Принцип работы: Солнечные батареи. Как работают солнечные батареи

Дорого отапливать дом газом? Или у вас на даче постоянно отключают свет? А может быть вы устали переплачивать за электроэнергию? Вам поможет установка солнечной батареи, которая обеспечит вас не только электричеством, но и отоплением. В этой статье мы рассмотрим принцип работы солнечной батареи, и ее отличия от солнечного коллектора.

В чем суть работы солнечной батареи?

Солнечная батарея, она же фотобатарея, представляет собой фотопластину, изменяющую под воздействием солнечных лучей проводимость в отдельных своих участках.

Это позволяет преобразовать энергию этих переходов в электрическую, которая либо используется сразу, либо накапливается.
Для того, чтобы понять принцип работы солнечной батареи, необходимо знать несколько моментов:


Итак, как же работает солнечная батарея?

На отрицательно заряженную панель падает солнечный свет. Он вызывает активное образование дополнительных отрицательных зарядов и «дырок». Под воздействием электрического поля, которое присутствует в p-n переходе, происходит разделение положительно и отрицательно заряженных частиц. Первые направляются в верхний слой, а вторые в нижний. Таким образом, появляется разность потенциалов, иными словами, постоянное напряжение (U). Исходя из этого видно, что один фотопреобразователь работает по принципу батарейки. И в случае, когда к нему подсоединяется нагрузка, в цепи возникает ток. Сила тока будет зависеть от таких параметров, как:


Выделяют несколько типов солнечных батарей: поли- и монокристаллические, а также аморфные.
Монокристаллические являются наименее продуктивными, но при этом самыми недорогими. В связи с этим их использование оправдано в качестве дополнительных источник энергии на случай отключения централизованной подачи электроэнергии.
Поликристаллы занимают промежуточные позиции по этим двум параметрам, в связи с чем могут быть использованы в отдаленных районах, лишенных централизованной подачи электроэнергии.

Аморфные солнечные батареи отличаются высокой эффективностью, однако и очень высокой стоимостью. В их основу входит аморфный кремний.

Данные разработки еще не вышли на промышленный уровень и находятся на экспериментальной стадии.

Зачем нужен контроллер в солнечной батарее?

Солнечные батареи, принцип работы которых был описан выше, не смогли бы эффективно заменить системы центральной подачи электроэнергии, если бы не были оснащены контроллерами, способными контролировать степень заряда солнечной батареи.

Контролеры позволяют перераспределять энергию, полученную от солнечных батарей, направляя ее при необходимости напрямую к источнику потребления, либо сохраняя ее в аккумуляторе.
Выделяют несколько типов контроллеров солнечных батарей, отличающихся между собой степенью увеличения общей эффективности системы солнечных батарей.

Для того, чтобы приобщиться к использованию альтернативных источников энергии, вовсе не обязательно приобретать дорогостоящую солнечную батарею. Есть более доступные примеры использования солнечной энергии для получения электрической. Речь идет о популярных в настоящее время садовых фонарях на солнечных батареях.

Такие фонарики позволяют освещать приусадебный участок в темное время суток, не затрачивая на это дополнительную электроэнергию.

Принцип работы таких фонарей заключается в том, что посредством фитопластины, вмонтированной в верхнюю часть фонарика, происходит улавливание и преобразование солнечной энергии, которая аккумулируется в небольшой батарее, расположенной в основании фонарика. Расход накопившейся энергии происходит в темное время суток.

В профессиональных кругах панели, преобразующие солнечный свет в электроэнергию, называют фотоэлектрическими преобразователями, которые в разговорной речи или при написании понятных для широких масс статей принято называть солнечными батареями. Принцип работы этих устройств, первые рабочие экземпляры которых появились достаточно давно, на самом деле достаточно простой для понимания человеком, имеющим только знания со школьной скамьи.

Не секрет, что p-n переход может преобразовывать свет в электроэнергию. В школьных опытах нередко проводят эксперимент с транзистором со спиленной верхней крышкой, позволяющей свету падать на p-n переход. Подключив к нему вольтметр, можно зафиксировать, как при облучении светом такой транзистор выделяет мизерный электрический ток. А если увеличить площадь p-n перехода, что в таком случае произойдет? В ходе научных экспериментов прошлых лет, специалисты изготовили p-n переход с пластинами большой площади, вызвав тем самым появление на свет фотоэлектрических преобразователей, называемых солнечными батареями.

