами. При поступлении на них высоковольтного напряжения электрический разряд ионизирует инертные газы, обращая их в плазму.

Под действием плазмы образуются УФ и видимое излучение; последнее после фильтрации и создаёт картинку на экране . Цветовой оттенок каждой ячейки формируется путём её деления на три «субпикселя» красного, синего и зелёного цветов, интенсивность свечения которых задаётся блоком управления (с помощью 8-битного импульсного кодового сигнала с видеопроцессора).

Основные неисправности и их возможные причины
Известные виды неисправностей, чаще всего встречающиеся в плазменных телевизорах , условно делятся на следующие категории:
  1. Нарушение свечения плазменной панели , что проявляется в полном или частичном исчезновении изображения.
  2. Отсутствие изображения (при наличии свечения); при этом на экране наблюдается лишь один «белый» шум или муары.
  3. Самопроизвольное выключение телевизора во время работы.
  4. Отсутствует управление со встроенного пульта.
  5. Телевизор не включается и не управляется с выносного пульта.
  6. Нет звука.
  7. Механическое повреждение (раскалывание) дисплея.
  8. Пропадание контактов в соединительных лентах.
Попробуем разобраться с каждой из этих неисправностей более подробно.
Причиной прекращения функционирования плазменной панели могут быть как нарушения, связанные с повреждением её ячеек, так и отсутствие сигнала с платы управления (с видеопроцессора).
Дополнительная информация : В качестве частного случая такой поломки может рассматриваться выгорание пикселей матрицы (точнее – слоя люминофора).
В случае появления чистого «белого» поля, свидетельствующего об отсутствии полезного сигнала, неисправность следует искать в блоке формирования и усиления ТВ сигнала платы «MAIN-board» (см. фото).

Самопроизвольное отключение устройства, скорее всего, происходит из-за перегрузок в блоке питания (чаще всего резкое увеличение тока может возникнуть в цепях подсветки дисплея). При неисправностях, связанных с нарушением режима управления устройством, причину следует искать в электронной схеме панели или же непосредственно в ручном пульте (чаще всего – это «подсевшие» батарейки).

Раскалывание дисплея и пропадания контактов относятся к простейшим неисправностям, устраняемым посредством замены плазменной панели или восстановлением контактного соединения. Отсутствие звука связано, скорее всего, с неисправностью усилителя звукового канала или самого акустического преобразователя.
Алгоритм нахождения характерных неисправностей
Специалистами разработан простейший алгоритм поиска причин характерных нарушений в работе плазменного устройства, согласно которому при проявлении неисправностей категорий 1-4 в первую очередь следует проверить работу импульсного блока питания. В процессе такой ревизии необходимо произвести следующие действия (см. фото):

  1. С помощью тестера или мультимера проверяется напряжение на сетевой банке, а также исправность прекондиционера (PFC – корректора).
  2. При положительном исходе этих обследований убедитесь в исправности узлов дежурного и рабочего режима, а также в наличии сигнала команды «POWER ON» с основной платы управления («MAIN-board»).
Важно! В ряде случаев этот модуль может обследоваться отдельно от остальной схемы (его допускается отключить от нагрузки, сымитировав команду «POWER ON»).
  1. Убедившись в исправности импульсного блока (см. фото слева), можно переходить к следующему шагу алгоритма, предполагающему проверку исправности DC/DC-преобразователей на основной плате, а также наличия питания 1,8 Вольт на так называемом «ядре» контроллера.
  2. Кроме того, необходимо убедиться в наличии сигнала «RESET» на выводе микроконтроллера. Дальнейшие действия определяются результатом предыдущих обследований.
  3. Так, в ситуации, когда неисправность связана с матрицей или с платой «T-CON» – с помощью осциллографа следует проверить наличие сигналов на шинах LVDS (между скалером и платой «T-CON»), а также убедиться в наличии питания на последней.
Добавим, что к числу характерных неисправностей блока питания следует отнести высыхание его электролитических конденсаторов.
Непосредственный ремонт
В самом общем случае ремонт плазменного телевизора (на основании проведённого ранее обследования) сводится к замене неисправных деталей и модулей на работоспособные. При отсутствии того или иного сигнала на контрольных шинах осуществляется поиск его источника, а затем выясняются причины исчезновения.
В ряде случаев (при механическом повреждении или раскалывании плазменной панели, например) требуется полная замена неисправного узла, которая может производиться только опытными ремонтниками, специализирующимися на этих работах.

Особо коснёмся неисправностей модуля «T-CON» (цифровая часть видеопроцессора), связывающего основную плату с плазменной панелью (матрицей). Нарушение его работы приводит к тому, что на экране наблюдается искажённое слабоконтрастное или негативное изображение, сопровождающееся муарами. Самостоятельный ремонт этого модуля не каждому по силам, так что в этом случае разумнее всего обратиться к профессионалам (см.фото).


Что касается повреждённых акустических преобразователей, а также соединительных шлейфов и проводов – проще всего заменить их новыми, так как эти детали восстановлению не подлежат. При ремонте импульсного блока питания высохшие электролиты выпаиваются, а на их место устанавливаются новые. С этой операцией, как и с заменой батареек в пульте вы сможете справиться самостоятельно.

В заключении отметим, что во время проведения ремонта постарайтесь очистить внутренности телевизора от скопившейся пыли, что заметно разгрузит вентилятор (кулер) и позволит продлить сроки его бесперебойной службы.

Устройство плазменных панелей

Принцип действия плазменной панели основан на свечении специальных люминофоров при воздействии на них ультрафиолетового излучения. В свою очередь это излучение возникает при электрическом разряде в среде сильно разреженного газа. При таком разряде между электродами с управляющим напряжением образуется проводящий "шнур", состоящий из ионизированных молекул газа (плазмы). Поэтому-то газоразрядные панели, работающие на этом принципе, и получили название "газоразрядных" или, что тоже самое - "плазменных" панелей.

