Регрессионный анализ - статистический метод исследования зависимости случайной величины от переменных. Основы анализа данных

ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика
Регрессионная статистика
Множественный R 0,998364
R-квадрат 0,99673
Нормированный R-квадрат 0,996321
Стандартная ошибка 0,42405
Наблюдения 10

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а , - регрессионную статистику.

Величина R-квадрат , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значение R-квадрата , близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

Множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно, множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии
Коэффициенты Стандартная ошибка t-статистика
Y-пересечение 2,694545455 0,33176878 8,121757129
Переменная X 1 2,305454545 0,04668634 49,38177965
* Приведен усеченный вариант расчетов

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б . Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Y= x*2,305454545+2,694545455

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в . представлены результаты вывода остатков . Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".

ВЫВОД ОСТАТКА

Таблица 8.3в. Остатки
Наблюдение Предсказанное Y Остатки Стандартные остатки
1 9,610909091 -0,610909091 -1,528044662
2 7,305454545 -0,305454545 -0,764022331
3 11,91636364 0,083636364 0,209196591
4 14,22181818 0,778181818 1,946437843
5 16,52727273 0,472727273 1,182415512
6 18,83272727 0,167272727 0,418393181
7 21,13818182 -0,138181818 -0,34562915
8 23,44363636 -0,043636364 -0,109146047
9 25,74909091 -0,149090909 -0,372915662
10 28,05454545 -0,254545455 -0,636685276

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение

y =f (x ), когда каждому значению независимой переменной x соответствует одно определённое значение величины y , при регрессионной связи одному и тому же значению x могут соответствовать в зависимости от случая различные значения величины y . Если при каждом значении наблюдается n i {\displaystyle n_{i}} значений y i 1 …y in 1 величины y , то зависимость средних арифметических y ¯ i = (y i 1 + . . . + y i n 1) / n i {\displaystyle {\bar {y}}_{i}=(y_{i1}+...+y_{in_{1}})/n_{i}} от x = x i {\displaystyle x=x_{i}} и является регрессией в статистическом понимании этого термина .

Энциклопедичный YouTube

  • 1 / 5

    Этот термин в статистике впервые был использован Френсисом Гальтоном (1886) в связи с исследованием вопросов наследования физических характеристик человека. В качестве одной из характеристик был взят рост человека; при этом было обнаружено, что в целом сыновья высоких отцов, что не удивительно, оказались более высокими, чем сыновья отцов с низким ростом. Более интересным было то, что разброс в росте сыновей был меньшим, чем разброс в росте отцов. Так проявлялась тенденция возвращения роста сыновей к среднему (regression to mediocrity ), то есть «регресс». Этот факт был продемонстрирован вычислением среднего роста сыновей отцов, рост которых равен 56 дюймам, вычислением среднего роста сыновей отцов, рост которых равен 58 дюймам, и т. д. После этого результаты были изображены на плоскости, по оси ординат которой откладывались значения среднего роста сыновей, а по оси абсцисс - значения среднего роста отцов. Точки (приближённо) легли на прямую с положительным углом наклона меньше 45°; важно, что регрессия была линейной.

    Описание

    Допустим, имеется выборка из двумерного распределения пары случайных переменных (X, Y ). Прямая линия в плоскости (x, y ) была выборочным аналогом функции

    g (x) = E (Y ∣ X = x) . {\displaystyle g(x)=E(Y\mid X=x).} E (Y ∣ X = x) = μ 2 + ϱ σ 2 σ 1 (x − μ 1) , {\displaystyle E(Y\mid X=x)=\mu _{2}+\varrho {\frac {\sigma _{2}}{\sigma _{1}}}(x-\mu _{1}),} v a r (Y ∣ X = x) = σ 2 2 (1 − ϱ 2) . {\displaystyle \mathrm {var} (Y\mid X=x)=\sigma _{2}^{2}(1-\varrho ^{2}).}

    В этом примере регрессия Y на X является линейной функцией . Если регрессия Y на X отлична от линейной, то приведённые уравнения – это линейная аппроксимация истинного уравнения регрессии.

    В общем случае регрессия одной случайной переменной на другую не обязательно будет линейной. Также не обязательно ограничиваться парой случайных переменных. Статистические проблемы регрессии связаны с определением общего вида уравнения регрессии, построением оценок неизвестных параметров, входящих в уравнение регрессии, и проверкой статистических гипотез о регрессии . Эти проблемы рассматриваются в рамках регрессионного анализа .

