Светодиоды: подробно простым языком. Светодиод (сид, led, light emitting diode)

Олег Лосев

Еще в 1907 году было впервые отмечено слабое свечение, испускаемое карбидокремниевыми кристаллами вследствие неизвестных тогда электронных превращений. В 1923 году наш соотечественник, сотрудник Нижегородской радио-лаборатории Олег Лосев отмечал это явление во время проводимых им радиотехнических исследований с полупроводниковыми детекторами, однако интенсивность наблюдаемых излучений была столь незначительной, что Российская научная общественность тогда всерьез не интересовалась этим феноменом.

Через пять лет Лосев специально занялся исследованиями этого эффекта и продолжал их почти до конца жизни (О.В. Лосев скончался в блокадном Ленинграде в январе 1942 года, не дожив до 39 лет). Открытие «Losev Licht» , как назвали эффект в Германии, где Лосев публиковался в научных журналах, стало мировой сенсацией. И после изобретения транзистора (в 1948 году) и создания теории p-n-перехода (основы всех полупроводников) стала понятна природа свечения.

В 1962 году американец Ник Холоньяк продемонстрировал работу первого светодиода, а вскоре после этого сообщил о начале полупромышленного выпуска светодиодов.

Светодиод (англ. light emission diode – LED) является полупроводниковым прибором, его активная часть, называемая «кристалл» или «чип», как и у обычных диодов состоит из двух типов полупроводника – с электронной (n-типа) и с дырочной (p-типа) проводимостью. В отличие же от обычного диода в светодиоде на границе полупроводников разного типа существует определенный энергетический барьер, препятствующий рекомбинации электронно-дырочных пар. Электрическое поле, приложенное к кристаллу, позволяет преодолеть этот барьер и происходит рекомбинация (аннигиляция) пары с излучением кванта света. Длина волны излучаемого света определяется величиной энергетического барьера, который, в свою очередь, зависит от материала и структуры полупроводника, а также наличия примесей.

Значит, прежде всего, нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую - донорскими.

Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу.

Реально, чтобы соблюсти оба условия, одного p-n-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

Как устроен светодиод

Основные современные материалы, используемые в кристаллах светодиодов:

  • InGaN — синие, зеленые и ультрафиолетовые светодиоды высокой яркости;
  • AlGaInP — желтые, оранжевые и красные светодиоды высокой яркости;
  • AlGaAs — красные и инфракрасные светодиоды;
  • GaP — желтые и зеленые светодиоды.


Кроме светодиодов лампового типа (3, 5, 10 мм, их форма действительно напоминает миниатюрную лампочку с двумя выводами), в последнее время все большее распространение получают SMD — светодиоды. Они совершенно иной конструкции, отвечающей требованиям технологии автоматического монтажа на поверхность печатной платы (surface mounted devices – SMD ).

А сверхяркие светодиоды такого типа называются эммитеррами (emitter, англ. «излучатель»).

SMD светодиоды имеют более компактные размеры, допускают автоматическую расстановку и пайку на поверхность платы без ручной сборки. Некоторые производители светодиодов выпускают специальные SMD-диоды, содержащие в одном корпусе три кристалла, излучающие свет трех основных цветов – красный, синий и зеленый. Это позволяет получить при смешении их излучения всю цветовую гамму, включая белый цвет, при ультракомпактных размерах.

Яркость светодиода характеризуется световым потоком (Люмены) и осевой силой света (Кандела), а также диаграммой направленности. Существующие светодиоды разных конструкций излучающих в телесном угле от 4 до 140 градусов.

Цвет , как обычно, определяется координатами цветности, цветовой температурой белого света (Кельвин), а также длиной волны излучения (нанометры).

Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности (характеристика «Люмен/Ватт»).

Также интересной характеристикой оказывается цена одного люмена ($/Люмен).

Итак, любой светодиод состоит из одного или нескольких кристаллов, размещенных в корпусе с контактными выводами и оптической системы (линзы), формирующей световой поток. Длина волны излучения кристалла (цвет) зависит от материала полупроводника и от легирующих примесей. Биновка (wavelength bin) кристаллов по длине волны излучения происходит при их изготовлении. В партии поставки на современном производстве отбираются близкие по спектру излучения кристаллы.

Широкий диапазон оптических характеристик, миниатюрные размеры и гибкие возможности по дискретному управлению обеспечили применение светодиодов для создания самых различных световых приборов и изделий. Светодиод излучает в узкой части спектра, на определенной длине волны его цвет чист, что особенно ценят дизайнеры.

Срок службы светодиодов

Основная характеристика надежности светодиодов – срок их службы. В процессе эксплуатации возможны две ситуации: световой поток излучателя либо частично уменьшился, либо вовсе прекратился. Срок службы отражает эти факты: различают полезный срок службы (пока световой поток не упадет ниже определенного предела) и полный (пока прибор не выйдет из строя).

Срок службы напрямую зависит от типа светодиода, подаваемого на него тока, охлаждения кристалла (chip) светодиода, состава и качества кристалла, компоновки и сборки в целом.

Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче чем у маломощных сигнальных. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

Очевидно, например, что в светодиодах мощностью от 1 Вт (рабочий ток 0,350 А) и более мощных, тепловыделение гораздо обильнее, чем в светодиодах типа «5 мм», рассчитанных на ток 0,02 А. По светоотдаче 1 светодиод мощностью 1 Вт заменяет около 50 светодиодов типа «5 мм», но и греется сильнее. Поэтому светодиодные сборки с мощными светодиодами требуют пассивного охлаждения (монтаж на MCPCB плату (печатная плата на металлической основе) и радиатор).

Средний срок службы


5 мм -LED и SMD-LED:

Белый до 50000 ч. с падением светового потока до 35% в течении первых 15000 ч.
синий, зеленый до 70000 ч. с падением светового потока до 15% в течении первых 25000 ч.
красный, желтый до 90000 ч. с падением светового потока незначительно.

HI-POWER LED от 1 Вт и выше:

Белый до 80000 ч. с падением светового потока до 15% в течении первых 10000 ч.
синий, зеленый до 80000 ч.
красный, желтый до 80000 ч.


Почему же у белых светодиодов наименьший срок службы?