Подавая управляющие сигналы на вертикальные и горизонтальные проводники, нанесенные на внутренние поверхности стекол панели, схема управления PDP осуществляет соответственно "строчную" и "кадровую" развертку растра телевизионного изображения. При этом яркость каждого элемента изображения определяется временем свечения соответствующей ячейки плазменной панели: самые яркие элементы "горят" постоянно, а в наиболее темных местах они вовсе не "поджигаются". Светлые участки изображения на PDP светятся ровным светом, и поэтому изображение абсолютно не мерцает, чем выгодно отличается от картинки на экране традиционных кинескопов.

Достоинства

Во-вторых, плазменные панели исключительно универсальны и позволяют использовать их не только в качестве телевизора, но и как дисплей персонального компьютера с большим размером экрана. Для этого все модели плазменных панелей помимо видеовхода (как правило, это обычный AV вход и вход S-VHS) оборудуются еще и VGA-входом. Поэтому такая панель будет незаменима при проведении презентаций, а также при использовании в качестве многофункционального информационного табло при ее подключении к выходу персонального компьютера или ноутбука.

В третьих, "картинка" плазменной панели по своему характеру очень напоминает изображение в "настоящем" кинотеатре. Благодаря этому своему "кинематографическому" акценту плазма сразу же полюбилась поклонникам "домашнего кино" и прочно утвердилась как кандидат N1 в качестве высококачественного средства отображения в домашних кинотеатрах высокого класса.

В четвертых, при столь солидном экране плазменные панели имеют исключительно компактные размеры и габариты. Толщина панели с размером экрана в 1 метр не превышает 9-12 см, а масса составляет всего 28-30 кг, что позволяет легко разместить плазменные панели в любом интерьере и даже повесить на стену в удобном для этого месте. С другим типом дисплея подобный фокус вряд ли удастся. По этим параметрам сегодня ни один другой тип средств отображения не может составит плазме хоть какую-то конкуренцию. Достаточно сказать, что цветной кинескоп со сравнимым размером экрана имеет глубину 70 см и весит более 120-150 кг! Проекционные телевизоры с обратной проекцией также особой стройностью не отличаются, а телевизоры с фронтальной проекцией, как правило, имеют малые яркости изображения. Светотехнические же параметры плазменных PDP панелей исключительно высоки: яркость изображения свыше 700 кд/м2 при контрастности не менее 500:1. И что очень важно, нормальное изображение обеспечивается в чрезвычайно широком угле зрения по горизонтали: в 160О. То есть уже сегодня PDP вышли на уровень самых передовых рубежей качества, достигнутых кинескопами за 100 лет своей эволюции. А ведь большеэкранные плазменные панели серийно выпускаются менее 5 лет, и они находятся в самом начале пути своего технологического развития.

В-пятых, плазменные панели чрезвычайно надежны. По данным фирмы Fujitsu их технический ресурс составляет не менее 60 000 часов (у очень хорошего кинескопа 15 000-20 000 часов), а процент брака не превышает 0.2%. То есть на порядок меньший общепринятых для цветных кинескопных телевизоров 1.5-2 %.

В-шестых, PDP практически не подвержены воздействию сильных магнитных и электрических полей. Это позволяет, к примеру, использовать их в системе домашнего театра совместно с акустическими системами с неэкранированными магнитами. Иногда это может быть важным, так как в отличие от кинотеатральной акустики многие "обычные" HI-FI колонки выпускаются с неэкранированной магнитной цепью. В традиционном домашнем кинотеатре на основе телевизора использовать эти колонки в качестве фронтальных очень затруднительно ввиду их сильного влияния на кинескоп телевизора. А в AV-системе на основе PDP - сколько угодно.

Недостатки

Единственным серьезным на сегодня недостатком плазменных панелей по большому счету является только их большая цена. Впрочем по сравнению со стоимостью других устройств отображения информации с аналогичным размером экрана их относительная цена в пересчете на 1 см (или дюйм) диагонали изображения оказывается не столь большой.

Клавиатура. Принцип работы. Скан-коды.

Мышь. Типы. Устройство и принципы работы опто-механических, оптических и лазерных мышей.

Клавиатура - устройство, представляющее собой набор кнопок (клавиш), предназначенных для управления каким-либо устройством или для ввода информации. Как правило, кнопки нажимаются пальцами.

Клавиатура выполнена, как правило, в виде отдельного устройства, подключаемого к компьютеру тонким кабелем. Малогабаритные компьютеры Lap-Top используют встроенную клавиатуру.

Если рассмотреть сильно упрощенную принципиальную схему клавиатуры, представленную на рисунке, можно заметить, что все клавиши находятся в узлах матрицы.

Все горизонтальные линии матрицы подключены через резисторы к источнику питания +5 В. Клавиатурный компьютер имеет два порта - выходной и входной. Входной порт подключен к горизонтальным линиям матрицы (X0-X4), а выходной - к вертикальным (Y0-Y5).

Устанавливая по очереди на каждой из вертикальных линий уровень напряжения, соответствующий логическому 0, контроллер клавиатуры опрашивает состояние горизонтальных линий. Если ни одна клавиша не нажата, уровень напряжения на всех горизонтальных линиях соответствует логической 1 (т.к. все эти линии подключены к источнику питания +5 В через резисторы).

Если оператор нажмет на какую-либо клавишу, то соответствующая вертикальная и горизонтальная линии окажутся замкнутыми. Когда на этой вертикальной линии процессор установит значение логического 0, то уровень напряжения на горизонтальной линии также будет соответствовать логическому 0. Как только на одной из горизонтальных линий появится уровень логического 0, клавиатурный процессор фиксирует нажатие на клавишу. Он посылает в центральный компьютер запрос на прерывание и номер клавиши в матрице. Аналогичные действия выполняются и тогда, когда оператор отпускает нажатую ранее клавишу.

Номер клавиши, посылаемый клавиатурным процессором, однозначно связан с распайкой клавиатурной матрицы и не зависит напрямую от обозначений, нанесенных на поверхность клавиш. Этот номер называется скан-кодом (Scan Code). Слово scan ("сканирование"), подчеркивает тот факт, что контроллер сканирует клавиатуру для поиска нажатой клавиши.