Принцип действия современных солнечных батарей сохранился, несмотря на многолетнюю историю их существования. Усовершенствованию подверглась лишь конструкция и материалы, используемые в производстве, благодаря которым производители постепенно увеличивают такой важный параметр, как коэффициент фотоэлектрического преобразования или КПД устройства. Стоит также сказать, что величина выходного тока и напряжения солнечной батареи напрямую зависит от уровня внешней освещенности, который воздействует на неё.

На картинке выше можно видеть, что верхний слой p-n перехода, который обладает избытком электронов, соединен с металлическими пластинами, выполняющими роль положительного электрода, пропускающими свет и придающими элементу дополнительную жесткость. Нижний слой в конструкции солнечной батареи имеет недостаток электронов и к нему приклеена сплошная металлическая пластина, выполняющая функцию отрицательного электрода.

Технология, по которой изготовлена солнечная батарея, влияет на её КПД

Считается, что в идеале солнечная батарея имеет близкий к 20 % КПД. Однако на практике и по данным специалистов сайта www.сайт он примерно равен всего 10 %, при том, что для каких солнечных батарей больше, для каких то меньше. В основном это зависит от технологии, по которой выполнен p-n переход. Самыми ходовыми и имеющими наибольший процент КПД продолжают являться солнечные батареи, изготовленные на основе монокристалла или поликристалла кремния. Причем вторые из-за относительной дешевизны становятся все распространеннее. К какому типу конструкции солнечная батарея относится можно определить невооруженным глазом. Монокристаллические светопреобразователи имеют исключительно чёрно-серый цвет, а модели на основе поликристалла кремния выделяет синяя поверхность. Поликристаллические солнечные батареи, изготавливаемые методом литья, оказались более дешевыми в производстве. Однако и у поли- и монокристаллических пластин есть один недостаток — конструкции солнечных батарей на их основе не обладают гибкостью, которая в некоторых случаях не помешает.

Ситуация меняется с появлением в 1975 году солнечной батареи на основе аморфного кремния, активный элемент которых имеет толщину от 0,5 до 1 мкм, обеспечивая им гибкость. Толщина обычных кремниевых элементов достигает 300 мкм. Однако, несмотря на светопоглощаемость аморфного кремния, которая примерно в 20 раз выше, чем у обычного, эффективность солнечных батарей такого типа, а именно КПД не превышает 12 %. Для моно- и поликристаллических вариантов при всем этом он может достигать 17 % и 15 % соответственно.

Материал, из которого изготовлены пластины, влияет на характеристики солнечных батарей

Чистый кремний в производстве пластин для солнечных батарей практически не используется. Чаще всего в качестве примесей для изготовления пластины, вырабатывающей положительный заряд, используется бор, а для отрицательно заряженных пластин мышьяк. Кроме них при производстве солнечных батарей все чаще используются такие компоненты, как арсенид, галлий, медь, кадмий, теллурид, селен и другие. Благодаря ним солнечные батареи становятся менее чувствительными к перепадам окружающих температур.

Большинство солнечных батарей могут накапливать энергию, представляя собой системы

В современном мире отдельно от других устройств солнечные батареи используются все реже, чаще представляя собой так называемые системы. Учитывая, что фотоэлектрические элементы вырабатывают электрический ток только при прямом воздействии солнечных лучей или света, ночью или в пасмурный день они становятся практически бесполезными. С системами на солнечных батареях всё иначе. Они оборудованы аккумулятором, способным накапливать электрический ток днем, когда солнечная батарея его вырабатывает, а ночью, накопленный заряд может отдавать потребителям.

Для увеличения мощности, выходного напряжения и тока на основе солнечных батарей создаются панели, где отдельные элементы соединяются последовательно или параллельно.

В наше время практически каждый может собрать и получить в свое распоряжение свой независимый источник электроэнергии на солнечных батареях (в научной литературе они называются фотоэлектрическими панелями ).

Дорогостоящее оборудование со временем компенсируется возможностью получать бесплатную электроэнергию. Важно, что солнечные батареи - это экологически чистый источник энергии. За последние годы цены на фотоэлектрические панели упали в десятки раз и они продолжают снижаться, что говорит о больших перспективах при их использовании.

В классическом виде такой источник электроэнергии будет состоять из следующих частей: непосредственно, солнечной батареи (генератора постоянного тока), аккумулятора с устройством контроля заряда и инвертора, который преобразует постоянный ток в переменный.