    Простым примером регрессии Y по X является зависимость между Y и X , которая выражается соотношением: Y =u (X )+ε, где u (x )=E (Y | X =x ), а случайные величины X и ε независимы. Это представление полезно, когда планируется эксперимент для изучения функциональной связи y =u (x ) между неслучайными величинами y и x . На практике обычно коэффициенты регрессии в уравнении y =u (x ) неизвестны и их оценивают по экспериментальным данным.

    Линейная регрессия

    Представим зависимость y от x в виде линейной модели первого порядка:

    y = β 0 + β 1 x + ε . {\displaystyle y=\beta _{0}+\beta _{1}x+\varepsilon .}

    Будем считать, что значения x определяются без ошибки, β 0 и β 1 - параметры модели, а ε - ошибка, распределение которой подчиняется нормальному закону с нулевым средним значением и постоянным отклонением σ 2 . Значения параметров β заранее не известны и их нужно определить из набора экспериментальных значений (x i , y i ), i =1, …, n . Таким образом мы можем записать:

    y i ^ = b 0 + b 1 x i , i = 1 , … , n {\displaystyle {\widehat {y_{i}}}=b_{0}+b_{1}x_{i},i=1,\dots ,n}

    где означает предсказанное моделью значение y при данном x , b 0 и b 1 - выборочные оценки параметров модели. Определим также e i = y i − y i ^ {\displaystyle e_{i}=y_{i}-{\widehat {y_{i}}}} - значение ошибки аппроксимации для i {\displaystyle i} -го наблюдения.

    Метод наименьших квадратов даёт следующие формулы для вычисления параметров данной модели и их отклонений:

    b 1 = ∑ i = 1 n (x i − x ¯) (y i − y ¯) ∑ i = 1 n (x i − x ¯) 2 = c o v (x , y) σ x 2 ; {\displaystyle b_{1}={\frac {\sum _{i=1}^{n}(x_{i}-{\bar {x}})(y_{i}-{\bar {y}})}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}={\frac {\mathrm {cov} (x,y)}{\sigma _{x}^{2}}};} b 0 = y ¯ − b 1 x ¯ ; {\displaystyle b_{0}={\bar {y}}-b_{1}{\bar {x}};} s e 2 = ∑ i = 1 n (y i − y ^) 2 n − 2 ; {\displaystyle s_{e}^{2}={\frac {\sum _{i=1}^{n}(y_{i}-{\widehat {y}})^{2}}{n-2}};} s b 0 = s e 1 n + x ¯ 2 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s_{b_{0}}=s_{e}{\sqrt {{\frac {1}{n}}+{\frac {{\bar {x}}^{2}}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}}};} s b 1 = s e 1 ∑ i = 1 n (x i − x ¯) 2 , {\displaystyle s_{b_{1}}=s_{e}{\sqrt {\frac {1}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}},}

    здесь средние значения определяются как обычно: x ¯ = ∑ i = 1 n x i n {\displaystyle {\bar {x}}={\frac {\sum _{i=1}^{n}x_{i}}{n}}} , y ¯ = ∑ i = 1 n y i n {\displaystyle {\bar {y}}={\frac {\sum _{i=1}^{n}y_{i}}{n}}} и s e 2 обозначает остаточное отклонение регрессии, которое является оценкой дисперсии σ 2 в том случае, если модель верна.

    Стандартные ошибки коэффициентов регрессии используются аналогично стандартной ошибке среднего - для нахождения доверительных интервалов и проверки гипотез. Используем, например, критерий Стьюдента для проверки гипотезы о равенстве коэффициента регрессии нулю, то есть о его незначимости для модели. Статистика Стьюдента: t = b / s b {\displaystyle t=b/s_{b}} . Если вероятность для полученного значения и n −2 степеней свободы достаточно мала, например, <0,05 - гипотеза отвергается. Напротив, если нет оснований отвергнуть гипотезу о равенстве нулю, скажем, b 1 {\displaystyle b_{1}} - есть основание задуматься о существовании искомой регрессии, хотя бы в данной форме, или о сборе дополнительных наблюдений. Если же нулю равен свободный член b 0 {\displaystyle b_{0}} , то прямая проходит через начало координат и оценка углового коэффициента равна

    b = ∑ i = 1 n x i y i ∑ i = 1 n x i 2 {\displaystyle b={\frac {\sum _{i=1}^{n}x_{i}y_{i}}{\sum _{i=1}^{n}x_{i}^{2}}}} ,

    а её стандартной ошибки

    s b = s e 1 ∑ i = 1 n x i 2 . {\displaystyle s_{b}=s_{e}{\sqrt {\frac {1}{\sum _{i=1}^{n}x_{i}^{2}}}}.}