Но программе нужен не порядковый номер нажатой клавиши, а соответствующий обозначению на этой клавише ASCII-код. Этот код не зависит однозначно от скан-кода, т.к. одной и той же клавише могут соответствовать несколько значений ASCII-кода. Это зависит от состояния других клавиш. Например, клавиша с обозначением "1" используется еще и для ввода символа "!" (если она нажата вместе с клавишей SHIFT).

Поэтому все преобразования скан-кода в ASCII-код выполняются программным обеспечением. Как правило, эти преобразования выполняют модули BIOS. Для использования символов кириллицы эти модули расширяются клавиатурными драйверами.

Если нажать на клавишу и не отпускать ее, клавиатура перейдет в режим автоповтора. В этом режиме в центральный компьютер автоматически через некоторый период времени, называемый периодом автоповтора, посылается код нажатой клавиши. Режим автоповтора облегчает ввод с клавиатуры большого количества одинаковых символов.

Следует отметить, что клавиатура содержит внутренний 16-байтовый буфер, через который она осуществляет обмен данными с компьютером. В настоящее время стандартная клавиатура для IBM AT содержит 101 клавишу.

Мультимедийные клавиатуры

Многие современные компьютерные клавиатуры, помимо стандартного набора из ста четырёх клавиш, снабжаются дополнительными клавишами (как правило, другого размера и формы), которые предназначены для упрощённого управления некоторыми основными функциями компьютера:

управление громкостью звука: громче, тише, включить или выключить звук;

управление лотком в приводе для компакт-дисков: извлечь диск, принять диск;

управление аудиопроигрывателем: играть, поставить на паузу, остановить воспроизведение, промотать аудиозапись вперёд или назад, перейти к следующей или предыдущей аудиозаписи;

управление сетевыми возможностями компьютера: открыть почтовую программу, открыть браузер, показать домашнюю страницу, двигаться вперёд или назад по истории посещённых страниц, открыть поисковую систему;

управление наиболее популярными программами: открыть калькулятор, открыть файловый менеджер;

управление состоянием окон операционной системы: свернуть окно, закрыть окно, перейти к следующему или к предыдущему окну;

управление состоянием компьютера: перевести в ждущий режим, перевести в спящий режим, пробудить компьютер, выключить компьютер.

МЫШИ

Мышь- указательное устройство ввода (англ. pointing device)

Мышь воспринимает своё перемещение в рабочей и передаёт эту информацию компьютеру. Программа, работающая на компьютере, в ответ на перемещение мыши производит на экране действие, отвечающее направлению и расстоянию этого перемещения.

В дополнение к детектору перемещения мышь имеет от одной до трех (или более) кнопок, а также дополнительные элементы управления (колёса прокрутки, потенциометры, джойстики, трекболы, клавиши и т. п.), действие которых обычно связывается с текущим положением курсора (или составляющих специфического интерфейса).

Виды мышей

Прямой привод

Состоял из двух перпендикулярных колес, выступающих из корпуса устройства. При перемещении мыши колеса крутились каждое в своем измерении (1963г.)

Шаровой привод

В шаровом приводе движение мыши передается на выступающий из корпуса гуммированный стальной шарик (его вес и резиновое покрытие обеспечивают хорошее сцепление с рабочей поверхностью). Два прижатых к шарику ролика снимают его движения по каждому из измерений и передают их на датчики, преобразующие эти движения в электрические сигналы.

Контактные датчики

Контактный датчик представляет из себя текстолитовый диск с лучевидными металлическими дорожками и тремя контактами, прижатыми к нему. Такой датчик достался шаровой мыши «в наследство» от прямого привода.

Оптопарные (оптомеханические) датчики

Оптронный датчик состоит из двойной оптопары - светодиода и двух фотодиодов (обычно - инфракрасных) и диска с отверстиями или лучевидными прорезями, перекрывающего световой поток по мере вращения. При перемещении мыши диск вращается, и с фотодиодов снимается сигнал с частотой, соответствующей скорости перемещения мыши.

Второй фотодиод, смещённый на некоторый угол или имеющий на диске датчика смещённую систему отверстий/прорезей, служит для определения направления вращения диска (свет на нём появляется/исчезает раньше или позже, чем на первом, в зависимости от направления вращения).

Индукционная мышь

Индукционные мыши используют специальный коврик, работающий по принципу графического планшета. ндукционные мыши имеют хорошую точность, и их не нужно правильно ориентировать. Индукционная мышь может быть «беспроводной» (к компьютеру подключается планшет, на котором она работает), и иметь индукционное же питание, следовательно, не требовать аккумуляторов, как обычные беспроводные мыши.

Инерционная мышь

Инерционные мыши используют акселерометры для определения движений мыши по каждой из осей. Обычно инерционные мыши являются беспроводными и имеют выключатель для отключения детектора движений, для перемещения мыши без влияния на указатель.

Оптическая мышь

Оптические датчики призваны непосредственно отслеживать перемещение рабочей поверхности относительно мыши. Исключение механической составляющей обеспечивало более высокую надёжность и позволяло увеличить разрешающую способность детектора.

Первое поколение оптических датчиков было представлено различными схемами оптопарных датчиков с непрямой оптической связью - светоизлучающих и воспринимающих отражение от рабочей поверхности светочувительных диодов. Такие датчики имели одно общее свойство - они требовали наличия на рабочей поверхности (мышином коврике) специальной штриховки (перпендикулярными или ромбовидными линиями). В некоторых моделях мышей эти штриховки выполнялись красками, невидимыми в обычном свете (такие коврики даже могли иметь рисунок).

Второе поколение оптических датчиков сделаны на базе микросхемы, содержащей фотосенсор и процессор обработки изображения. Удешевление и миниатюризация компьютерной техники позволили уместить всё это в одном элементе за доступную цену. Фотосенсор периодически сканирует участок рабочей поверхности под мышью. При изменении рисунка процессор определяет, в какую сторону и на какое расстояние сместилась мышь. Сканируемый участок подсвечивается светодиодом (обычно - красного цвета) под косым углом.