Солнечные батареи состоят из набора солнечных элементов (фотоэлектрических преобразователей) , которые непосредственно преобразуют солнечную энергию в электрическую.

Большинство солнечных элементов производят из кремния, который имеет довольно высокую стоимость. Этот факт определят высокую стоимость электрической энергии, которая получается при использовании солнечных батарей.

Распространены два вида фотоэлектрических преобразователей: сделанные из монокристаллического и поликристаллического кремния. Они отличаются технологией производства. Первые имеют кпд до 17,5%, а вторые - 15%.

Наиболее важным техническим параметром солнечной батареи, которая оказывает основное влияние на экономичность всей установки, является ее полезная мощность . Она определяется напряжением и выходным током. Эти параметры зависят от интенсивности солнечного света, попадающего на батарею.

Э.д.с. (электродвижущая сила) отдельных солнечных элементов не зависит от их площади и снижается при нагревании батареи солнцем, примерно на 0,4% на 1 гр. С. Выходной ток зависит от интенсивности солнечного излучения и размера солнечных элементов. Чем ярче солнечный свет, тем больший ток генерируется солнечными элементами. Зарядный ток и отдаваемая мощность в пасмурную погоду резко снижается. Это происходит за счет уменьшения отдаваемой батареей тока.

Если освещенная солнцем батарея замкнута на какую либо нагрузку с сопротивлением Rн, то в цепи появляется электрический ток I, величина которого определяется качеством фотоэлектрического преобразователя, интенсивностью освещения и сопротивлением нагрузки. Мощность Pн, которая выделяется в нагрузке определяется произведением Pн = IнUн, где Uн напряжение на зажимах батареи.

Наибольшая мощность выделяется в нагрузке при некотором оптимальном ее сопротивлении Rопт, которое соответствует наибольшему коэффициенту полезного действия (кпд) преобразования световой энергии в электрическую. Для каждого преобразователя имеется свое значение Rопт, которая зависит от качества, размера рабочей поверхности и степени освещенности.

Солнечная батарея состоит из отдельных солнечных элементов, которые соединяются последовательно и параллельно для того, чтобы увеличить выходные параметры (ток, напряжение и мощность). При последовательном соединении элементов увеличивается выходное напряжение, при параллельном - выходной ток. Для того, чтобы увеличить и ток и напряжение комбинируют два этих способа соединения. Кроме того, при таком способе соединения выход из строя одного из солнечных элементов не приводит в выходу из строя всей цепочки, т.е. повышает надежность работы всей батареи.

Таким образом, солнечная батарея состоит из параллельно-последовательно соединенных солнечных элементов . Величина максимально возможного тока отдаваемого батареей прямо пропорциональна числу параллельно включенных, а э.д.с. - последовательно включенных солнечных элементов. Так комбинируя типы соединения собирают батарею с требуемыми параметрами.

Солнечные элементы батареи шунтируются диодами. Обычно их 4 - по одному, на каждую ¼ часть батареи. Диоды предохраняют от выхода из строя части батареи, которые по какой-то причине оказались затемненными, т. е. если в какой-то момент времени свет на них не попадает. Батарея при этом временно генерирует на 25% меньшую выходную мощность, чем при нормальном освещении солнцем всей поверхности батареи.

При отсутствии диодов эти солнечные элементы будут перегреваться и выходить из строя, так как они на время затемнения превращаются в потребителей тока (аккумуляторы разряжаются через солнечные элементы), а при использовании диодов, они шунтируются и ток через них не идет. Диоды должны быть низкоомными, чтобы уменьшить на них падение напряжения. Для этих целей в последнее время используют диоды Шоттки.

Получаемая электрическая энергия накапливается в аккумуляторах, а затем отдается в нагрузку. - химические источники тока. Заряд аккумулятора происходит тогда, когда к нему приложен потенциал, который больше напряжения аккумулятора.

Число последовательно и параллельно соединенных солнечных элементов должно быть таким, чтобы рабочее напряжение подводимое к аккумуляторам с учетом падения напряжения в зарядной цепи немного превышало напряжение аккумуляторов, а нагрузочный ток батареи обеспечивал требуемую величину зарядного тока.

Например, для зарядки свинцовой аккумуляторной батареи 12 В необходимо иметь солнечную батарею состоящую из 36 элементов.