К сожалению, структур, излучающих белый свет, никто еще не придумал. Основой диода белого цвета является структура InGaN, излучающая на длине волны 470 нм (синий цвет) и нанесенный сверху на нее люминофор (специальный состав), излучающий в широком диапазоне видимого спектра и имеющий максимум в его желтый части. Человеческий глаз комбинацию такого рода воспринимает как белый цвет. Люминофор ухудшает тепловые характеристики светодиода, поэтому срок службы сокращается. Сейчас мировые производители изобретают новые и новые варианты эффективного нанесения люминофора.

Большинство сверхярких светодиодов служат в районе 50000 — 80000 часов. Много это или мало?

50000 часов - это:

24 часа в день 5.7 лет
18 часов в день 7.4 лет
12 часов в день 11.4 лет
8 часов в день 17.1 лет

Светодиоды греются

Многие считают, что светодиоды практически не греются. Так почему светодиодным приборам нужен теплоотвод и что будет, если теплоотвода нет?

Светодиоды продуцируют тепло в полупроводниковом переходе. И чем мощнее LED, тем больше тепла. Конечно, индикаторные светодиоды, например, датчики автосигнализаций сильно не греются. Но со сверхяркими LED они имеют мало общего. Если мощные светодиоды объединены в некую сборку, да еще и установлены в герметичный корпус, то нагрев становится значительным.

И если не происходит отвод тепла, полупроводниковый переход перегревается, отчего изменяются характеристики кристалла, и через некоторое время светодиод может выйти из строя. Так что очень важно строго контролировать количество тепла и обеспечивать эффективный теплоотвод.

Как реагирует светодиод на нагрев

Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.

Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у красных и желтых светодиодов, и меньше у зеленых, синих и белых.

Источник: сайт НПО РоСАТ

Общая оценка материала: 5

АНАЛОГИЧНЫЕ МАТЕРИАЛЫ (ПО МЕТКАМ):

Отец видеозаписи Александр Понятов и AMPEX

Отправим материал вам на e-mail

Основные характеристики светодиодов SMD 5730

Современные изделия с геометрическими параметрами 5,7×3 мм. Благодаря своим стабильным характеристикам светодиоды SMD 5730 относятся к категории сверхъярких изделий. Для их изготовления используются новые материалы, благодаря чему они имеют повышенную мощность и высокоэффективный световой поток. SMD 5730 допускают эксплуатацию работать в условиях повышенной влажности. Они не боятся вибрации и температурных колебаний. Отличаются продолжительным сроком службы. Имеют угол рассеивания 120 градусов. После 3000 часов работы степень не превышает 1%.

Производители предлагают приборы двух видов: с мощностью 0,5 и 1 Вт. Первые маркируются SMD 5730-0,5, вторые – SMD 5730-1. Прибор может функционировать на импульсном токе. Для SMD 5730-0,5 номинальный ток равен 0,15 А, а при переходе на импульсный режим работы может достигать 0,18 А. Способен сформировать световой поток до 45 Лм.

Для SMD 5730-1 номинальный ток равен 0,35А, импульсный может достигать 0,8А при эффективности светоотдачи 110 Лм. Благодаря использованию в процессе производства термостойкого полимер, корпус прибора не боится воздействия достаточно высоких температур (до 250°С).

Cree: актуальные характеристики

Продукция американского производителя представлена в широком ассортименте. Серия Xlamp включает однокристальные и многокристальные изделия. Для первых характерно распределение излучения по краям прибора. Такое инновационное решение позволило наладить выпуск светильников с большим углом свечения при минимальном количестве кристаллов.

Серия XQ-E High Intensity является новейшей разработкой компании. Изделия обладают углом свечения 100-145 градусов. При сравнительно небольших геометрических параметрах 1,6 на 1,6 мм такие светодиоды имеют мощность 3 В при световом потоке 330 Лм. Характеристики светодиодов Cree на базе одного кристалла позволяют обеспечить качественную цветопередачу CRE 70-90.

Многокристальные LED-приборы имеют новейший тип питания 6-72 В. Их принято делить три группы в зависимости от мощности. Изделия до 4 Вт имеют 6 кристаллов и выпускаются в корпусах типа MX и ML. Характеристики светодиода XHP35 соответствуют мощность 13 Вт. Имеют угол рассеивания 120 градусов. Могут быть теплого или холодного белого цвета.

Проверка светодиода с помощью мультиметра

Иногда возникает необходимость в проверке работоспособности светодиода. Сделать это можно с помощью мультиметра. Тестирование выполняется в следующей последовательности:

Фото Описание работ
Готовим необходимое оборудование. Подойдет обычная китайская модель мультиметра.
Выставляем режим сопротивления, соответствующие 200 Ом.
Прикасаемся контактами к проверяемому элементу. Если светодиод является рабочим, то он начнет светиться.
Внимание! Если контакты перепутать местами, характерного свечения наблюдаться не будет.

Маркировка светодиодов по цвету

Чтобы приобрести светодиод нужного цвета, предлагаем ознакомиться с условным обозначением цветности, входящей в состав маркировки. У CREE оно располагается после обозначения серии светодиодов, и может быть:

  • WHT , если свечение белого цвета;
  • HEW , если высокоэффективного (high efficiency) белого;
  • BWT для белого второго поколения;
  • BLU , если свечение синего света;
  • GRN для зеленого;
  • ROY для королевского (яркого) синего;
  • RED у красного.

Другие производители часто используют другое условное обозначение. Так KING BRIGHT позволяет подобрать модель с излучением не только определенного цвета, но и оттенка. Присутствующее в маркировке обозначение будет соответствовать:

  • Красному (I, SR);
  • Оранжевому (N, SE);
  • Желтому (Y);
  • Синему (PB);
  • Зеленому (G, SG);
  • Белому (PW, MW).
Совет! Ознакомиться с условными обозначениями конкретного производителя, чтобы сделать правильный выбор.

Расшифровка кода маркировки светодиодной ленты

Для изготовления светодиодной ленты используется диэлектрик, имеющий толщину 0,2 мм. На него наносятся токопроводящие дорожки, имеющие контактные площадки под чипы, предназначенные для монтажа SMD-компонентов. Лента включает отдельные модули, имеющие длину 2,5-10 см и рассчитанные на напряжение 12 либо 24 вольта. В состав модуля может входить 3-22 светодиода и несколько резисторов. Длина готовых изделий в среднем составляет 5 метров при ширине 8-40 см.

На бобину либо упаковку наносятся маркировку, в которой содержится вся актуальная информация о светодиодной ленте. Расшифровка маркировки можно увидеть на следующем рисунке:

Статья

СВЕТОДИОД Графическое обозначение

Свободный перевод статьи "LED" из Википедии.

