Переведение числа в двоичную систему. Двоичные числа, цифры и двоичная система счисления

В одном из наших материалов мы рассмотрели определение . Оно имеет самый короткий алфавит. Только две цифры: 0 и 1. Примеры алфавитов позиционных систем счисления приведены в таблице.

Позиционные системы счисления

Название системы

Основание

Алфавит

Двоичная

Троичная

Четверичная

Пятеричная

Восьмеричная

Десятичная

0,1,2,3,4,5,6,7,8,9

Двенадцатеричная

0,1,2,3,4,5,6,7,8,9,А,В

Шестнадцатеричная

0,1,2,3,4,5,6,7,8,9,А,В,С,D,E,F

Тридцатишестиричная

0,1,2,3,4,5,6,7,8,9,А,В,С,D,E,F,G, H,I,J,K,L,M,N,O,P,R,S,T,U,V,X,Y,Z


Для перевода небольшого числа из десятичного в двоичное, и обратно, лучше пользоваться следующей таблицей.

Таблица перевода десятичных чисел от 0 до 20 в двоичную систему счисления.

десятичное

число

двоичное число

десятичное

число

двоичное число


Однако таблица получится огромной, если записать туда все числа. Искать среди них нужное число будет уже сложнее. Гораздо проще запомнить несколько алгоритмов перевода чисел из одной позиционной системы счисления в другую.


Как сделать перевод из одной системы счисления в другую? В информатике существует несколько простых способов перевода десятичных чисел в двоичные числа. Рассмотрим два из них.

Способ №1.

Допустим, требуется перевести число 637 десятичной системы в двоичную систему.


Делается это следующим образом: отыскивается максимальная степень двойки, чтобы два в этой степени было меньше или равно исходному числу.


В нашем случае это 9, т.к. 2 9 =512 , а 2 10 =1024 , что больше нашего начального числа. Таким образом, мы получили число разрядов результата. Оно равно 9+1=10. Значит, результат будет иметь вид 1ххххххххх, где вместо х может стоять 1 или 0.


Найдем вторую цифру результата. Возведем двойку в степень 9 и вычтем из исходного числа: 637-2 9 =125. Затем сравниваем с числом 2 8 =256 . Так как 125 меньше 256, то девятый разряд будет 0, т.е. результат уже примет вид 10хххххххх.


2 7 =128 > 125 , значит и восьмой разряд будет нулём.


2 6 =64 , то седьмой разряд равен 1. 125-64=61 Таким образом, мы получили четыре старших разряда и число примет вид 10011ххххх.


2 5 =32 и видим, что 32 < 61, значит шестой разряд равен 1 (результат 100111хххх), остаток 61-32=29.


2 4 =16 < 29 - пятый разряд 1 => 1001111ххх. Остаток 29-16=13.


2 3 =8 < 13 => 10011111хх. 13-8=5


2 2 =4 < 5 => 10011111хх, остаток 5-4=1.


2 1 =2 > 1 => 100111110х, остаток 2-1=1.


2 0 =1 => 1001111101.


Это и будет конечный результат.

Способ №2.

Правило перевода целых десятичных чисел в двоичную систему счисления, гласит:

  1. Разделим a n−1 a n−2 ...a 1 a 0 =a n−1 ⋅2 n−1 +a n−2 ⋅2 n−2 +...+a 0 ⋅2 0 на 2.
  2. Частное будет равно an−1 ⋅2n−2+...+a1 , а остаток будет равен
  3. Полученное частное опять разделим на 2, остаток от деления будет равен a1.
  4. Если продолжить этот процесс деления, то на n-м шаге получим набор цифр: a 0 ,a 1 ,a 2 ,...,a n−1 , которые входят в двоичное представление исходного числа и совпадают с остатками при его последовательном делении на 2.
  5. Таким образом, для перевода целого десятичного числа в двоичную систему счисления нужно последовательно выполнять деление данного числа и получаемых целых частных на 2 до тех пор, пока не получим частное, которое будет равно нулю.

Исходное число в двоичной системе счисления составляется последовательной записью полученных остатков. Записывать его начинаем с последнего найденного.


Переведём десятичное число 11 в двоичную систему счисления. Рассмотренную выше последовательность действий (алгоритм перевода) можно изобразить так:


Получили 11 10 =1011 2 .