    Обычно истинные величины коэффициентов регрессии β 0 и β 1 не известны. Известны только их оценки b 0 и b 1 . Иначе говоря, истинная прямая регрессии может пройти иначе, чем построенная по выборочным данным. Можно вычислить доверительную область для линии регрессии. При любом значении x соответствующие значения y распределены нормально. Средним является значение уравнения регрессии y ^ {\displaystyle {\widehat {y}}} . Неопределённость его оценки характеризуется стандартной ошибкой регрессии:

    s y ^ = s e 1 n + (x − x ¯) 2 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s_{\widehat {y}}=s_{e}{\sqrt {{\frac {1}{n}}+{\frac {(x-{\bar {x}})^{2}}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}}};}

    Теперь можно вычислить -процентный доверительный интервал для значения уравнения регрессии в точке x :

    y ^ − t (1 − α / 2 , n − 2) s y ^ < y < y ^ + t (1 − α / 2 , n − 2) s y ^ {\displaystyle {\widehat {y}}-t_{(1-\alpha /2,n-2)}s_{\widehat {y}},

    где t (1−α/2, n −2) - t -значение распределения Стьюдента. На рисунке показана линия регрессии, построенная по 10 точкам (сплошные точки), а также 95%-я доверительная область линии регрессии, которая ограничена пунктирными линиями. С 95%-й вероятностью можно утверждать, что истинная линия находится где-то внутри этой области. Или иначе, если мы соберём аналогичные наборы данных (обозначены кружками) и построим по ним линии регрессии (обозначены голубым цветом), то в 95 случаях из 100 эти прямые не покинут пределов доверительной области. (Для визуализации кликните по картинке) Обратите внимание, что некоторые точки оказались вне доверительной области. Это совершенно естественно, поскольку речь идёт о доверительной области линии регрессии, а не самих значений. Разброс значений складывается из разброса значений вокруг линии регрессии и неопределённости положения самой этой линии, а именно:

    s Y = s e 1 m + 1 n + (x − x ¯) 2 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s_{Y}=s_{e}{\sqrt {{\frac {1}{m}}+{\frac {1}{n}}+{\frac {(x-{\bar {x}})^{2}}{\sum _{i=1}^{n}(x_{i}-{\bar {x}})^{2}}}}};}

    Здесь m - кратность измерения y при данном x . И 100 ⋅ (1 − α 2) {\displaystyle 100\cdot \left(1-{\frac {\alpha }{2}}\right)} -процентный доверительный интервал (интервал прогноза) для среднего из m значений y будет:

    y ^ − t (1 − α / 2 , n − 2) s Y < y < y ^ + t (1 − α / 2 , n − 2) s Y {\displaystyle {\widehat {y}}-t_{(1-\alpha /2,n-2)}s_{Y}.

    На рисунке эта 95%-я доверительная область при m =1 ограничена сплошными линиями. В эту область попадает 95 % всех возможных значений величины y в исследованном диапазоне значений x .

    Еще немного статистики

    Можно строго доказать, что, если условное матожидание E (Y ∣ X = x) {\displaystyle E(Y\mid X=x)} некоторой двумерной случайной величины (X, Y ) является линейной функцией от x {\displaystyle x} , то это условное матожидание обязательно представимо в виде E (Y ∣ X = x) = μ 2 + ϱ σ 2 σ 1 (x − μ 1) {\displaystyle E(Y\mid X=x)=\mu _{2}+\varrho {\frac {\sigma _{2}}{\sigma _{1}}}(x-\mu _{1})} , где E (X )=μ 1 , E (Y )=μ 2 , var(X )=σ 1 2 , var(Y )=σ 2 2 , cor(X, Y )=ρ.

    Более того, для уже упомянутой ранее линейной модели Y = β 0 + β 1 X + ε {\displaystyle Y=\beta _{0}+\beta _{1}X+\varepsilon } , где X {\displaystyle X} и - независимые случайные величины, а ε {\displaystyle \varepsilon } имеет нулевое матожидание (и произвольное распределение), можно доказать, что E (Y ∣ X = x) = β 0 + β 1 x {\displaystyle E(Y\mid X=x)=\beta _{0}+\beta _{1}x} . Тогда с помощью указанного ранее равенства можно получить формулы для и : β 1 = ϱ σ 2 σ 1 {\displaystyle \beta _{1}=\varrho {\frac {\sigma _{2}}{\sigma _{1}}}} ,

    β 0 = μ 2 − β 1 μ 1 {\displaystyle \beta _{0}=\mu _{2}-\beta _{1}\mu _{1}} .