Светоизлучающий диод (СИД) является полупроводниковым источником света. Светодиоды используются в качестве индикаторов во многих устройствах и все чаще используются для освещения. В качестве электронного компонента, пригодного для практического использования, был разработан в 1962 году. Первые образцы излучали красный свет низкой интенсивности, но современные версии излучают во всей видимой, ультрафиолетовой и инфракрасной областях спектра с очень высокой яркостью.

Светодиод разработан на базе полупроводникового диода. Когда на диод подается рабочее напряжение, электроны с дырками меняются местами, высвобождая энергию в виде фотонов. Этот эффект называется электролюминесценцией и цвет света (соответствует энергии фотона) определяется энергией запрещенной зоны полупроводника. Светодиодные кристаллы, как правило, небольшие по площади (менее 1 мм2), диаграмма распределения света и индекс отражения формируется дополнительной оптической системой, входящей в конструкцию светодиода. Светодиоды имеют много преимуществ по сравнению с лампами накаливания и другими источниками света, включая низкое потребление энергии, большой срок службы, повышенную надежность, меньший размер, быстрое включение и большую долговечность. Тем не менее, они достаточно дороги и имеют повышенные требования к питанию и рассеиванию тепла по сравнению с традиционными источниками света. Текущие образцы светодиодной продукции для общего освещения являются более дорогостоящими, чем флуоресцентные источники сопоставимых параметров.

Светодиоды все чаще используются в автомобильной электронике в качестве указателей поворотов, габаритных огней и стоп-сигналов. Светодиодные светофоры уже являются обыденным способом регулировки движения. Компактные размеры светодиодов позволяют разрабатывать новые типы дисплеев и экранов, а их высокая скорость переключения полезна в передовых коммуникационных технологиях.

Изобретение и первые образцы

Электролюминесценция кристалла карбида кремния (зеленого цвета) была обнаружена в 1907 году английским ученым Раундом в лаборатории Маркони. Этому явлению тогда не придали значения. В 1923 году советский ученый О.В. Лосев , работая в НРЛ (Нижегородской радиолаборатории), проводил глубокие исследования такого явления, как излучательная рекомбинация, а так же наблюдал излучение света, исходящее из кристаллов карбида кремния SiC (карборунда). Длительные исследования позволили сформулировать основной принцип электролюминесценции полупроводниковых структур - инжекционная рекомбинация. В 1927 Лосев запатентовал принцип полупроводникового свечения. Изобретение было опубликовано в российских, немецких и английских научных журналах, но практического применения не получило. В 1955 году Р.Браунштейн из Radio Corporation of America заявил о наличии инфракрасного излучения арсенида галлия (GaAs) в комбинации с другими полупроводниковами сплавами. Браунштейн наблюдал инфракрасное излучение, генерируемое простой диодной структурой на основе антимонида галлия (GaSb), арсенида галлия, фосфида индия (InP) и кремниево - германиевого сплава (SiGe) при комнатной температуре.

В 1961 году разработчики Р.Бард и Г.Питман, работающие в компании Texas Instruments, обнаружили что сплав арсенида галлия производит инфракрасное излучение при пропускании через него электрического тока и получили патент на ИК светодиод.

Первый светодиод, излучающий свет видимого спектра, был изобретен в 1962 году Н.Холоньяком, работающим в компании General Electric. С тех пор многие называют его "отцом" современных светодиодов. Чтобы понять, что это не так, достаточно изучить исторические справки о исследованиях О.В.Лосева и других именитых ученых 20-50 г.г. двадцатого века. Однако история несправедлива, и мы имеем то, что имеем, и в 60-х годах Россия потеряла приоритет в изобретении полупроводниковых источников света.

В 1972 году бывший студент Холоньяка Г.Грэфорд изобрел желтый светодиод и увеличил яркость красных и красно-оранжевых светодиодов в десять раз. В 1976 году Т.Пирсэлл создал первый сверхяркий светодиод для световолоконных телекоммуникаций, изобретя новые полупроводниковые сплавы, специально приспособленные для передачи света по оптоволокну.

Вплоть до 1968 года видимые и инфракрасные светодиоды имели огромную себестоимость, около 200 USD за штуку, что создавало трудности для практического применения. Но в 1968 году фирма Monsanto впервые организовала массовое производство светодиодов видимого света на базе арсенида-фосфида галлия (GaAsP), пригодных для применения в качестве индикаторов. Компания Hewlett Paccard, представившая светодиоды в 1968 году, использовала светодиоды Monsanto для производства цифровых дисплеев и калькуляторов.

Практическое использование первых светодиодов

Первое коммерческое использование светодиодов связано с их применением в качестве замены индикаторов, ранее основанных на использовании ламп накаливания. Из светодиодов изготавливали семисегментные индикаторы, встраивали в дорогие лабораторные приборы, использовали в тестовом оборудовании, но позже светодиоды стали применять при изготовлении телевизоров, радиоприемников, телефонов, калькуляторов и даже часов. Светодиоды красного свечения, применяемые для этих целей имели яркость, достаточную для использования лишь в качестве индикаторов. Светодиоды других цветов имели еще меньшую яркость. Все типы led выпускались в типоразмерах 3 или 5 мм.

Дальнейшее развитие светодиодных технологий

Первые сверхяркие светодиоды синего свечения на базе InGaN были продемонстрированы Ш. Накамурой из японской компании Nichia. Это положило начало новой эре в применении светодиодов - использование в качестве источника света для освещения. Комбинация синего света и желтого фосфора позволила получить белый свет.

Благодаря этому открытию светодиодные технологии начали бурно развиваться. В феврале 2008 года сотрудники Bilkent university в Турции заявили о получении 300 люмен видимого света на один ватт световой мощности. Это был белый цвет теплого оттенка, полученный с использованием нанокристаллов.

В январе 2009 года исследователи из Кембриджа под предводительством С. Хэмфри доложили о выращивании нитрида галлия на подложке из кремния. Этот способ позволяет сократить производственные затраты при производстве сверхярких светодиодов на 90% по сравнению с выращиванием структур на сапфировой подложке.

Физические аспекты

Принцип работы светодиода

Как и обычный диод, светодиод содержит кристаллы полупроводников, создающих p-n переход. Как и в обычном диоде, ток легко проходит в прямом направлении от анода к катоду и не проходит в обратном. Когда электроны встречаются с дырками, они теряют энергию, которая преобразуется в фотоны. Длина волны, на которой излучаются фотоны, зависит от материала, образующего p-n переход.