На сегодняшний день Agilent Technologies, Inc. - монополист на рынке оптических сенсоров для мышей, никакие другие компании такие сенсоры не разрабатывают, кто бы и что не говорил вам об эксклюзивных технологиях IntelliEye или MX Optical Engine . Впрочем, предприимчивые китайцы уже научились «клонировать» сенсоры Agilent Technologies, поэтому, покупая недорогую оптическую мышь, вы вполне можете стать владельцем «левого» сенсора.

Как «видят» оптические мыши

С помощью светодиода, и системы фокусирующих его свет линз, под мышью подсвечивается участок поверхности. Отраженный от этой поверхности свет, в свою очередь, собирается другой линзой и попадает на приемный сенсор микросхемы - процессора обработки изображений. Этот чип, в свою очередь, делает снимки поверхности под мышью с высокой частотой (кГц). Причем микросхема (назовем ее оптический сенсор) не только делает снимки, но сама же их и обрабатывает, так как содержит две ключевых части: систему получения изображения Image Acquisition System (IAS) и интегрированный DSP процессор обработки снимков.

На основании анализа череды последовательных снимков (представляющих собой квадратную матрицу из пикселей разной яркости), интегрированный DSP процессор высчитывает результирующие показатели, свидетельствующие о направлении перемещения мыши вдоль осей Х и Y, и передает результаты своей работы вовне по последовательному порту.

Е
сли мы посмотрим на блок-схему одного из оптических сенсоров, то увидим, что микросхема состоит из нескольких блоков, а именно:

основной блок, это, конечно же, Image Processor - процессор обработки изображений (DSP) со встроенным приемником светового сигнала (IAS);

Voltage Regulator And Power Control - блок регулировки вольтажа и контроля энергопотребления (в этот блок подается питание и к нему же подсоединен дополнительный внешний фильтр напряжения);

Oscillator - на этот блок чипа подается внешний сигнал с задающего кварцевого генератора, частота входящего сигнала порядка пары десятков МГц;

Led Cоntrоl - это блок управления светодиодом, с помощью которого подсвечивается поверхность по мышью;

Serial Port - блок передающий данные о направлении перемещения мыши вовне микросхемы.

Н
ужно уточнить, что информацию о перемещении мыши микросхема оптического сенсора передает через Serial Port не напрямую в компьютер. Данные поступают к еще одной микросхеме-контроллеру, установленной в мыши. Эта вторая «главная» микросхема в устройстве отвечает за реакцию на нажатие кнопок мыши, вращение колеса прокрутки и т.д. Данный чип, в том числе, уже непосредственно передает в ПК информацию о направлении перемещения мыши, конвертируя данные, поступающие с оптического сенсора, в передаваемые по интерфейсам PS/2 или USB сигналы. А уже компьютер, используя драйвер мыши, на основании поступившей по этим интерфейсам информации, перемещает курсор-указатель по экрану монитора.

Система оптического слежения мышей, помимо микросхемы-сенсора, включает еще несколько базовых элементов. Конструкция включает держатель (Clip) в который устанавливаются светодиод (LED) и непосредственно сама микросхема сенсора (Sensor). Эта система элементов крепится на печатную плату (PCB), между которой и нижней поверхностью мыши (Base Plate) закрепляется пластиковый элемент (Lens), содержащий две линзы (о назначении которых было написано выше). В собранном виде оптический элемент слежения выглядит как показано выше. Схема работы оптики этой системы представлена ниже. Оптимальное расстояние от элемента Lens до отражающей поверхности под мышью должно попадать в диапазон от 2.3 до 2.5 мм.

Лазерная мышь

Для подсветки используется полупроводниковый лазер.

Отличаются: более высокой надёжностью и разрешением;

успешной работой на стеклянных и зеркальных поверхностях (недоступных оптическим мышам);

отсутствии сколько-нибудь заметного свечения;

низком энергопотреблении.

Особенности работы лазерной мыши

Как известно, лазер излучает узконаправленный (с малым расхождением) пучок света. Следовательно, освещенность поверхности под мышью при применении лазера гораздо лучше, чем при использовании светодиода. Лазер, работающий в инфракрасном диапазоне, был выбран, вероятно, чтобы не слепить глаза возможным все-таки отражением света из-под мыши в видимом спектре. То, что оптический сенсор нормально работает в инфракрасном диапазоне не должно удивлять - от красного диапазона спектра, в котором работает большинство светодиодных оптических мышей, до инфракрасного -«рукой подать», и вряд ли для сенсора переход на новый оптический диапазон был труден. Например, в манипуляторе Logitech MediaPlay используется светодиод, однако также дающий инфракрасную подсветку. Нынешние сенсоры без проблем работают даже с голубым светом (существуют манипуляторы и с такой подсветкой), так что спектр области освещения - для сенсоров не проблема. Так вот, благодаря более сильной освещенности поверхности под мышью, мы вправе предположить, что разница между местами, поглощающими излучение (темными) и отражающими лучи (светлыми) будет более значительной, чем при использовании обычного светодиода - т.е. изображение будет более контрастными.

Сканеры. Виды, принцип действия, основные характеристики.

Сканер (англ. scanner) - устройство, которое анализируя какой-либо объект (обычно изображение, текст), создаёт цифровую копию изображения объекта.

Рассмотрим принцип действия планшетных сканеров, как наиболее распространенных моделей. Сканируемый объект кладется на стекло планшета сканируемой поверхностью вниз. Под стеклом располагается подвижная лампа, движение которой регулируется шаговым двигателем.

Свет, отраженный от объекта, через систему зеркал попадает на чувствительную матрицу (англ. CCD - Couple-Charged Device), далее на АЦП и передается в компьютер. За каждый шаг двигателя сканируется полоска объекта, которые потом объединяются программным обеспечением в общее изображение.