    Если откуда-то априори известно, что множество случайных точек на плоскости порождается линейной моделью, но с неизвестными коэффициентами β 0 {\displaystyle \beta _{0}} и β 1 {\displaystyle \beta _{1}} , можно получить точечные оценки этих коэффициентов по указанным формулам. Для этого в эти формулы вместо матожиданий, дисперсий и корреляции случайных величин X и Y нужно подставить их несмещенные оценки. Полученные формулы оценок в точности совпадут с формулами, выведенными на основе метода наименьших квадратов.

    y =f (x ), когда каждому значению независимой переменной x соответствует одно определённое значение величины y , при регрессионной связи одному и тому же значению x могут соответствовать в зависимости от случая различные значения величины y . Если при каждом значении x =x i наблюдается n i значений y i 1 …y in 1 величины y , то зависимость средних арифметических =(y i 1 +…+y in 1)/n i от x =x i и является регрессией в статистическом понимании этого термина .

    Этот термин в статистике впервые был использован Френсисом Гальтоном (1886) в связи с исследованием вопросов наследования физических характеристик человека. В качестве одной из характеристик был взят рост человека; при этом было обнаружено, что в целом сыновья высоких отцов, что не удивительно, оказались более высокими, чем сыновья отцов с низким ростом. Более интересным было то, что разброс в росте сыновей был меньшим, чем разброс в росте отцов. Так проявлялась тенденция возвращения роста сыновей к среднему (regression to mediocrity ), то есть «регресс». Этот факт был продемонстрирован вычислением среднего роста сыновей отцов, рост которых равен 56 дюймам, вычислением среднего роста сыновей отцов, рост которых равен 58 дюймам, и т. д. После этого результаты были изображены на плоскости, по оси ординат которой откладывались значения среднего роста сыновей, а по оси абсцисс - значения среднего роста отцов. Точки (приближённо) легли на прямую с положительным углом наклона меньше 45°; важно, что регрессия была линейной.

    Итак, допустим, имеется выборка из двумерного распределения пары случайных переменных (X, Y ). Прямая линия в плоскости (x, y ) была выборочным аналогом функции

    В этом примере регрессия Y на X является линейной функцией . Если регрессия Y на X отлична от линейной, то приведённые уравнения суть линейная аппроксимация истинного уравнения регрессии.

    В общем случае регрессия одной случайной переменной на другую не обязательно будет линейной. Также не обязательно ограничиваться парой случайных переменных. Статистические проблемы регрессии связаны с определением общего вида уравнения регрессии, построением оценок неизвестных параметров, входящих в уравнение регрессии, и проверкой статистических гипотез о регрессии . Эти проблемы рассматриваются в рамках регрессионного анализа .

    Простым примером регрессии Y по X является зависимость между Y и X , которая выражается соотношением: Y =u (X )+ε, где u (x )=E (Y | X =x ), а случайные величины X и ε независимы. Это представление полезно, когда планируется эксперимент для изучения функциональной связи y =u (x ) между неслучайными величинами y и x . На практике обычно коэффициенты регрессии в уравнении y =u (x ) неизвестны и их оценивают по экспериментальным данным.

    Линейная регрессия (пропедевтика)

    Представим зависимость y от x в виде линейной модели первого порядка:

    Будем считать, что значения x определяются без ошибки, β 0 и β 1 - параметры модели, а ε - ошибка, распределение которой подчиняется нормальному закону с нулевым средним значением и постоянным отклонением σ 2 . Значения параметров β заранее не известны и их нужно определить из набора экспериментальных значений (x i , y i ), i =1, …, n . Таким образом мы можем записать:

    где означает предсказанное моделью значение y при данном x , b 0 и b 1 - выборочные оценки параметров модели, а - значения ошибок аппроксимации.

    Метод наименьших квадратов даёт следующие формулы для вычисления параметров данной модели и их отклонений:

    здесь средние значения определяются как обычно: , и s e 2 обозначает остаточное отклонение регрессии, которое является оценкой дисперсии σ 2 в том случае, если модель верна.

    Стандартные ошибки коэффициентов регрессии используются аналогично стандартной ошибке среднего - для нахождения доверительных интервалов и проверки гипотез. Используем, например, критерий Стьюдента для проверки гипотезы о равенстве коэффициента регрессии нулю, то есть о его незначимости для модели. Статистика Стьюдента: t =b /s b . Если вероятность для полученного значения и n −2 степеней свободы достаточно мала, например, <0,05 - гипотеза отвергается. Напротив, если нет оснований отвергнуть гипотезу о равенстве нулю, скажем b 1 - есть основание задуматься о существовании искомой регрессии, хотя бы в данной форме, или о сборе дополнительных наблюдений. Если же нулю равен свободный член b 0 , то прямая проходит через начало координат и оценка углового коэффициента равна