Изобретние светодиодов начиналось с изготовления структур на базе арсенида галлия, излучающих красный и инфракрасный свет. Нынешнее развитие полупроводниковых технологий позволяет получить видимый свет самых разных цветов.

Электроны и дырки

Полупроводники занимают промежуточное положение между проводниками и изоляторами (диэлектриками). При низкой температуре большинство внешних электронов в полупроводнике "сидит" в атомах на своих местах. Но связаны они с атомами слабее, чем в изоляторе. Причем при росте температуры сопротивление полупроводников падает, то есть полупроводник при нагревании не уменьшает свою электропроводность, как металл, а, наоборот, увеличивает ее. Иначе говоря, в полупроводнике увеличивается количество свободных электронов, способных переносить электрический ток.

При подведении энергии (теплоты или света) в кристаллических решетках полупроводников часть электронов "убегает" из верхних атомных оболочек, при этом образуется положительный заряд. То место, где в решетке не хватает электрона, называют "дыркой".

Под действием электрического напряжения электроны дрейфуют к одному электроду (положительному полюсу), а дырки - к другому (отрицательному), причем их место тут же занимают свободные электроны. Закономерности движения дырок таковы, что этим "пустым местам" физики условно приписывают и заряд (равный заряду электрона, но положительный), и "эффективную массу".

В чистом полупроводнике, проводимость которого обусловлена тепловым возбуждением, одинаковое число электронов и дырок движется в противоположных направлениях. Если добавлять в полупроводник атомы других элементов, его проводимость можно существенно увеличить. При введении легирующих примесей в различные части кристаллической решетки полупроводника возникает так называемая примесная проводимость (в отличие от собственной проводимости), которая, в зависимости от валентности легирующих элементов, называется либо электронной (проводимостью n-типа), либо дырочной (p-типа).

В одном и том же образце полупроводникового материала один участок может обладать р-проводимостью, а другой - n-проводимостью. Между такими областями возникает пограничный слой, через который диффундируют основные носители (электроны или дырки), стремясь уравнять значения концентрации по обе стороны от слоя. На образующийся в этом слое p-n-переход можно воздействовать внешним напряжением, усиливая или, наоборот, "запирая" ток, проходящий через кристалл, - на основании этого принципа работают диоды и транзисторы. При положительной полярности внешнего напряжения (плюс - к p-зоне, минус - к n-зоне) барьер в p-n-переходе понижается, и происходит "перескакивание" (рекомбинирование) электронов и дырок в противоположные зоны, в результате чего выделяется энергия.

Сначала полупроводниковые приборы были только "гомопереходными" (как в случае с первым транзистором) - p-n-переход происходил внутри кристалла одного химического вещества. Но почти сразу появилась и идея гетероустройств, в которых такой переход образуется на стыке двух различных полупроводников. Реализация этой идеи позволила создать более миниатюрные приборы с большей эффективностью и функциональностью (так, первые в мире "гомопереходные" полупроводниковые светодиоды, а затем и лазеры могли работать только при температуре жидкого азота, а появившиеся позже гетеропереходные функционируют и при комнатной температуре).

Большинство материалов, используемых при производстве светодиодов, имеют очень высокий уровень отражения. Это необходимо для того, чтобы как можно больше света, производимого светодиодом, выходило с его поверхности за пределы корпуса. Именно поэтому этому посвящено большое количество исследований во всем мире.

Эффективность и параметры использования

Обычный светодиодный индикатор расчитан на мощность не более 30-60 мВт. В 1999 году компания Philips Lumileds представила мощный светодиод мощностью 1 Ватт. В этом светодиоде был использован полупроводниковый кристал гораздо большей площади, чем применяющиеся в обычных светодиодах индикаторного типа. Он был смонтирован на металлическом основании, что позволило организовать эффективный отвод тепла с кристалла.

Одной из ключевых позиций определения эффективности светодиода является световой выход на единицу мощности. Белый светодиод быстро достиг и превзошел показатели обычных систем на базе ламп накаливания. В 2002 году компания Lumileds произвела 5 Вт светодиод со значениями светового выхода на уровне 18-22 люмен/Ватт. Для сравнения, обычная лампа накаливания мощностью 60-100 Вт производит около 15 люмен на ватт. Люминесцентная лампа - около 100 Лм/Вт. Основной проблемой при разработке мощных светодиодов является падение светового потока при повышении тока, проходящего через кристалл.

В сентябре 2003 года компания Cree продемонстрировала новый тип синего светодиода, производящий 24 мВт при токе 20 мА. Это позволило наладить коммерческого производство белых светодиодов с эффективностью 65 Лм/Вт при токе 20 мА, которые стали наиболее яркими на тот момент на рынке и превысили эффективность ламп накаливания более чем в четыре раза. В 2006 году эта же компания представила прототип белого светодиода со световым выходом 131 Лм/Вт на 20 мА.

Нужно отметить, что мощность СИД 1 Вт и более вполне достаточна для коммерческого применения в качестве источника основного освещения. Типовой ток подобных светодиодов - 350 мА. Хотя ведущие производители и производят светодиоды с эффективностью выше 100 Лм/Вт, в условиях реального использования многое зависит от условий эксплуатации и конструкции светильника. Энергетический департамент США, который в 2008 году проводил тестирование светодиодных ламп, представленных в широкой продаже, предоставил данные, говорящие о том, что большинство таких ламп имеет среднюю эффективность на уровне 31 Лм/Вт.

Компания Cree 19 Ноября 2008 года предоставила данные о лабораторном прототипе светодиода с эффективностью 161 Лм/Вт при комнатной температуре и температуре света 4689 К.

Неисправности и срок жизни светодиодов

Твердотельные устройства, такие как светодиоды, в очень малой степени подвержены повреждениям, когда работают при низких температурах и небольшом токе. Множество светодиодов, произведенных в 70-80 годах, работают по сей день. Теоретически, работоспособность светодиодов неограничена по времени, однако повышенный ток и высокая температура может легко вывести их из строя. Основной признак неисправности светодиода - сильное снижение светового выхода при номинальном рабочем напряжении. Разработка новых типов светодиодов привела к повышению рабочих токов и увеличению температуры кристалла. Реакция материалов, из которых производятся мощные светодиоды, на подобные условия, еще до конца не изучена, поэтому деградация кристаллов - одна из основных причин отказов. Светодиод считается неработоспособным, когда его световой выход падает на 75%.