Изображение всегда сканируется в формат RAW - а затем конвертируется в обычный графический формат с применением текущих настроек яркости, контрастности, и т.д. Эта конвертация осуществляется либо в самом сканере, либо в компьютере - в зависимости от модели конкретного сканера. На параметры и качество RAW-данных влияют такие аппаратные настройки сканера, как время экспозиции матрицы, уровни калибровки белого и чёрного, и т.п.

Все бытовые сканеры содержат собственные микропроцессоры, иногда это совмещённые с АЦП микропроцессоры, а иногда это микропроцессоры общего вида.

Матрица - это просто!

Матрицей в плазменных дисплеях и телевизорах, по сути, является экран.

Для того чтобы понять какие неисправности бывают в матрицах плазменных панелей (ПП), необходимо понять, как она устроена.

Основой матрицы является прозрачная панель, обычно из стекла. Производитель до некоторого времени использовал для этой цели два стекла толщиной 3мм. Последние модели матриц телевизоров изготовлены всего лишь из стекол толщиной 2мм, что сильно снизило вес, но сделало матрицу черезвычайно хрупкой и чувствительной к малейшим ударам..

Склеенными друг с другом так, что они образуют в между стекольном пространстве колбу, которую заполняют газовой смесью. На поверхностях стекол, обращенных друг к другу наносятся сетки электродов. На наружном стекле, обращенном к пользователю, наносятся ряд горизонтальных электродов. По два электрода на одну строку. Их можно назвать Y электродом и X электродом. Они будут отвечать за формирование строчек изображения.

На внутреннем стекле, наносятся вертикальные (адресные) электроды, по одному электроду на 1 сабпиксел. 3 сабпиксела образуют триаду – 1 пиксел. Таким образом получается колба, с нанесенными рядами и столбцами электродов, образующими перекрестья.

Электроника управляющая этими горизонтальными и вертикальными элетродами формирует засвечивание минимальной единицы изображения – 1 сабпиксела. 3 сабпиксела, как уже говорилось выше, образуют триаду – 1 пиксел. Триада может сформировать практически любой оттенок цвета, видимый человеческим глазом. Триада, он же Пиксел, в свою очередь, является составляющей единицей всего изображения на экране.

Теперь же вернемся, к тому как засвечивается сабпиксел. Как видно из рисунка, перекрестье горизонтальных XY электродов и вертикального, адресного электрода – образует ячейку. Электроника, управляющая матрицей, формирует специальные сигналы, которые позволяют засветить, или потушить конкретную ячейку. Электроника, как бы знает каждую ячейку и может управлять каждой из них. А как же формируется свечение ячейки, что заставляет ее светиться. Многие видели лампы дневного света, такие трубчатые светильники, которые стоят в метро, офисах, домах. Там используется тот же принцип. Только 1 сабпиксел матрицы, это как бы маленькая трубчатая лампа дневного света. Но только в матрице каждая из этих «ламп» окрашена в красный, зеленый, синий цвета. Каждая ячейка может засветиться только одним из трех цветов, - красным, зеленым или синим.

Теперь у нас есть три цвета, но как же получить полутона, черный, белый цвет. Особенность человеческого глаза состоит в том, что если светящиеся зоны на экране малы, то находящиеся рядом разноцветные зоны склонны сливаться и восприниматься как усредненный цвет. Таким образом светящиеся красным и синим, рядом стоящие субпикселы, будут образовывать восприятие фиолетового цвета. Красный и зеленый – желтого. Зеленый и синий – голубого. Комбинации из трех цветов формируют белый цвет, а интенсивность свечения отдельных цветов будет создавать бесконечные вариации оттенков. Так 3 сабпиксела - триада или 1 пиксел, позволяют создать любой оттенок цвета в одной точке экрана. Это можно рассматривать как минимальную единицу, из которых составляется вся картинка изображения.

Далее эти пикселы сканируются электроникой панели подобно тому как буквы в книге. Они составляют строки, которые в свою очередь, составляют страницы - кадры изображения, которые могут сменять один другого 50 – 100 раз в секунду и более.

Как уже было сказано выше, электроника знает каждый пиксел в матрице, и четко, с большими скоростями, контролирует его, обращаясь к конкретным адресным, и сканирующим (Y)электродам.

Основными неисправностями матриц являются сложности с чипами, интегрированными в стекло матрицы, которые сканируют адресные и скан электроды и приводят к тому, что нарушается адресация и сканирование соотвественно. Возникают всякого рода полосы имеющие вид столбов.

Следующей неисправностью матрицы, является единичный или множественный обрыв электрода уходящего в колбу. Это приводит к тому, что целая строка или столбик в один сабпиксел не управляются. Выглядит это для строк – как черная строчка или несколько, а для вертикального столбика – как хаотически засвечивающиеся или темные участки части триады, а поскольку будет отсутствовать одна из составляющих триады, это будет восприниматься на разных сценах как цветная вертикальная полоска или несколько полосок.

Эти неисправности в большинстве случаев устранимы.

Также существуют и другие неисправности, замыкания в колбе матрицы, обрывы внутри колбы как вследствие замыкания, так и вследствие брака изготовителя.

Эти неисправности не позволяют восстановить матрицу, т.к. причины и дефекты, находятся между стекол в газовой смеси, и получить доступ туда – будет означать разрушение целостности колбы и потерю газовой смеси.