При слабом солнечном свете заряд аккумуляторной батареи уменьшается и батарея отдает электрическую энергию электроприемнику, т.е. аккумуляторные батареи постоянно работают в режиме разряда и подзаряда.

Это процесс контролируется . При циклическом заряде требуется постоянное напряжение или постоянный ток заряда.

При хорошей освещенности аккумуляторная батарея быстро заряжается до 90% своей номинальной емкости, а затем с меньшей скоростью заряда до полной емкости. Переключение на меньшую скорость заряда производится контроллером зарядного устройства.

Наиболее эффективно использование специальных аккумуляторов - (в батарее в качестве электролита применяется серная кислота) и свинцовыех батарей, которые сделанны по AGM-технологии. Этим батареям не нужны специальные условия для установки и не требуется обслуживание. Паспортный срок службы таких батарей - 10 - 12 лет при глубине разряда не более 20%. Аккумуляторные батареи никогда не должны разряжаться ниже этого значения, иначе их срок службы резко сокращается!

Аккумулятор подсоединяется к солнечной батарее через контроллер, который контролирует ее заряд. При заряде батареи на полную мощность к солнечной батареи подключается резистор, который поглощает избыточную мощность.

Для того чтобы преобразовать постоянное напряжение от аккумуляторной батареи в переменное напряжение, которой можно использовать для питания большинства электроприемников совместно с солнечной батарей можно использовать специальные устройства - .

Без использования инвертора от солнечной батареи можно питать электроприемники, работающие на постоянном напряжении, в т.ч. различную портативную технику, энергосберегающие источники света, например, те же светодиодные лампы.

Когда-то, с помощью зеркал, нагревали воду, а сейчас создают целые электростанции на солнечных батареях. Разберем принцип работы солнечной батареи, и почему они так эффективны для получения энергии.

Фотоэлектрические преобразователи солнечной энергии (ФЭП)– это полное название солнечных батарей. Принципы их работы известны более 30 лет, но активно внедряться в быту они начали всего несколько лет назад. Для того чтобы правильно подобрать панели для системы альтернативного обеспечения энергией, необходимо понять принцип их работы.

Принцип работы солнечной батареи

Панель преобразователя состоит из двух тонких пластин из чистого кремния, сложенных вместе. На одну пластину наносят бор, а на вторую фосфор. В слоях, покрытых фосфором, возникают свободные электроны, а в покрытых бором – отсутствующие электроны. Под влиянием солнечного света электроны начинают движение частиц, и между ними возникает электрический ток. Чтобы снять ток с пластин их пропаивают тонкими полосками специально обработанной меди. Одной кремниевой пластины хватит для зарядки маленького фонарика. Соответственно, чем больше площадь панели, тем больше энергии она вырабатывает.

Спаянные между собой пластины,пропускающие УФ лучи, ламинируют пленкой и крепят на стекло. Скрепленные слои заключают в алюминиевую раму.

КПД солнечных батарей

Коэффициент полезного действия панелей преобразователя зависит от нескольких факторов и для традиционных солнечных батарей не превышает 25%, хотя сейчас, используя следящую систему, можно достигнуть показателя и в 40-50 %. Эта система устроена так, чтобы батарея поворачивалась в сторону солнца. Площадь батареи напрямую влияет на ее мощность – первые солнечные батареи, с которыми мы познакомились, были в калькуляторах. Для обеспечения нагрева воды потребуется минимум шесть панелей установленных на крыше.

Также КПД зависит от материала модулей. Пластины изготавливают из монокристаллического, поликристаллического и аморфного кремния и пленок. Самые распространенные и популярные на сегодня (благодаря доступной стоимости) тонкопленочные панели. Они сделаны из тех же материалов, но немного легче, правда, проигрывают по производительности. Максимальный КПД равен 25 %.

Фотоэлектрические системы

Для обеспечения жилья энергией солнца одних панелей не достаточно, для этого понадобится фотоэлектрическая система (ФЭС). Такие системы бывают трех типов:

  • автономные ФЭС – для отдельно стоящих частных домов, в нежилой местности
  • ФЭС соединенные с электросетью – часть приборов запитана от ФЭС, а часть – от централизованной электросети
  • резервные ФЭС – используется только в случае отключения централизованного энергоснабжения.

ФЭС любого типа обязательно состоит из кабелей, контроллера, инвертора и аккумулятора.

Будущее солнечных батарей

По данным исследований экологов и геологов, запасов нефти и газа осталось еще лет на 100. Источники природной энергии (воды, ветра и солнца) неисчерпаемы.