Материалы

В следующей таблице указана зависимость цвета свечения светодиода от материала полупроводника
Цвет Длина волны (nm) Вольтаж (V) Материал полупроводника
Инфракрасный λ > 760 ΔV < 1.9 Gallium arsenide (GaAs)
Aluminium gallium arsenide (AlGaAs)
Красный 610 < λ < 760 1.63 < ΔV < 2.03 Aluminium gallium arsenide (AlGaAs)

Оранжевый 590 < λ < 610 2.03 < ΔV < 2.10 Gallium arsenide phosphide (GaAsP)
Aluminium gallium indium phosphide (AlGaInP)
Gallium(III) phosphide (GaP)
Желтый 570 < λ < 590 2.10 < ΔV < 2.18 Gallium arsenide phosphide (GaAsP)
Aluminium gallium indium phosphide (AlGaInP)
Gallium(III) phosphide (GaP)
Зеленый 500 < λ < 570 1.9 [ 32] < ΔV < 4.0 Indium gallium nitride (InGaN) / Gallium(III) nitride (GaN)
Gallium(III) phosphide (GaP)
Aluminium gallium indium phosphide (AlGaInP)
Aluminium gallium phosphide (AlGaP)
Синий 450 < λ < 500 2.48 < ΔV < 3.7 Zinc selenide (ZnSe)
Indium gallium nitride (InGaN)
Silicon carbide (SiC) as substrate
Silicon (Si) as substrate - (в разработке)
Фиолетовый 400 < λ < 450 2.76 < ΔV < 4.0 Indium gallium nitride (InGaN)
Пурпурный разные типы 2.48 < ΔV < 3.7 Dual blue/red LEDs,
синий с красным фосфором,
белый с пурпурным фильтром
Ультрафиолетовый λ < 400 3.1 < ΔV < 4.4 diamond (235 nm) [ 33]
Boron nitride (215 nm) [ 34] [ 35]
Aluminium nitride (AlN) (210 nm) [ 36]
Aluminium gallium nitride (AlGaN)
Aluminium gallium indium nitride (AlGaInN) - (down to 210 nm) [ 37]
Белый Широкий спектр ΔV = 3.5 Синий/УФ диод и желтый фосфор

Синие светодиоды

Синий светодиод

Синие светодиоды базируются на сплавах GaN и InGaN. Комбинация с красным и зеленым светодиодами позволяет получить чистый белый цвет, но такой принцип формирования белого сейчас используется редко.

Первый синий светодиод был изготовлен в 1971 году Jacques Pankove (изобретателем нитрида галлия). Но он производил слишком мало света, чтобы его можно было использовать на практике. Первый яркий синий диод был продемонстрирован в 1993 году и получил широкое распостранение.

Белый свет

Существует два пути получения белого света достаточной интенсивности с применением светодиодов. Первый из них - объединение в одном корпусе кристаллов трех основных цветов - красного, синего и зеленого. Смешение этих цветов позволяет получить белый цвет. Другой путь - использование фософора для преобразования синего или ультрафиолетового излучения в белый цвет широкого спектра. Подобный принцип используется при производстве ламп дневного света.

Системы RGB

Белый цвет может быть получен смешением различных цветов, наиболее используемая комбинация - красный, синий и зеленый. Но из-за необходимости контролировать смешение и степень рассеивания цветов стоимость производства RGB-светодиодов довольно высока. Тем не менее этот метод интересен многим исследователям и ученым, так как позволяет получить разные оттенки цвета. При этом эффективность такого способа получения белого света очень высока.

Есть несколько типов многоцветных белых светодиодов - ди-, три-, и тетрахроматичные. Есть несколько ключевых особенностей каждого из этих типов, включая стабильность цвета, цветопередачу и световую эффективность. Высокая световая эффективность подразумевает низкий индекс цветопередачи (CRI). Например, дихроматичный белый светодиод имеет лучшую световую эффективность (около 120 Лм/Вт), но самый низкий CRI. Тетрахроматичный - небольшую световую эффективность, но превосходный CRI. Трихроматичный находится примерно посередине.

Хотя многоцветные светодиоды являются не самым оптимальным решением для получения белого цвета, их использование позволяет создавать системы, производящие миллионы различных оттенков цвета. Основная проблема при этом - разные значения световой эффективности для основных цветов. При повышении температуры это вызывает "уплывание" необходимого цвета и, как следствие, более жестких требований к системам питания и контроля.

Светодиоды на базе фосфора

Спектр белого светодиода определяется синим светом, который излучается кристаллом на базе GaN (пик в районе 465 Нм) и, проходя через желтый фосфор (500-700 Нм) преобразуется в белый. Использование фосфора разных типов и оттенков позволяет получать разные оттенки белого - от теплого до самого холодного. Так же зависит от этого и качество цветопередачи. Нанесение на синий кристалл нескольких слоев фосфора разных типов позволяет добиться самого высокого CRI .

СИД на базе фосфора имеют меньшую эффективность, чем обычные светодиоды, так как часть света рассеивается в слое фосфора, к тому же сам фосфор также подвержен деградации. Тем не менее это способ остается наиболее популярным при коммерческом производстве белых светодиодов. Наиболее часто используется желтый фосфорный материал Ce3+:YAG.

Также белые светодиоды могут быть изготовлены на базе ультрафиолетовых светодиодов с примененим фосфора красного и синего цвета с добавлением сульфида цинка (ZnS:Cu,Al) . Этот принцип аналогичен используемому в лампах дневного света. Этот способ хуже предыдущего, но позволяет добиться лучшей цветопередачи. К тому же ультрафиолетовые диоды имеют большую световую эффективность. С другой стороны, УФ излучение вредно для человека.

Органические светодиоды (OLED)

Если основа излучающей поверхности светодиода имеет органическое происхождение, такой светодиод называют OLED (Organic Light Emitting Diode). Излучающим материалом может быть небольшая молекула в фазе кристаллизации или полимер. Полимерные кристаллы могут быть гибкими, соответсвенно их называют PLED или FLED.

По сравнению с обычными светодиодами, OLED светлее, а полимерные вдобавок позволяют делать источник света гибким. В будущем на базе таких светодиодов планируется изготовление гибких недорогих дисплеев для портативных устройств, источников света, декоративных систем, светящейся одежды. Но пока уровень разработки OLED не допускает их коммерческое применение.