Пример:

Если десятичное число достаточно большое, то более удобен следующий способ записи рассмотренного выше алгоритма:



363 10 =101101011 2



Калькулятор позволяет переводить целые и дробные числа из одной системы счисления в другую. Основание системы счисления не может быть меньше 2 и больше 36 (10 цифр и 26 латинских букв всё-таки). Длина чисел не должна превышать 30 символов. Для ввода дробных чисел используйте символ. или, . Чтобы перевести число из одной системы в другую, введите исходное число в первое поле, основание исходной системы счисления во второе и основание системы счисления, в которую нужно перевести число, в третье поле, после чего нажмите кнопку "Получить запись".

Исходное число записано в 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 -ой системе счисления .

Хочу получить запись числа в 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 -ой системе счисления .

Получить запись

Выполнено переводов: 1237177

Системы счисления

Системы счисления делятся на два типа: позиционные и не позиционные . Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.

Пример 1 . Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:

Число 5921 можно записать в следующем виде: 5921 = 5000+900+20+1 = 5·10 3 +9·10 2 +2·10 1 +1·10 0 . Число 10 является характеристикой, определяющей систему счисления. В качестве степеней взяты значения позиции данного числа.

Пример 2 . Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:

Число 1234.567 можно записать в следующем виде: 1234.567 = 1000+200+30+4+0.5+0.06+0.007 = 1·10 3 +2·10 2 +3·10 1 +4·10 0 +5·10 -1 +6·10 -2 +7·10 -3 .

Перевод чисел из одной системы счисления в другую

Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:

1. Перевести число 1001101.1101 2 в десятичную систему счисления.
Решение: 10011.1101 2 = 1·2 4 +0·2 3 +0·2 2 +1·2 1 +1·2 0 +1·2 -1 +1·2 -2 +0·2 -3 +1·2 -4 = 16+2+1+0.5+0.25+0.0625 = 19.8125 10
Ответ: 10011.1101 2 = 19.8125 10

2. Перевести число E8F.2D 16 в десятичную систему счисления.
Решение: E8F.2D 16 = 14·16 2 +8·16 1 +15·16 0 +2·16 -1 +13·16 -2 = 3584+128+15+0.125+0.05078125 = 3727.17578125 10
Ответ: E8F.2D 16 = 3727.17578125 10

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.

Перевод целой части числа из десятичной системы счисления в другую систему счисления

Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.

3. Перевести число 273 10 в восьмиричную систему счисления.
Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421
Проверка : 4·8 2 +2·8 1 +1·8 0 = 256+16+1 = 273 = 273 , результат совпал. Значит перевод выполнен правильно.
Ответ: 273 10 = 421 8

Рассмотрим перевод правильных десятичных дробей в различные системы счисления.

Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью . Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.

4. Перевести число 0.125 10 в двоичную систему счисления.
Решение: 0.125·2 = 0.25 (0 - целая часть, которая станет первой цифрой результата), 0.25·2 = 0.5 (0 - вторая цифра результата), 0.5·2 = 1.0 (1 - третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).
Ответ: 0.125 10 = 0.001 2

Замечание 1

Если вы хотите перевести число из одной системы счисления в другую, то удобнее для начала перевести его в десятичную систему счисления, и уже только потом из десятичной перевести в любую другую систему счисления.

Правила перевода чисел из любой системы счисления в десятичную

В вычислительной технике, использующей машинную арифметику, большую роль играет преобразование чисел из одной системы счисления в другую. Ниже приведем основные правила таких преобразований (переводов).

    При переводе двоичного числа в десятичное требуется представить двоичное число в виде многочлена , каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $2$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_2=A_n \cdot 2^{n-1} + A_{n-1} \cdot 2^{n-2} + A_{n-2} \cdot 2^{n-3} + ... + A_2 \cdot 2^1 + A_1 \cdot 2^0$

Рисунок 1. Таблица 1

Пример 1

Число $11110101_2$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $1$ степеней основания $2$, представим число в виде многочлена:

$11110101_2 = 1 \cdot 27 + 1 \cdot 26 + 1 \cdot 25 + 1 \cdot 24 + 0 \cdot 23 + 1 \cdot 22 + 0 \cdot 21 + 1 \cdot 20 = 128 + 64 + 32 + 16 + 0 + 4 + 0 + 1 = 245_{10}$