Если матрица Вашего аппарата не подлежит восстановлению, то произведем

Плазменные дисплеи (PDP)

Плазменные панели в настоящее время наряду с ЖК-телевизорами царствуют на рынке плоскопанельных дисплеев, практически полностью вытеснив кинескопные и проекционные телевизоры. Неудивительно: при толщине корпуса в несколько сантиметров эти «живые картины» гораздо удобнее и легко вписываются в интерьер. И, если ЖК-телевизоры пока что только набирают темпы развития, плазма, пройдя долгий путь в 15 лет, похоже, достигла пика. На горизонте появляется еще одна конкурирующая технология плоских дисплеев – OLED (органические светодиодные дисплеи), которая, по логике вещей, рано или поздно безжалостно похоронит как плазму, так и ЖК. Иногда появляется информация о еще одной прогрессивной технологии, обещающей немыслимый прорыв в качестве изображения – поверхностных катодах. Это направление берет начало в области нанотехнологий и использует эффект туннельного перехода. Не исключено, что за ним будущее, хотя со светодиодами все было бы гораздо проще: понятная, простая до смешного конструкция матриц, колоссальный ресурс. Наверняка рано или поздно плазма сойдет со сцены, но как скоро это произойдет, не знает никто. Поэтому плазма пока что сохраняет свою актуальность как наиболее высококачественный дисплей, пригодный не только на роль «дежурного» телевизора для беглого просмотра новостей и спортивных трансляций, но и для домашнего кинотеатра относительно скромных масштабов.

История плазменных дисплеев

Первый прототип плазменного дисплея появился в 1964 году. Его сконструировали ученые Иллинойского университета Битцер и Слоттоу как альтернативу кинескопному экрану для компьютерной системы Plato. Дисплей этот был монохромным, не требовал дополнительной памяти и сложных электронных схем и отличался высокой надежностью. Его предназначением было в основном индицировать буквы и цифры. Однако в качестве компьютерного монитора он так и не успел как следует реализоваться, поскольку благодаря полупроводниковой памяти, появившейся в конце 70-х, кинескопные мониторы оказались дешевле в производстве. Зато плазменные панели благодаря малой глубине корпуса и большому экрану получили распространение в качестве информационных табло в аэропортах, вокзалах и на биржах. Информационными панелями плотную занялась компания IBM, а в 1987 году бывший студент Битцера, доктор Лэрри Вебер, основал компанию Plasmaco, которая занялась производством монохромных плазменных дисплеев. Первый же цветной плазменный дисплей 21" был представлен фирмой Fujitsu в 1992 году. Разрабатывался он совместно с конструкторским бюро Иллинойского университета и компанией NHK. А в 1996 Fujitsu покупает компанию Plasmaco со всеми ее технологиями и заводом, и выбрасывает на рынок первую коммерчески успешную панель плазмы – Plasmavision с экраном разрешения 852 х 480 диагональю 42" с прогрессивной разверткой. Началась продажа лицензий другим производителям, первым среди которых стал Pioneer. Впоследствии, активно развивая плазменную технологию, Pioneer, пожалуй, больше всех остальных преуспел на плазменном поприще, создав целый ряд великолепных моделей плазмы.

Надо сказать, что если первые монохромные прототипы были похожи на современную плазму не более, чем шимпанзе на современного человека, то и цветные плазменные панели первых поколений не поднялись выше уровня питекантропа. При всем ошеломляющем коммерческом успехе плазменных панелей качество изображения поначалу было, мягко сказать, удручающим. Стоили же они баснословных денег, но быстро завоевали аудиторию благодаря тому, что выгодно отличались от кинескопных монстров плоским корпусом, дававшим возможность повесить телевизор на стену, и размерами экрана: 42 дюйма по диагонали против 32 (максимум для кинескопных телевизоров). В чем же был основной дефект первых плазменных мониторов? Дело в том, что при всей красочности картинки они совершенно не справлялись с плавными цветовыми и яркостными переходами: последние распадались на ступеньки с рваными краями, что на подвижном изображении выглядело вдвойне ужасно. Оставалось только гадать, отчего возникал данный эффект, о котором, как будто сговорившись, ни слова не писали средства массовой информации, превозносившие новые плоские дисплеи. Однако лет через пять, когда сменилось несколько поколений плазмы, ступеньки стали встречаться все реже, да и по другим показателям качество изображения стало стремительно расти. К тому же помимо 42-дюймовых появились панели 50" и 61". Постепенно росло и разрешение, и где-то на этапе перехода к 1024 х 720 плазменные дисплеи были, что называется, в самом соку. Совсем же недавно плазма успешно переступила новый порог качества, войдя в привилегированный круг устройств Full HD. В настоящее время наиболее популярными являются размеры экрана 42 и 50 дюймов по диагонали. В придачу к стандартному 61" появился размер 65", а также рекордный 103". Впрочем, настоящий рекорд только грядет: компания Matsushita (Panasonic) недавно анонсировала панель 150"! Но это, как и модели 103" (кстати, на основе панелей Panasonic плазмы такого же размера производит известная американская компания Runco), штука неподъемная как в прямом, так и в еще более прямом смысле (вес, цена).

Технология плазмы

Вес был упомянут неспроста: плазменные панели очень много весят, особенно модели больших размеров. Это является следствием того, что плазменная панель в основном состоит из стекла, если не считать металлическое шасси и пластиковый корпус. Стекло здесь необходимо и незаменимо: оно останавливает вредное ультрафиолетовое излучение. По этой же причине никто не производит люминесцентные лампы из пластика, только из стекла. А плазменная панель - это, по сути, и есть большая люминесцентная лампа, только раскатанная в прямоугольный блин и порубленная на множество ячеек.

Вся конструкция плазменного экрана - это два листа стекла, между которыми находится ячеистая структура пикселей, состоящих из триад субпикселей - красных, зеленых и голубых. Фактически вертикальные ряды R, G и B просто поделены на отдельные ячейки горизонтальными перетяжками, что делает структуру экрана очень похожей на масочный кинескоп обычного телевизора. Сходство с последним еще и в том, что здесь используется тот же цветной фосфор, которым покрыты изнутри ячейки субпикселей. Только поджег фосфорного люминофора осуществляется не электронным лучом, как в кинескопе, а ультрафиолетовым излучением (которому как раз и уготована «жизнь за стеклом» во избежание вредного воздействия на человеческий организм).