Светодиоды на квантовых точках (экспериментальная разработка)

Новая технология производства светодиодов, разработанная M.Bowers предполагает покрытие синего светодиода "квантовыми точками", которые начинают излучать белый свет при облучении синим светом светодиода. Эта технология позволяет получить теплый желто-белый свет, схожий со светом ламп накаливания. "Квантовые точки" это нанокристаллы полупроводника, имеющие уникальные оптические характеристики. Их цвет излучения может быть изменен в широких пределах - от видимого спектра до невидимого - любой цвет в пределах CIE диаграммы.

В сентябре 2009 года компания Nanoco Group объявила о заключении исследовательского соглашения с одной из крупнейших японских компаний. Темой исследований является дальнейшая разработка технологии "квантовых точек" для применения в жидкокристаллических телевизионных дисплеях.

Продолжение следует

Светодиод - диод с простым P-N переходом, главной особенностью которого является то, что он испускает свет, когда через него проходит ток. Используется во многих цифровых дисплеях, а также в других типах индикаторных устройств.

Принцип работы светодиода

Основные рабочие характеристики любого светоизлучающего диода сходны с характеристиками обычного диода. Когда подается напряжение, то электроны двигаются от материала N-типа через P-N переход и соединяются с отверстиями в материале P-типа. В обычных диодах энергия, которая возникает в результате соединения электронов с отверстиями, выделяется в виде тепла. Однако, когда речь идет о светодиодах, то энергия в них выделяется в первую очередь в виде света.

Светодиоды могут изготавливаться таким образом, что будут испускать красный, зеленый, голубой, инфракрасный или ультрафиолетовый свет. Это достигается путем изменения количества и типа материалов, которые используются в качестве присадки. Яркость света также может изменяться, что осуществляется с помощью управления количеством тока, проходящего через светодиод. Однако, как и любой другой диод, СИД имеет предельные значения тока, которые он может выдержать.

Где используются светодиоды

Одной из основных областей применения светодиодов является использование их в качестве сигнальных лампочек. Например, этот прибор может использоваться для того, чтобы проконтролировать идет ли по цепи ток или она обесточена.

Цепь с сигнальной лампочкой представляет собой ряд приборов, последовательно соединенных между собой: светодиод, резистор, выключатель и источник постоянного тока.

Когда выключатель цепи с сигнальной лампочкой замкнут, то напряжение прямого смещения от источника тока подается на светодиод (который разработан таким образом, чтобы срабатывать только, когда имеется прямое смещение). Электроны, которые прорываются через P-N переход, соединяются с отверстиями, в результате чего энергия высвобождается в виде света. Резистор, установленный в этой цепи, ограничивает протекание тока по ней, с тем, чтобы защитить светодиод от повреждений, которые может вызвать чрезмерный ток.

Светодиоды могут также использоваться в цифровых дисплеях, например, в наручных часах или калькуляторах.

С помощью высвечивания различных комбинаций из семи элементов на дисплее можно отображать любую цифру от нуля до девяти.

Каждый светодиод соединен последовательно с резистором и выключателем, где каждый выключатель представляет собой внешнюю управляющую цепь. Выключатели имеют обозначения от А до G, чтобы соответствовать элементам дисплея. Семь последовательных проводов соединены параллельно с источником постоянного тока. Для того, чтобы подать питание на какой-либо светодиод, замыкается соответствующий выключатель. Каждый последовательно включенный в цепь резистор ограничивает ток, проходящий по проводу, и, тем самым, предотвращает повреждение светодиодов от чрезмерно большого тока.

Цифры появляются на цифровом дисплее в результате различных сочетаний семи выключателей. Например, если выключатели А и В замкнуты, то соответствующие элементы на дисплее загорятся и образуют цифру 1. Подобным же образом цифра 2 может быть образована с помощью выключателей A, C, D, F и G, которые будут замкнуты одновременно.

Замыкая соответствующие выключатели в определенных комбинациях, на дисплее можно получать цифры от 0 до 9. Если элементы расположить несколько иным образом, то на дисплее можно получить знак плюса, минуса, десятичные точки или же буквы алфавита.

Светодиоды могут использоваться даже для обеспечения искусственного освещения для роста растений. Основными преимуществами светодиодов в этом случае являются: низкое потребление электричества и тепловыделения, а также возможность настройки необходимого спектра излучения.

Повсеместно происходит замена обычных ламп на светодиодные. На сегодняшний день это лучший способ освещения для автомобилей и домов, более долговечный и лёгкий в замене. Итак, в чем заключается принцип работы светодиода и как его правильно выбрать?

Светодиод и принцип его работы

Светодиод - это специальный электроприбор, который перерабатывает ток в некоторое свечение. На сегодняшний день светодиоды более известны как LED, что значит «светоизлучающий диод».

Прибор является полупроводниковым и состоит из кристалла-чипа, корпуса, контактных выводов и оптического устройства. Свет исходит от кристалла, а его цвет может быть различным и зависит от применяемого материала. Яркость светодиода, как и его цвет, также может быть различной. Так, например, для большего светового эффекта в одну лампу часто вставляют несколько кристаллов, вырабатывающих однотонный свет, который в комплексе образует яркое свечение.

Яркость устройства напрямую зависит от силы подаваемого на него электрического тока. В свою очередь, слишком мощный поток электроэнергии вызывает быстрый перегрев внутреннего кристалла и выводит его из строя. Ввиду этого конструкция светодиода несколько затратна по стоимости материалов, что несколько негативно сказывается на выборе таких ламп.

По яркости светодиоды принято делить на категории:

  • ультраяркие, их минимальная мощность - 1 W;
  • светодиоды повышенной яркости - достигают 20 mW;
  • стандартные лампы.

На сегодняшний день широко применяется блок светодиодов, который встраивается в лампу. Благодаря ему возможна и выбор оптимального режима свечения.

Преимущество светодиодов перед другими типами освещения

Светодиод - это лучший на сегодняшний день выбор типа освещения, который имеет ряд преимуществ:

  • Долговечность.
  • Возможность регулировки цвета и яркости лампы.
  • Цветовая насыщенность, возможность подобрать красный, синий, зеленый светодиод или заставить цвет меняться.
  • Возможность электронного управления.
  • Экологически чистые материалы, которые не содержат тяжёлых веществ, вредных для окружения и опасных при неправильной утилизации.
  • Низкая потребляемая мощность, на 1 ватт вырабатывается в несколько раз больше света.
  • Свет чистый и максимально приближён к естественному.
  • Не перегреваются благодаря грамотному светоотводу.
  • Надёжность и прочность.