    Для перевода числа из восьмеричной системы счисления в десятичную требуется представить его в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $8$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_8 = A_n \cdot 8^{n-1} + A_{n-1} \cdot 8^{n-2} + A_{n-2} \cdot 8^{n-3} + ... + A_2 \cdot 8^1 + A_1 \cdot 8^0$

Рисунок 2. Таблица 2

Пример 2

Число $75013_8$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $2$ степеней основания $8$, представим число в виде многочлена:

$75013_8 = 7\cdot 8^4 + 5 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 3 \cdot 8^0 = 31243_{10}$

    Для перевода числа из шестнадцатеричной системы счисления в десятичную необходимо его представить в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $16$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_{16} = A_n \cdot 16^{n-1} + A_{n-1} \cdot 16^{n-2} + A_{n-2} \cdot 16^{n-3} + ... + A_2 \cdot 16^1 + A_1 \cdot 16^0$

Рисунок 3. Таблица 3

Пример 3

Число $FFA2_{16}$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $3$ степеней основания $8$, представим число в виде многочлена:

$FFA2_{16} = 15 \cdot 16^3 + 15 \cdot 16^2 + 10 \cdot 16^1 + 2 \cdot 16^0 =61440 + 3840 + 160 + 2 = 65442_{10}$

Правила перевода чисел из десятичной системы счисления в другую

  • Для перевода числа из десятичной системы счисления в двоичную его необходимо последовательно делить на $2$ до тех пор, пока не останется остаток, меньший или равный $1$. Число в двоичной системе представить как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример 4

Число $22_{10}$ перевести в двоичную систему счисления.

Решение:

Рисунок 4.

$22_{10} = 10110_2$

  • Для перевода числа из десятичной системы счисления в восьмеричную его необходимо последовательно делить на $8$ до тех пор, пока не останется остаток, меньший или равный $7$. Число в восьмеричной системе счисления представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 5

Число $571_{10}$ перевести в восьмеричную систему счисления.

Решение:

Рисунок 5.

$571_{10} = 1073_8$

  • Для перевода числа из десятичной системы счисления в шестнадцатеричную систему его необходимо последовательно делить на $16$ до тех пор, пока не останется остаток, меньший или равный $15$. Число в шестнадцатеричной системе представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 6

Число $7467_{10}$ перевести в шестнадцатеричную систему счисления.

Решение:

Рисунок 6.

$7467_{10} = 1D2B_{16}$

    Для того чтобы перевести правильную дробь из десятичной системы счисления в недесятичную, необходимо дробную часть преобразуемого числа последовательно умножить на основание той системы, в которую ее требуется перевести. Дробь в новой системе будет представлена в виде целых частей произведений, начиная с первого.

    Например: $0,3125_{(10)}$ в восьмеричной системе счисления будет выглядеть как $0,24_{(8)}$.

    В данном случае можно столкнуться с проблемой, когда конечной десятичной дроби может соответствовать бесконечная (периодическая) дробь в недесятичной системе счисления. В данном случае количество знаков в дроби, представленной в новой системе, будет зависеть от требуемой точности. Также нужно отметить, что целые числа остаются целыми, а правильные дроби - дробями в любой системе счисления.

Правила перевода чисел из двоичной системы счисления в другую

  • Чтобы перевести число из двоичной системы счисления в восьмеричную, его необходимо разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, затем каждую триаду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Рисунок 7. Таблица 4

Пример 7

Число $1001011_2$ перевести в восьмеричную систему счисления.

Решение . Используя таблицу 4, переведем число из двоичной системы счисления в восьмеричную:

$001 001 011_2 = 113_8$

  • Чтобы перевести число из двоичной системы счисления в шестнадцатеричную, его следует разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, затем каждую тетраду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Самые распространенные в современном мире методы расчетов - десятичный и двоичный. Они используются в совершенно разных областях, но оба одинаково важны. Нередко требуется и перевод из двоичной в десятичную систему или наоборот. Названия произошли от оснований, которые зависят от того, сколько знаков используется в записи чисел. В двоичной это только 0 и 1, а в десятичной - от 0 до 9. В других системах помимо цифр используются буквы, другие значки и даже иероглифы, но практически все они уже давно устарели. Поскольку даже другие разновидности числовых систем гораздо менее распространены, то что речь пойдет прежде всего о двух уже упомянутых. На самом деле удивительно, как все это можно было придумать. Поговорим на эту тему отдельно.