    ,

    а её стандартной ошибки

    Обычно истинные величины коэффициентов регрессии β 0 и β 1 не известны. Известны только их оценки b 0 и b 1 . Иначе говоря истинная прямая регрессии может пройти иначе, чем построенная по выборочным данным. Можно вычислить доверительную область для линии регрессии. При любом значении x соответствующие значения y распределены нормально. Средним является значение уравнения регрессии . Неопределённость его оценки характеризуется стандартной ошибкой регрессии:

    Теперь можно вычислить 100(1−α/2)-процентный доверительный интервал для значения уравнения регрессии в точке x :

    ,

    где t (1−α/2, n −2) - t -значение распределения Стьюдента. На рисунке показана линия регрессии, построенная по 10 точкам (сплошные точки), а также 95%-я доверительная область линии регрессии, которая ограничена пунктирными линиями. С 95%-й вероятностью можно утверждать, что истинная линия находится где-то внутри этой области. Или иначе, если мы соберём аналогичные наборы данных (обозначены кружками) и построим по ним линии регрессии (обозначены голубым цветом), то в 95 случаях из 100 эти прямые не покинут пределов доверительной области. (Для визуализации кликните по картинке) Обратите внимание, что некоторые точки оказались вне доверительной области. Это совершенно естественно, поскольку речь идёт о доверительной области линии регрессии, а не самих значений. Разброс значений складывается из разброса значений вокруг линии регрессии и неопределённости положения самой этой линии, а именно:

    Здесь m - кратность измерения y при данном x . И 100(1−α/2)-процентный доверительный интервал (интервал прогноза) для среднего из m значений y будет:

    .

    На рисунке эта 95%-я доверительная область при m =1 ограничена сплошными линиями. В эту область попадает 95 % всех возможных значений величины y в исследованном диапазоне значений x .

    Литература

    Ссылки

    • (англ.)

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Регрессия (математика)" в других словарях:

      В Викисловаре есть статья «регрессия» Регрессия (лат. regressio «обратное движение, возвращение») многознач … Википедия

      О функции, см.: Интерполянт. Интерполяция, интерполирование в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений. Многим из тех, кто сталкивается с научными и… … Википедия

      У этого термина существуют и другие значения, см. среднее значение. В математике и статистике среднее арифметическое одна из наиболее распространённых мер центральной тенденции, представляющая собой сумму всех наблюденных значений деленную на их… … Википедия

      Не следует путать с японскими свечами. График 1. Результаты эксперимента Майкельсона Морли … Википедия

      Начинающим · Сообщество · Порталы · Награды · Проекты · Запросы · Оценивание География · История · Общество · Персоналии · Религия · Спорт · Техника · Наука · Искусство · Философия … Википедия

      РЕГРЕССИОННЫЙ И КОРРЕЛЯЦИОННЫЙ АНАЛИЗ - REGRESSION AND CORRELATION ANALYSISР.а. представляет собой вычисления на основе статистической информации с целью математической оценки усредненной связи между зависимой переменной и некоторой независимой переменной или переменными. Простая… … Энциклопедия банковского дела и финансов

      Логотип Тип Программы математического моделирования Разработчик … Википедия

    Целью регрессионного анализа является измерение связи меж­ду зависимой переменной и одной (парный регрессионный анализ) или не­сколькими (множественный) независимыми переменными. Независимые переменные называют также факторными, объясняющими, опреде­ляющими, регрессорами и предикторами.

    Зависимую переменную иногда называют определяемой, объясняемой, «откликом». Чрезвы­чайно широкое распространение регрессионного анализа в эмпири­ческих исследованиях связано не только с тем, что это удобный ин­струмент тестирования гипотез. Регрессия, особенно множественная, является эффективным методом моделирования и прогнозирования.

    Объяснение принципов работы с регрессионным анализом начнем с более простого - парного метода.

    Парный регрессионный анализ

    Первые действия при использовании регрессионного анализа будут практически идентичны предпринятым нами в рамках вычисления коэффициента корреляции. Три основных условия эффективности корреляционного анализа по методу Пирсона - нормальное распре­деление переменных, интервальное измерение переменных, линейная связь между переменными - актуальны и для множественной регрес­сии. Соответственно, на первом этапе строятся диаграммы рассеяния, проводится статистически-описательный анализ переменных и вы­числяется линия регрессии. Как и в рамках корреляционного анализа, линии регрессии строятся методом наименьших квадратов.

    Чтобы более наглядно проиллюстрировать различия между двумя методами анализа данных, обратимся к уже рассмотренному приме­ру с переменными «поддержка СПС» и «доля сельского населения». Исходные данные идентичны. Отличие в диаграммах рассеяния бу­дет заключаться в том, что в регрессионном анализе корректно от­кладывать зависимую переменную - в нашем случае «поддержка СПС» по оси Y, тогда как в корреляционном анализе это не имеет значения. После чистки выбросов диаграмма рассеяния имеет вид:

    Принципиальная идея регрессионного анализа состоит в том, что, имея общую тенденцию для переменных - в виде линии регрессии, - можно предсказать значение зависимой переменной, имея значения независимой.