Почему светодиоды стали популярны в автоиндустрии? Этот тип освещения идеально подходит для автомобилей, постепенно вытесняя галогенные и ксеноновые лампы. Его положительные качества:

  • возможность направления освещения за поворотом руля - создание адаптивных фар;
  • эстетически выглядит лучше других видов фар;
  • повышение безопасности благодаря улучшению видимости на дороге;
  • устойчивость к вибрации;
  • зачастую светодиоды установлены в корпус, куда не проникает влага;
  • достижение рабочего состояния происходит быстрее, по этой причине стоп-сигналы срабатывают лучше.

Конечно, эти преимущества присущи только действительно качественным продуктам, поэтому экономить на них не стоит, тем более, что период их эксплуатации значительно увеличен по сравнению с китайской продукцией. Дополнительно период эксплуатации светодиодных ламп, если сравнивать с обычными, также значительно больше.

Классификация светодиодов

Выделяют 2 основных вида светодиодов - для подсветки (индикаторные) и для освещения. Их сила и долговечность зависят от подачи электротока, ввиду этого второй вид светодиодов служит меньший срок, так как кристалл изнашивается быстрее. Тем не менее, эти осветительные устройства очень долговечны и служат несколько тысяч часов.

Осветительный светодиод - это устройство, обеспечивающее надёжный и мощный свет. Оно широко применяется в дизайне, создавая нужный уровень освещённости.

По типу корпуса принято выделять светодиод в форме «Звезды», «Пираньи» и SMD. Среди них самыми популярными являются «Пираньи», так как их световой поток представляется более качественным. Их конструктивной особенностью является форма прямоугольника с выводами по краям, с помощью них обеспечивается жёсткое сцепление с поверхностью. Кроме того, подложка устройства обладает отличной теплоотводностью. Эти приборы используют широко в автомобилях и в рекламе. Они разнообразны по размерам и цветам: красный, белый, зелёный, синий светодиод.

Индикаторные светодиоды имеют конструкцию попроще, их свет не такой сильный и используется для подсветки дисплеев и приборных панелей. По форме выделяют круглые, овальные и прямоугольные индикаторные светодиоды.

Линзы также отличаются друг от друга, они могут быть встроены и в осветительные, и в Некоторые предназначены для рассеивания света (этих устройств подавляющее большинство), другие - для фокусировки, благодаря направленному пучку производимого света. Причём во второй группе выделяют линзы плоские, конусообразные и круглые.

По цвету линзы светодиоды бывают:

  • бесцветными прозрачными;
  • окрашенными прозрачными;
  • окрашенными матовыми.

Кроме того, цветовая гамма исполнения прибора сейчас очень разнообразна. Существует жёлтый, красный, синий, зеленый светодиод и т. д. Эти цвета умело комбинируются, создавая ещё более широкий спектр. Наиболее сложно, как ни странно, получить чистый белый цвет.

Белый светодиод получают тремя способами:

  • одновременное использование в правильных пропорциях красного, синего и зелёного цветов даёт ощущение белого цвета;
  • применение синего диода с примесью жёлтого;
  • третий метод требует применения люминесцентных материалов, который преобразовывает ультрафиолет, действуя по принципу флуоресцентной лампы.

Белый светодиод наиболее распространён, хоть и получить его несколько сложно. Он бывает холодным и тёплым. На лампочке обычно этот параметр указан в кельвинах, чем меньше показатель, тем цвет будет желтее и теплее. Производители рекомендуют остановить свой выбор на усреднённом параметре, хотя и к холодному, синеватому свету также можно быстро привыкнуть.

Выбор лампы для дома

Выбор лампы для дома включает несколько этапов, где необходимо определиться с типом сети, диаметром цоколя и внешним видом самого осветительного прибора.

Светодиод 220 вольт выпущен в наиболее распространённых типах цоколя - Е27 и Е14. Цифры обозначают диаметр резьбы в миллиметрах. Первый вид ламп зачастую встречается в форме шара, второй - шара или кукурузы.

В чём же заключаются их главные преимущества? Во-первых, это возможность блокировки и настройки яркости свечения самостоятельно. Во-вторых, это выбор цветового освещения и возможность дистанционного управления им. В-третьих, долговечность эксплуатации и повышенная надёжность.

Выбирая форму, нужно обратить внимание на то, что лампы-кукурузы хоть и имеют достаточно неплохие характеристики, они всё же небезопасны. Их контакты выходят наружу, и производители отказываются в последнее время от выпуска устройств подобной формы.

Для освещения нежилых помещений или ванных комнат используются менее мощные лампы, поэтому если нет необходимости применять светодиод 220 вольт, можно обойтись маленькими плоскими приборами с цоколем G53 и GX53. Это круглые лампы, где используется несколько диодов.

Обратить внимание при приобретении лампы стоит и на следующие характеристики:

  • количество диодов - от того, сколько светодиодов находится в лампе, зависит её яркость, особенно при длительном периоде использования, когда они начинают тускнеть и перегорать;
  • режим рабочей температуры - нужно учитывать, что при выборе лампы для улицы она должна быть эффективной и при возможных морозах, это обычно указывается в паспорте устройства;
  • возможность пульсаций - мигание встречается у дешёвых ламп, обычно при покупке дорогостоящей оно сводится к минимуму;
  • условия эксплуатации иногда требуют повышенной защиты устройства, допустим, стойкость к влаге, необходимо об этом параметре поинтересоваться у продавца;
  • при выборе производителя нужно обращать внимание на диаметр цоколя, так как не все импортные разработчики выпускают светодиод 220В;
  • необходимый световой поток, который измеряют в Люменах, - осветительные или индикаторные лампы.

Выбор производителя

На рынке присутствует множество производителей, которые демонстрируют различный уровень качества. Соответственно, их ценовая политика поставщиков также значительно отличается.

Главным недостатком светодиодов является их стоимость. Поэтому, если уже платить немаленькие деньги за продукт, необходимо, чтобы он был действительно качественным. Поэтому стоит с ответственностью подойти к выбору производителя и поставщика.

Производителей условно можно разделить на 5 групп.