История возникновения

Даже сейчас, когда, казалось бы, весь мир считает одинаково, встречаются самые разные системы. В самых отдаленных уголках земного шара довольствуются лишь понятиями "один", "два" и "много", или чем-то подобным. Что уж говорить о тех временах, когда людям было гораздо сложнее контактировать друг с другом, так что использовалось огромное количество самых разных видов записей и методов подсчетов. Человечество далеко не сразу пришло к существующей системе, и это отражается в том, что час разделен на 60 минут, а не на 100 отрезков времени, что было бы, кажется, логичней. И в то же время люди чаще считают десятками, чем дюжинами. Все это отголоски того времени, когда инструментами для количественной оценки чего-либо служили собственные пальцы или, например, фаланги некоторых из них. Так возникли десятичная и двенадцатиричная системы. Но как же возникла двоичная? Очень просто и логично. Дело в том, что, например, у диодов есть всего два положения: он может быть либо включен, либо выключен. Первое состояние, таким образом, можно записать как 1, а второе - как 0. Однако это не означает, что двоичная система возникла одновременно с электронными приборами. Ее использовали гораздо раньше, например, Лейбниц считал ее крайне удобной, изящной и простой. Даже удивительно, что эта система счисления не стала в итоге основной.

Сферы применения

Для большинства людей две основные системы счисления просто не пересекаются. Так что осуществлять перевод из двоичной в десятичную - задача, посильная не для всех. Дело в том, что последняя система используется в обиходе, общении между людьми, при простых подсчетах и т. д. А вот на языке двоичной говорят все цифровые приборы, в первую очередь компьютеры. Любая информация, находящаяся в памяти каждого настольного ПК, планшета, телефона, ноутбука и многих других приборов - это различные сочетания нулей и единиц.

Отличия и особенности

Когда речь идет о системах счисления, обязательно необходимо как-то разграничить их. Ведь отличить 11 или 100 в разных методах записи просто так совершенно невозможно. Именно поэтому используется указатель ниже и правее самого числа. Так что, увидев запись 11 2 или 100 10 , можно понять, о чем идет речь. Обе системы являются позиционными, то есть от места той или иной цифры зависит ее значение. О разрядах десятичной системы рассказывают в школе: там есть единицы, десятки, сотни, тысячи и т. д. В двоичной все то же самое. Но в связи с тем, что ее основание - 2 - меньше 10, то разрядов ей нужно гораздо больше, то есть запись чисел получается гораздо длиннее. Кстати, в двоичной, как и во всех других системах, кроме десятичной, как самой распространенной, чтение происходит особым образом. Если основание 10 дает возможность прочесть 101 как "сто один", то для 2 это будет "один ноль один".

Возвращаясь к вопросу разрядов, необходимо повторить, что в связи с гораздо меньшим основанием требуется больше разрядов. Так, например, 8 10 - это 1000 2 . Разница очевидна - один разряд и четыре. Еще одно серьезное отличие - в двоичной системе не существует отрицательных чисел. Разумеется, записать его можно, но храниться и зашифровываться оно все равно будет иначе. Итак, как же производится перевод из двоичной системы счисления в десятичную и наоборот?

Алгоритм

Достаточно редко, но все-таки иногда приходится осуществлять переход от одного основания к другому. Иными словами, возникает потребность в том, чтобы произвести перевод из двоичной системы в десятичную и наоборот. Современные компьютеры делают это легко и быстро, даже если записи очень длинные и объемные. Люди тоже могут это делать, хоть и гораздо медленнее и менее эффективно. Провести и одну, и вторую операцию не так уж и сложно, но требуются знания, как это делать, внимательность и практика. Для того чтобы перейти от основания 2 к 10, необходимо проделать следующие шаги:

2) последовательно умножить значение на 2, возведенное в степень, равную номеру позиции;

3) сложить полученные результаты.

Еще один способ - начать суммировать произведения цифр последовательно справа налево. Это называется преобразованием методом Горнера и многим кажется более удобным, чем обычный алгоритм.

Для того чтобы провести обратную операцию, то есть перейти от десятичной системы к двоичной, нужно сделать вот что:

1) разделить изначальное число на 2 и записать остаток (1 или 0);

2) повторять шаг 1 до момента, когда останется только 0 или 1;

3) записать полученные значения по порядку.