А откуда берется ультрафиолет? Ячейки заполнены инертным газом - смесью неона и ксенона (последний составляет всего несколько процентов от смеси), некоторые производители плазмы добавляют еще и гелий. Газ имеет свойство относительно легко переходить в состояние плазмы, когда его атомы, теряя электрон, превращаются в положительные ионы. При этом вещество переходит на более высокий энергетический уровень. Свободные же электроны периодически сталкиваются с нейтральными атомами, выбивают из них электрон и превращают в положительные ионы. А другая их часть, натыкаясь на ионы, восстанавливает их до нейтральных атомов, которые при этом испускают энергию в виде фотонов ультрафиолета. Последний же воздействует на фосфорный люминофор, который начинает светиться в видимом спектре. Чтобы процесс был стабильным и управляемым, необходимо обеспечить достаточное количество свободных электронов в толще газа плюс достаточно высокое напряжение (порядка 200 В), которое заставит ионный и электронные потоки двигаться навстречу друг другу. Как это делается в люминесцентной лампе, которая работает по тому же принципу? В момент пуска нагреваются вольфрамовые спирали в торцах трубки нагреваются и начинают испускать электроны (термоэлектронная эмиссия). А одновременно между этими спиралями подается высокое напряжение, начинает протекать ионно-электронный ток, вызывающий переход газа в состояние плазмы, ультрафиолетовое излучение и свечение люминофора, нанесенного на внутреннюю поверхность стеклянной трубки. Только люминофор тут белого свечения. В плазменном же экране спиралей нет, зато электроды расположены гораздо ближе друг к другу, и для ионизации газа хватает электрического импульса достаточно высокого напряжения. А чтобы ионизация происходила мгновенно, помимо управляющих импульсов на электродах присутствует остаточный заряд. К электродам управляющие сигналы подводятся по горизонтальным и вертикальным проводникам, образующим адресную сетку. Причем вертикальные (дисплейные) проводники представляют собой токопроводящие дорожки на внутренней поверхности защитного стекла с передней стороны. Они прозрачны (слой окиси олова с примесью индия). Горизонтальные же (адресные) металлические проводники располагаются с тыльной стороны ячеек.

На самом деле структура реальных плазменных экранов гораздо сложнее, да и физика процесса совсем не так проста. Помимо описанной выше матричной сетки существует и другая разновидность - сопараллельная, предусматривающая дополнительный горизонтальный проводник. Кроме этого, тончайшие металлические дорожки дублируют походят параллельно прозрачным для выравнивания потенциала последних по всей длине, которая довольно значительна (1 м и более). Поверхность электродов покрыта слоем окиси магния, который выполняет изолирующую функцию и одновременно обеспечивает вторичную эмиссию при бомбардировке положительными ионами газа. Существуют и различные типы геометрии пиксельных рядов: простая и «вафельная» (ячейки разделены двойными вертикальными стенками и горизонтальными перемычками). Прозрачные электроды могут выполняться в форме двойного Т или меандра, когда они как бы переплетаются с адресными, хотя и находятся в разных плоскостях. Существует множество и других технологических хитростей, направленных на повышение эффективности плазменных экранов, которая изначально была довольно низкой. С этой же целью производители варьируют газовый состав ячеек, в частности, увеличивают процентное содержание ксенона с 2 до 10%. Кстати, газовая смесь в ионизированном состоянии слегка светится и сама по себе, поэтому, дабы устранить загрязнение спектра люминофоров этим свечением, в каждой ячейке устанавливают миниатюрные светофильтры.

Управление пикселями осуществляется с помощью трех типов импульсов: стартовых, поддерживающих и гасящих. Частота - порядка 100 кГц, хотя известны идеи дополнительной модуляции управляющих импульсов радиочастотами (40 МГц), что обеспечит более равномерную плотность разряда в толще газа. По сути, управление свечением пикселей носит характер дискретной широтно-импульсной модуляции: пикселей светятся ровно столько, сколько длится поддерживающий импульс. Длительность же его при 8-битной кодировке может принимать 128 дискретных значений, соответственно, получается такое же количество градаций яркости. Уж не в этом ли была причина рваных градиентов, распадающихся на ступеньки? Плазма более поздних поколений постепенно наращивала разрешение: 10, 12, 14 бит. Последние модели Runco, относящиеся к категории Full HD, используют 16-битную обработку сигнала (вероятно, и кодировку также). Так или иначе, ступеньки исчезли и больше, будем надеяться, не появятся.

Постепенно совершенствовалась не только сама панель, но и алгоритмы обработки сигнала: масштабирования, прогрессивного преобразования, компенсации движений, подавления шумов, оптимизации цветосинтеза и пр. У каждого производителя плазмы появился свой набор технологий, частично дублирующий чужие под другими названиями, но частично и свои. Так, почти все использовали алгоритмы масштабирования и адаптивного прогрессивного преобразования DCDi Faroudja, в то время как некоторые заказывали оригинальные разработки (например, Vivix у Runco, Advanced Video Movement у Fujitsu, Dynamic HD Converter у Pioneer и т. д.). В целях повышения контрастности вносились коррективы в структуру управляющих импульсов и напряжений. Для увеличения яркости в форму ячеек вводились дополнительные перемычки для увеличения покрытой люминофором поверхности и снижения засветки соседних пикселей (Pioneer). Постепенно росла роль «интеллектуальных» алгоритмов обработки: вводилась покадровая оптимизация яркости, система динамического контраста, продвинутые технологии цветосинтеза. Корректировки в исходный сигнал вносились не только исходя из характеристик самого сигнала (насколько темным или светлым являлся текущий сюжет или насколько быстро движутся объекты), но и из уровня внешней освещенности, который отслеживался с помощью встроенного фотосенсора. С помощью продвинутых алгоритмов обработки удалось достичь просто фантастических успехов. Так, компания Fujitsu путем интерполяционного алгоритма и соответствующих доработок процесса модуляции добилась увеличения количества градаций цвета в темных фрагментах до 1019, что намного превышает собственные возможности экрана при традиционном подходе и соответствует чувствительности человеческого зрительного аппарата (технология Low Brightness Multi Gradation Processing). Эта же компания разработала метод раздельной модуляции четных и нечетных управляющих горизонтальных электродов (ALIS), который затем использовался в моделях Hitachi, Loewe и др. Метод давал повышенную четкость и уменьшал зубчатость наклонных контуров даже без дополнительной обработки, в связи с чем в спецификациях использовавших его моделей плазмы появился необычный показатель разрешения 1024 × 1024. Такое разрешение, конечно, являлось виртуальным, но эффект оказался весьма впечатляющим.