    Представим обычную математическую линейную функцию. Лю­бую прямую в евклидовом пространстве можно описать формулой:

    где а - константа, задающая смещение по оси ординат; b - коэффи­циент, определяющий угол наклона линии.

    Зная угловой коэффициент и константу, можно рассчитать (пред­сказать) значение у для любого х.

    Эта простейшая функция и легла в основу модели регрессионного анализа с той оговоркой, что значение у мы предскажем не точно, а в рамках определенного доверительного интервала, т.е. приблизительно.

    Константой является точка пересечения линии регрессии и оси ординат (F-пересечение, в статистических пакетах, как правило, обозначаемое «interceptor»). В нашем примере с голосованием за СПС ее округленное значение составит 10,55. Угловой коэффициент Ъ бу­дет равен примерно -0,1 (как и в корреляционном анализе, знак по­казывает тип связи - прямая или обратная). Таким образом, получен­ная модель будет иметь вид СП С = -0,1 х Сел. нас. + 10,55.

    СПС = -0,10 х 47 + 10,55 = 5,63.

    Разность между исходным и предсказанным значениями называет­ся остатком (с этим термином - принципиальным для статистики - мы уже сталкивались при анализе таблиц сопряженности). Так, для случая «Республика Адыгея» остаток будет равен 3,92 - 5,63 = -1,71. Чем больше модульное значение остатка, тем менее удачно предсказа­но значение.

    Рассчитываем предсказанные значения и остатки для всех случаев:
    Случай Сел. нас. СПС

    (исходное)

    СПС

    (предсказанное)

    Остатки
    Республика Адыгея 47 3,92 5,63 -1,71 -
    Республика Алтай 76 5,4 2,59 2,81
    Республика Башкортостан 36 6,04 6,78 -0,74
    Республика Бурятия 41 8,36 6,25 2,11
    Республика Дагестан 59 1,22 4,37 -3,15
    Республика Ингушетия 59 0,38 4,37 3,99
    И т.д.

    Анализ соотношения исходных и предсказанных значений служит для оценки качества полученной модели, ее прогностической способности. Одним из главных показателей регрессионной статистики является множественный коэффициент корреляции R - коэффициент корреляции между исходными и предсказанными значениями зави­симой переменной. В парном регрессионном анализе он равен обыч­ному коэффициенту корреляции Пирсона между зависимой и неза­висимой переменной, в нашем случае - 0,63. Чтобы содержательно интерпретировать множественный R, его необходимо преобразовать в коэффициент детерминации. Это делается так же, как и в корреля­ционном анализе - возведением в квадрат. Коэффициент детерминации R -квадрат (R 2) показывает долю вариации зависимой пере­менной, объясняемую независимой (независимыми) переменными.

    В нашем случае R 2 = 0,39 (0,63 2); это означает, что переменная «доля сельского населения» объясняет примерно 40% вариации переменной «поддержка СПС». Чем больше величина коэффициента детер­минации, тем выше качество модели.

    Другим показателем качества модели является стандартная ошиб­ка оценки (standard error of estimate). Это показатель того, насколько сильно точки «разбросаны» вокруг линии регрессии. Мерой разброса для интервальных переменных является стандартное отклонение. Со­ответственно, стандартная ошибка оценки - это стандартное откло­нение распределения остатков. Чем выше ее значение, тем сильнее разброс и тем хуже модель. В нашем случае стандартная ошибка со­ставляет 2,18. Именно на эту величину наша модель будет «ошибаться в среднем» при прогнозировании значения переменной «поддерж­ка СПС».

    Регрессионная статистика включает в себя также дисперсионный анализ. С его помощью мы выясняем: 1) какая доля вариации (дисперсии) зависимой переменной объясняется независимой перемен­ной; 2) какая доля дисперсии зависимой переменной приходится на остатки (необъясненная часть); 3) каково отношение этих двух вели­чин (/"-отношение). Дисперсионная статистика особенно важна для выборочных исследований - она показывает, насколько вероятно наличие связи между независимой и зависимой переменными в генеральной совокупности. Однако и для сплошных исследований (как в нашем примере) изучение результатов дисперсионного анализа небесполезно. В этом случае проверяют, не вызвана ли выявленная ста­тистическая закономерность стечением случайных обстоятельств, насколько она характерна для того комплекса условий, в которых на­ходится обследуемая совокупность, т.е. устанавливается не истинность полученного результата для какой-то более обширной гене­ральной совокупности, а степень его закономерности, свободы от случайных воздействий.