Существуют и другие способы провести перевод из двоичной в десятичную систему счисления и наоборот. Но они не имеют никакого преимущества перед описанным алгоритмом, не являются более эффективными. Зато они требуют навыков осуществления арифметических действий в двоичной системе, что доступно очень немногим.

Дроби

К счастью или сожалению, но факт остается фактом - в двоичной системе используются не только целые числа. Перевод дробей - не слишком сложная, но зачастую трудоемкая для человека задача. Если изначальное число представлено в десятичной системе, то после преобразования целого числа все, что после запятой, нужно уже не делить, а умножать на 2, записывая целые части. Если же производится перевод из двоичной в десятичную систему, то все еще проще. В этом случае, когда начнется преобразование части после запятой, степень, в которую возводится 2, будет последовательно равняться -1, -2, -3 и т. д. Лучше всего будет рассмотреть это на практике.

Пример

Для того чтобы понять, как применять описанные алгоритмы, необходимо проделать все операции самостоятельно. Практикой всегда можно закрепить теорию, так что лучше всего будет рассмотреть следующие примеры:

  • перевод 1000101 2 в десятичную систему: 1х2 6 + 0х2 5 + 0х2 4 + 0х2 3 + 1х2 2 + 0х2 1 + 1х2 0 = 64+0+0+0+4+1 = 69 10 ;
  • с помощью метода Горнера. 00110111010 2 = 0х2+0=0х2+0=0х2+1=1х2+1=3х2+0=6х2+1=13х2+1=27х2+1=55х2+0=110х2+1=221х2+0=442 10 ;
  • 1110,01 2: 1х2 3 + 1х2 2 + 1х2 1 + 0х2 0 + 0х2 -1 + 1х2 -2 = 8+4+2+0,25 = 14,25 10 ;
  • из десятичной системы: 15 10 = 15/2=7(1)/2=3(1)/2=1(1)/2=0(1)= 1111 2 ;

Как не запутаться?

Даже на примере лишь двоичной и десятичной систем становится ясно, что смена основания вручную - нетривиальная задача. А ведь есть еще и другие: шестнадцатиричная, восьмеричная, шестидесятиричная и т. д. При ручном переводе из одной системы счисления в другую крайне необходима внимательность. Не запутаться действительно сложно, особенно если запись длинная. Кроме того, нельзя забывать, что разряды считаются с 0, а не 1, то есть количество цифр всегда будет на одну больше. Разумеется, нужно внимательно подсчитывать число разрядов и не допускать ошибок в арифметических действиях и, конечно, не пропускать шаги в алгоритме. В конечном итоге, существуют способы осуществлять переход между основаниями программными методами. Но здесь проще самостоятельно написать скрипт, чем искать его на просторах всемирной сети. В любом случае, навыки ручного перевода, как и теоретическое представление о том, как это делается, тоже должны быть.

Разберем одну из важнейших тем по информатике - . В школьной программе она раскрывается довольно "скромно", скорее всего, из-за недостатка отведенных на нее часов. Знания по этой теме, особенно на перевод систем счисления , являются обязательным условием для успешной сдачи ЕГЭ и поступления в ВУЗы на соответствующие факультеты. Ниже подробным образом рассмотрены такие понятия, как позиционные и непозиционные системы счисления , даны примеры этих систем счисления, представлены правила перевода целых десятичных чисел, правильных десятичных дробей и смешанных десятичных чисел в любую другую систему счисления, перевода чисел из любой системы счисления в десятичную, перевода из восьмеричной и шестнадцатиричной систем счисления в двоичную систему счисления . На экзаменах в большом количестве встречаются задачи по данной теме. Умение их решать – одно из требований к абитуриентам. Скоро: По каждой теме раздела, помимо подробного теоретического материала, будут представлены практически все возможные варианты задач для самостоятельного изучения. Кроме того, у вас появится возможность совершенно бесплатно скачать с файлообменника уже готовые подробные решения к данным задачам, иллюстрирующие различные способы получения верного ответа.

епозиционные системы счисления.

Непозиционные системы счисления - системы счисления, в которых количественное значение цифры не зависит от ее местоположения в числе.

К непозиционным системам счисления относится, например, римская, где вместо цифр - латинские буквы.