  1. Китайские дешёвые никому не известные бренды.
  2. Известные китайские и азиатские производители. Наиболее популярными являются Selecta, Camelion, LG. Они используют современное оборудование, и качество выпущенной продукции у этих компаний достаточно высокое, поэтому достаточно большой сегмент отечественного рынка занят товаром из Азии. Отдельно стоит отметить светодиоды LG, которые с 2016 года значительно уменьшили цену на свой товар благодаря использованию новых технологий в производстве. Причём качество остаётся на прежнем уровне. В этом можно не сомневаться. Специализируется компания на лампах средней мощности и достаточно неплохо себя проявляет относительно аналогов.
  3. Отечественные производители, которые делают продукт высокого качества, но их технология достаточно дорогая, поэтому и цена на лампы соответственная. К сожалению, на территории России поздно узнали о широких возможностях светодиодов и отечественных производителей пока не так много. Это, к примеру, "Оптоман" и Gauss. Эти компании имеют свой модельный ряд продукции и доступны по всей стране.
  4. Европейские производители представлены преимущественно немецкими фирмами Philips, Osram, Bioledex, которые имеют огромный опыт производства ламп. Пожалуй, Philips остаётся лидером в этом сегменте рынка, хотя и стоит он относительно дорого.
  5. Китайско-российские проекты, такие как Ecola, Newera - также неплохие по качеству и цене бренды, которые значительно моложе фирм-конкурентов.

Таким образом, среди такого обилия производителей иногда достаточно сложно выбрать достойный бренд, поэтому особенно важно и нужно обращать внимание главным образом на характеристики продукта и условия его эксплуатации.

Приблизительный алгоритм действий при установке светодиода

Если есть хоть малейшие познания в электрике и был опыт установки любых ламп, можно светодиод попробовать установить и самому. Для начала нужно убедиться в работоспособности ламп. Последовательность действий должна быть следующей:

  • изучение технических характеристик и подсчёт, сколько вольт потребляет один светодиод;
  • составление схемы подключения с учётом напряжения;
  • вычисление потребляемой мощности электроцепи;
  • далее нужно подобрать блок питания, который бы подошёл по мощности, это также может быть и драйвер;
  • на ножках светодиода указана полярность, к которым нужно припаять провода;
  • подключение блока питания;
  • установка диодов и их закрепление;
  • если всё в порядке, необходимо измерить такие характеристики, как количество потребляемой энергии, нагрев, электроток;
  • корректировка электротока;
  • прогрев в течение получаса - чтобы ничего не случилось при первоначальной установке и для того, чтобы предупредить перегрев, светодиоды лучше покупать на подложке в форме звезды.

В процессе эксплуатации, особенно, если это продукция китайского производства, иногда необходима замена светодиодов. Чем обращаться к специалистам, замену можно выполнить самостоятельно при наличии нужных инструментов. Раскрутив лампу, с помощью цифрового мультиметра прозванивают диоды. Они, в свою очередь, слабо подсвечиваются, и некоторые из них могут не работать. Ненужные диоды отпаивают и меняют на новые. Конечно, это происходит, когда запасные светодиоды есть в наличии, для этого можно взять старую лампу.

На сегодняшний день популярным дополнением является программа "Ардуино". Светодиод, подключая к нему, можно заставить мигать. Плата "Ардуино" имеет много возможностей, вводы-выводы, а также к ней можно подключить практически любое устройство. Эта программа способна принимать сигналы от различных устройств, что и заставляет воздействовать на них. Это лёгкая и удобная среда для программирования, с которой несложно справиться даже обычному пользователю.

Выбор светодиодов для автомобиля

Автовладельцы всё чаще переходят на новый тип освещения в своей машине. Это действительно хорошее решение не только в плане режима работы, но и относительно внешнего вида автомобиля. Авто значительно преобразится, привлекая взгляды проезжающих мимо водителей. Освещением можно смело заменить все лампы, которые используются в автомобиле.

Как выбрать габариты и свет для передних стоп-сигналов?

Большая часть автопрома применяет лампы без цоколя, устанавливаемые в проёме между передними фарами. Преимуществом светодиодов является их стойкость к любым температурам, так как они находятся вблизи от главной осветительной лампы, возможен перегрев кристалла и преждевременный его выход из строя. Ввиду этого, при выборе освещения необходимо обратить внимание на дополнительную защиту светодиодов - наличие стабилизатора электротока.

При выборе ламп нужно обратить внимание на их серию, допустим, серия SF хоть и не имеет стабилизатора, вполне подходит для автомобиля, так как имеет большое количество диодов и работает в широком диапазоне, отлично освещая пространство.

Нужно также обратить внимание на размеры лампы, так, указанный пример SF - достаточно большое устройство. Нужно хорошо все продумать перед покупкой освещения.

Популярной также является серия для габаритов - СМД, которая имеет отличные характеристики, но и стоит немалых денег.

Заднее освещение автомобиля

Задние стоп-сигналы принято оборудовать цокольными двухконтактными светодиодами. Наиболее популярные серии: МСД, 14НР и 3х1W. Они имеют несколько различный режим работы, отличаются количеством диодов. Но все имеют достаточно высокие показатели. Эти светодиоды являются яркими, обеспечивают насыщенный свет и долговременный срок службы.

Самые доступные по стоимости - лампы серии SF.

Светодиоды для салона

Перед выбором ламп для салона необходимо определиться с типом его освещения и величиной плафона.

В салон нужно подбирать лампу фестонного типа - это продолговатые устройства, размером 31-41 мм. Выделяют 3 вида светодиодов для салона.

  1. Устанавливаются в разъём плафона вместо старой обычной лампочки. По размеру такие светодиоды практически идентичны обычным осветительным приборам, они применяются при невозможности из-за небольшой величины плафона использовать другую лампу.
  2. Светодиоды большего размера, чем стандартная лампочка. Перед установкой нужной убедиться, подойдёт ли такое устройство под плафон. Благодаря большему размеру, увеличивается и количество диодов в лампе. Таким образом, освещение становится значительно ярче обычного.
  3. Матрицы, вмещающее большое количество диодов. Если плафон достаточно большой и может вместить прямоугольную матрицу, то этот тип освещения будет наиболее ярким и насыщенным.

В салонном освещении используются лампы типа SF или СМД.

Кроме того, в автомобилях широко применяется замена противотуманных фар на лампы со светодиодом. Особое внимание стоит обратить автолюбителям, желающим выделиться среди других, на подсветку светодиодной лентой и на «ангельские глазки».

Подводя итог

Светодиод - это отличная альтернатива старым лампочкам, которая помогает решить проблему недостаточного освещения помещения. Даже при большей стоимости, чем обычная лампа, это отличное капиталовложение, так как светодиод способен служить не один год и дарить яркий свет дому и автомобилю.