    В нашем случае статистика дисперсионного анализа такова:

    SS df MS F значение
    Регрес. 258,77 1,00 258,77 54,29 0.000000001
    Остат. 395,59 83,00 Л,11
    Всего 654,36

    F-отношение 54,29 значимо на уровне 0,0000000001. Соответ­ственно, мы можем с уверенностью отвергнуть нулевую гипотезу (что обнаруженная нами связь носит случайный характер).

    Аналогичную функцию выполняет критерий t, но уже в отношении регрессионных коэффициентов (углового и F-пересечения). С помо­щью критерия / проверяем гипотезу о том, что в генеральной совокуп­ности регрессионные коэффициенты равны нулю. В нашем случае мы вновь можем уверенно отбросить нулевую гипотезу.

    Множественный регрессионный анализ

    Модель множественной регрессии практически идентична модели парной регрессии; разница лишь в том, что в линейную функцию последовательно включаются несколько независимых переменных:

    Y = b1X1 + b2X2 + …+ bpXp + а.

    Если независимых переменных больше двух, мы не имеем возмож­ности получить визуальное представление об их связи, в этом плане множественная регрессия менее «наглядна», нежели парная. При на­личии двух независимых переменных данные бывает полезно отобразить на трехмерной диаграмме рассеяния. В профессиональных ста­тистических пакетах программ (например, Statisticа) существует опция вращения трехмерной диаграммы, позволяющая хорошо визуально представить структуру данных.

    При работе с множественной регрессией, в отличие от парной, не­обходимо определять алгоритм анализа. Стандартный алгоритм включает в итоговую регрессионную модель все имеющиеся предикторы. Пошаговый алгоритм предполагает последовательное включе­ние (исключение) независимых переменных, исходя из их объяснительного «веса». Пошаговый метод хорош, когда имеется много независимых переменных; он «очищает» модель от откровенно слабых предикторов, делая ее более компактной и лаконичной.

    Дополнительным условием корректности множественной регрес­сии (наряду с интервальностью, нормальностью и линейностью) является отсутствие мультиколлинеарности - наличия сильных корреляционных связей между независимыми переменными.

    Интерпретация статистики множественной регрессии включает в себя все злементы, рассмотренные нами для случая парной регрессии. Кроме того, в статистике множественного регрессионного анализа есть и другие важные составляющие.

    Работу с множественной регрессией мы проиллюстрируем на при­мере тестирования гипотез, объясняющих различия в уровне электоральной активности по регионам России. В ходе конкретных эмпири­ческих исследований были высказаны предположения, что на уровень явки избирателей влияют:

    Национальный фактор (переменная «русское население»; операционализирована как доля русского населения в субъектах РФ). Предполагается, что увеличение доли русского населения ведет к сни­жению активности избирателей;

    Фактор урбанизации (переменная «городское население»; операционализирована как доля городского населения в субъектах РФ, с этим фактором мы уже работали в рамках корреляционного анализа). Предполагается, что увеличение доли городского населения также ве­дет к снижению активности избирателей.

    Зависимая переменная - «интенсивность избирательной активно­сти» («актив») операционализирована через усредненные данные яв­ки по регионам на федеральных выборах с 1995 по 2003 г. Исходная таблица данных для двух независимых и одной зависимой перемен­ной будет иметь следующий вид:

    Случай Переменные
    Актив. Гор. нас. Рус. нас.
    Республика Адыгея 64,92 53 68
    Республика Алтай 68,60 24 60
    Республика Бурятия 60,75 59 70
    Республика Дагестан 79,92 41 9
    Республика Ингушетия 75,05 41 23
    Республика Калмыкия 68,52 39 37
    Карачаево-Черкесская Республика 66,68 44 42
    Республика Карелия 61,70 73 73
    Республика Коми 59,60 74 57
    Республика Марий Эл 65,19 62 47

    И т.д. (после чистки выбросов остается 83 случая из 88)

    Статистика, описывающая качество модели:

    1. Множественный R = 0,62; Л-квадрат = 0,38. Следовательно, национальный фактор и фактор урбанизации вместе объясняют около 38% вариации переменной «электоральная активность».

    2. Средняя ошибка составляет 3,38. Именно настолько «в среднем ошибается» построенная модель при прогнозировании уровня явки.

    3. /л-отношение объясненной и необъясненной вариации состав­ляет 25,2 на уровне 0,000000003. Нулевая гипотеза о случайности выявленных связей отвергается.