В передовых европейских странах обеспечение новостроек альтернативной энергией – прямая обязанность застройщиков уже с 2007 года. В нашей стране эти проекты продвигаются благодаря энтузиастам от экологии, собирающим вручную ФЭС из подручных материалов. Но таких единицы, веди самому сделать их довольно сложно.

Ряд украинских производителей («Аванте», «Атмосфера», «Ітнелкон України», «СІНТЕК», «Техно-АС») уже выпускают такие панели и обустраивают ФЭС по всей стране. Стоимость продукции, к сожалению, в том же диапазоне, что и зарубежные бренды (Buderus, Wolf, Rehau, Vaillant, Viessmann, Chromagen, Ferroli, Rucelf, Solver).

Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.

Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится. Было бы неплохо обзавестись собственным дополнительным источником электроэнергии. Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?

Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.

В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.


По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается

Вначале следует разобраться в существующих разновидностях оборудования для гелиоэнергетики. Солнечные батареи и солнечные коллекторы – это два принципиально разных устройства. Оба они преобразуют энергию лучей солнца.

Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя.

Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

Солнечной панелью генерируется постоянный электроток. Чтобы преобразовать его в переменный (используемый в быту), в схеме должен присутствовать инвертор

Солнечные батареи предназначены исключительно для генерации электрического тока. Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.

Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.

Внутреннее устройство гелиобатареи

Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.

Гелиобатарея состоит из множества фотоэлементов (фотоэлектрических преобразователей ФЭП), преобразующих энергию фотонов с солнца в электроэнергию

Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.

Виды кристаллов фотоэлементов

Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.

Кремниевые полупроводники используются при изготовлении солнечных батарей из-за своей дешевизны, особо высоким КПД они похвастаться не могут

Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.

При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.

Кремниевые пластины фотоэлементов различаются по технологии изготовления на:

  1. Монокристаллические.
  2. Поликристаллические.

Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.

У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.

Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.

Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.

Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.

В общий модуль отдельные фотоэлементы собираются на алюминиевой раме, а для защиты их сверху закрывают прочным стеклом, которое нисколько не препятствует солнечным лучам

Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.

Принцип работы солнечной панели

При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.

В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.

Разность потенциалов (напряжение) между контактами фотоэлемента появляется из-за изменения числа «дырок» и электронов с разных сторон p-n-перехода в результате облучения n-слоя солнечными лучами

Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.

Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.

То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.

Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.

Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.

Солнечная батарея может работать как летом, так и зимой (ей нужен свет, а не тепло) – чем меньше облачность и ярче светит солнце, тем больше гелиопанель сгенерирует электрического тока

При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–55 0 С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.

В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.

При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.

Эффективность батарей гелиосистемы

Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.

Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.

Эффективность солнечных панелей зависит от:

  • температуры воздуха и самой батареи;
  • правильности подбора сопротивления нагрузки;
  • угла падения солнечных лучей;
  • наличия/отсутствия антибликового покрытия;
  • мощности светового потока.

Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.

Гелиопанели выпускаются с расчетом на выходное напряжение, кратное 12 В – если на аккумулятор надо подать 24 В, то две панели к нему придется подсоединить параллельно

Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться контроллером управления, который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.

Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.

Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.

Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.

И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.

Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.

Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.

Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.

Схема электропитания дома от солнца

Система солнечного электроснабжения включает:

  1. Гелиопанели.
  2. Контроллер.
  3. Аккумуляторы.

Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.

Аккумуляторные батареи для гелиопанелей следует подбирать одинаковые по возрасту и емкости, иначе зарядка/разрядка будут происходить неравномерно, что приведет к резкому снижению срока их службы

Инвертор нужен для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый. Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.

Выводы и полезное видео по теме

Принципы работы и схемы подключения солнечных батарей не слишком сложны для понимания. А с собранными нами ниже видеоматериалами разобраться во всех тонкостях функционирования и установки гелиопанелей будет еще проще.

Доступно и понятно, как работает фотоэлектрическая солнечная батарея, во всех подробностях:

Как устроены солнечные батареи:

Сборка солнечной панели из фотоэлементов своими руками:

Каждый элемент в системе солнечного электроснабжения коттеджа должен быть подобран грамотно. Неизбежные потери мощности происходят на аккумуляторах, трансформаторах и контроллере. И их обязательно надо сократить до минимума, иначе и так достаточно низкая эффективность гелиопанелей окажется сведена вообще к нулю.