I 1 (один)
V 5 (пять)
X 10 (десять)
L 50 (пятьдесят)
C 100 (сто)
D 500 (пятьсот)
M 1000 (тысяча)

Здесь буква V обозначает 5 независимо от ее местоположения. Однако стоит упомянуть о том, что хотя римская система счисления и является классическим примером непозиционной системы счисления, не является полностью непозиционной, т.к. меньшая цифра, стоящая перед большей, вычитается из нее:

IL 49 (50-1=49)
VI 6 (5+1=6)
XXI 21 (10+10+1=21)
MI 1001 (1000+1=1001)

озиционные системы счисления.

Позиционные системы счисления - системы счисления, в которых количественное значение цифры зависит от ее местоположения в числе.

Например, если говорить о десятичной системе счисления, то в числе 700 цифра 7 означает "семь сотен", но эта же цифра в числе 71 означает "семь десятков", а в числе 7020 - "семь тысяч".

Каждая позиционная система счисления имеет свое основание . В качестве основания выбирается натуральное число, большее или равное двум. Оно равно количеству цифр, используемых в данной системе счисления.

    Например:
  • Двоичная - позиционная система счисления с основанием 2.
  • Четверичная - позиционная система счисления с основанием 4.
  • Пятиричная - позиционная система счисления с основанием 5.
  • Восьмеричная - позиционная система счисления с основанием 8.
  • Шестнадцатиричная - позиционная система счисления с основанием 16.

Чтобы успешно решать задачи по теме "Системы счисления", ученик должен знать наизусть соответствие двоичных, десятичных, восьмеричных и шестнадцатиричных чисел до 16 10:

10 с/с 2 с/с 8 с/с 16 с/с
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

Полезно знать, как получаются числа в этих системах счисления. Можно догадаться, что в восьмеричной, шестнадцатиричной, троичной и других позиционных системах счисления все происходит аналогично привычной нам десятичной системе:

К числу прибавляется единица и получается новое число. Если разряд единиц становится равен основанию системы счисления, мы увеличиваем число десятков на 1 и т.д.

Этот "переход единицы" как раз и пугает большинство учеников. На самом же деле все довольно просто. Переход происходит, если разряд единиц становится равен основанию системы счисления , мы увеличиваем число десятков на 1. Многие, помня старую добрую десятичную систему моментально путаются в разряда и в этом переходе, ведь десятичный и, например, двоичный десятки - разные вещи.

Отсюда у находчивых учеников появляются "свои методики" (на удивление... работающие) при заполнении, например, таблиц истинности, первые столбцы (значения переменных) которых, фактически, заполняются двоичными числами в порядке возрастания.

Для примера разберем получение чисел в восьмеричной системе : К первому числу (0) прибавляем 1, получаем 1. Затем к 1 прибавляем 1, получаем 2 и т.д. до 7. Если мы прибавим к 7 единицу, получим число равное основанию системы счисления, т.е. 8. Тогда нужно увеличить на единицу разряд десятков (получаем восьмеричный десяток - 10). Далее, очевидно, идут числа 11, 12, 13, 14, 15, 16, 17, 20, ..., 27, 30, ..., 77, 100, 101...

равила перевода из одной системы счисления в другую.

1 Перевод целых десятичных чисел в любую другую систему счисления.

Число нужно разделить на новое основание системы счисления . Первый остаток от деления - это и есть первая младшая цифра нового числа. Если частное от деления меньше или равно новому основанию, то его (частное) нужно снова разделить на новое основание. Деление нужно продолжать, пока не получим частное меньше нового основания. Это есть старшая цифра нового числа (нужно помнить, что, например, в шестнадцатиричной системе после 9 идут буквы, т.е. если в остатке получили 11, нужно записать его как B).

Пример ("деление уголком"): Переведем число 173 10 в восьмеричную систему счисления.


Таким образом, 173 10 =255 8

2 Перевод правильных десятичных дробей в любую другую систему счисления.

Число нужно умножить на новое основание системы счисления. Цифра, перешедшая в целую часть - старшая цифра дробной части нового числа. для получения следующей цифры дробную часть получившегося произведения опять нужно умножать на новое основание системы счисления, пока не произойдет переход в целую часть. Умножение продолжаем, пока дробная часть не станет равна нулю, либо пока не дойдем до указанной в задаче точности ("... вычислить с точностью, например, двух знаков после запятой").

Пример: Переведем число 0,65625 10 в восьмеричную систему счисления.