Достоинства и недостатки плазмы

Парадокс в том, что когда цены на плазму были поистине пугающими при весьма и весьма посредственном качестве изображения, у нее не было конкурентов (проекционные телевизоры в силу своей громоздкости достойной альтернативы не представляли). Вот тогда-то, по логике вещей, и нужно было срочно развивать ЖК-технологию. Но то ли повезло, то ли, напротив, все продумано, этот конкурент появился, уже когда плазма твердо стояла на ногах. Причем появился он в таком же сыром и неубедительном виде, как когда-то плазма. Первый блин, как известно, комом, да и дисплей, очевидно, тоже. Сегодня уже можно говорить о соревновании более или менее на равных, хотя плазма, начав раньше, все же и успела гораздо больше, чем ЖК-дисплеи, которым еще есть, куда развиваться, чтобы достичь схожего с плазмой статуса.

Какие же у плазмы преимущества и недостатки по сравнению с ЖК? Несомненно, и этого никто отрицать не осмелится, качество изображения у плазменных дисплеев гораздо лучше. Глубже черный цвет, выше разрешение в темных сценах, в то время как на ЖК-экране все довольно быстро скатывается в кромешную черноту (точнее, темно-серую массу, поскольку остаточная засветка здесь весьма значительна). Не лучше обстоит дело и с белым: наиболее яркие фрагменты изображения частенько выбеливаются до состояния однородного пятна. Для плазмы все это досадные подробности далекого прошлого.

Угол обзора

Одной из слабых сторон жидких кристаллов, как известно, традиционно являлся ограниченный угол обзора. Поляризованный свет излучается в основном под прямым углом к поверхности экрана, если не считать рассеивание в экранном покрытии. Правда, в последнее время этот недостаток в значительной степени преодолен, но по сравнению с плазмой все же ощутим. Плазма - это дисплей, который, подобно кинескопному телевизору, не использует светоклапаны, а излучает уже модулированный свет непосредственно фосфорными триадами. Это в определенной степени роднит плазму с электронно-лучевыми трубками, столь привычными и доказавшими свою состоятельность на протяжении нескольких десятилетий.

Цветопередача

У плазмы заметно более широкий охват цветового пространства, что также объясняется спецификой цветосинтеза, который формируется «активными» фосфорными элементами, а не путем пропускания светового потока лампы через светофильтры и светоклапаны. Чистота цвета и разрешение по оттенкам безоговорочно лидирует у плазменных дисплеев: ЖК-экраны то и дело «сглаживают», а то и размазывают, деликатные цветовые градации до степени одноцветного пятна, что особенно заметно на лицах киногероев и задних планах, которые часто размываются буквально до какой-то аморфной массы, в то время как плазма демонстрирует отличную глубину резкости и объемность картинки.

Плазменные матрицы, несомненно, отличаются определенной инертностью, хотя бы из-за послесвечения фосфорного люминофора, но эта инертность не идет ни в какое сравнение с медлительностью жидких кристаллов. Изображение на плазменном экране всегда более энергично, живо, с четкими контурами.

Ресурс плазмы

Большой ресурс плазменного дисплея (60 000 часов) также вряд ли смогут превзойти или даже повторить жидкие кристаллы. Причем «страшилки» насчет мертвых пикселей (поначалу компания Fujitsu даже ввела норматив - кажется, 16 мертвых пикселей на 42-дюйовыфый экран считалось допустимым) оказались ложной тревогой: тенденции к увеличению их числа в процессе эксплуатации пока не наблюдалось. А совершенствование технологий производства позволило и вовсе избавиться от этого врожденного порока.

Размеры экрана

Наконец, плазма пока что лидирует по сравнению с ЖК по размерам экрана, причем, если брать предельный для ЖК размер в 50??, то такая плазма стоит дешевле. Конечно, здесь все может измениться в ближайшие год-два, но пока дела обстоят именно так.

Теперь о недостатках. К сожалению, самые большие плазменные дисплеи весят столько, что не всегда оказывается возможность повесить их на стену, если только она не из цельного бетона. Боится плазма и не очень деликатной транспортировки: стекло, как-никак. Потребление электроэнергии весьма значительное, хотя в последних поколениях его удалось существенно снизить, заоднем исключив и шумные вентиляторы охлаждения.

Выгорание пикселей

Важным недостатком плазмы является неравномерное выгорание пикселей при длительном воспроизведении статического изображения, контуры которого затем проступают при смене сюжета. Чтобы не допустить деградации дисплеев от выгорания, применяются различные методы: скрин-сейверы (как в компьютерных мониторах), автоматическое отключение через некоторое время при статическом сигнале или отсутствии его, а также плавные перемещения изображения по экрану.

Блики

Но, пожалуй, все же самый главный недостаток плазменных экранов - это блики. Стекло есть стекло. Да, плазма практически не чувствительна к внешнему освещению, цвета на экране остаются яркими и изображение не теряет четкость, но на это изображение накладывается отражение всего, что находится за спиной у зрителя, включая его самого. А уж если туда попадает отражение от окна или горящего торшера, то это сущий ад. Именно данные предметы становятся главными героями любого видеосюджета! В принципе, стоя перед плазмой, показывающей нее самые яркие сцены, можно даже бриться. И все это несмотря на декларирование производителями новых и все более улучшенных антибликовых покрытий. Тут поневоле приходит на ум поверхность экрана ЖК-телевизора: бархатисто-матовая, практически ничего не отражает... Но где тут такая четкость и ясность, как на плазме, даже с отражением открытого окна? Если поставить рядом два дисплея, плазменный и ЖК, картинка на втором будет казаться как будто в легкой дымке.

Одним словом, нет добра без худа. Утешает то, что фраза эта верна и в обратном порядке слов.