    4. Критерий /для константы и регрессионных коэффициентов пе­ременных «городское население» и «русское население» значим на уровне 0,0000001; 0,00005 и 0,007 соответственно. Нулевая гипотеза о случайности коэффициентов отвергается.

    Дополнительная полезная статистика в анализе соотношения ис­ходных и предсказанных значений зависимой переменной - расстояние Махаланобиса и расстояние Кука. Первое - мера уникальности слу­чая (показывает, насколько сочетание значений всех независимых переменных для данного случая отклоняется от среднего значения по всем независимым переменным одновременно). Второе - мера влия­тельности случая. Разные наблюдения по-разному влияют на наклон линии регрессии, и с помощью расстояния Кука можно сопоставлять их по этому показателю. Это бывает полезно при чистке выбросов (вы­брос можно представить как чрезмерно влиятельный случай).

    В нашем примере к уникальным и влиятельным случаям, в частно­сти, относится Дагестан.

    Случай Исходные

    значения

    Предска­

    значения

    Остатки Расстояние

    Махаланобиса

    Расстояние
    Адыгея 64,92 66,33 -1,40 0,69 0,00
    Республика Алтай 68,60 69.91 -1,31 6,80 0,01
    Республика Бурятия 60,75 65,56 -4,81 0,23 0,01
    Республика Дагестан 79,92 71,01 8,91 10,57 0,44
    Республика Ингушетия 75,05 70,21 4,84 6,73 0,08
    Республика Калмыкия 68,52 69,59 -1,07 4,20 0,00

    Собственно регрессионная модель обладает следующими парамет­рами: У-пересечение (константа) = 75,99; Ь (Гор. нас.) = -0,1; Ъ (Рус. нас.) = -0,06. Итоговая формула.

    Что такое регрессия?

    Рассмотрим две непрерывные переменные x=(x 1 , x 2 , .., x n), y=(y 1 , y 2 , ..., y n).

    Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение , если данные аппроксимируются прямой линией.

    Если мы полагаем, что y зависит от x , причём изменения в y вызываются именно изменениями в x , мы можем определить линию регрессии (регрессия y на x ), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

    Статистическое использование слова "регрессия" исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

    Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей "регрессировал" и "двигался вспять" к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

    Линия регрессии

    Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:

    x называется независимой переменной или предиктором.

    Y - зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x , т.е. это «предсказанное значение y »

    • a - свободный член (пересечение) линии оценки; это значение Y , когда x=0 (Рис.1).
    • b - угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
    • a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b .

    Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия .

    Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)

    Метод наименьших квадратов

    Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b - выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).

    Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).

    Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y - предсказанный y , Рис. 2).

    Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.

    Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.

    Предположения линейной регрессии

    Итак, для каждой наблюдаемой величины остаток равен разнице и соответствующего предсказанного Каждый остаток может быть положительным или отрицательным.

    Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:

    • Остатки нормально распределены с нулевым средним значением;

    Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать или и рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).

    Аномальные значения (выбросы) и точки влияния

    "Влиятельное" наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).

    Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть "влиятельным" наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.

    И для выбросов, и для "влиятельных" наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

    При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.

    Гипотеза линейной регрессии

    При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.

    Если угловой коэффициент линии равен нулю, между и нет линейного соотношения: изменение не влияет на

    Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент равен нулю можно воспользоваться следующим алгоритмом:

    Вычислить статистику критерия, равную отношению , которая подчиняется распределению с степенями свободы, где стандартная ошибка коэффициента


    ,

    - оценка дисперсии остатков.

    Обычно если достигнутый уровень значимости нулевая гипотеза отклоняется.


    где процентная точка распределения со степенями свободы что дает вероятность двустороннего критерия

    Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.

    Для больших выборок, скажем, мы можем аппроксимировать значением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)

    Оценка качества линейной регрессии: коэффициент детерминации R 2

    Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется , и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.

    Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.

    Долю общей дисперсии , которая объясняется регрессией называют коэффициентом детерминации , обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.

    Разность представляет собой процент дисперсии который нельзя объяснить регрессией.

    Нет формального теста для оценки мы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.

    Применение линии регрессии для прогноза

    Можно применять регрессионную линию для прогнозирования значения по значению в пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).

    Мы предсказываем среднюю величину для наблюдаемых, которые имеют определенное значение путем подстановки этого значения в уравнение линии регрессии.

    Итак, если прогнозируем как Используем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины в популяции.

    Повторение этой процедуры для различных величин позволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

    Простые регрессионные планы

    Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид

    а регрессионное уравнение с использованием P для X1 выглядит как

    Y = b0 + b1 P

    Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:

    а уравнение примет вид

    Y = b0 + b1 P2

    Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.

    Пример: простой регрессионный анализ

    Этот пример использует данные, представленные в таблице:

    Рис. 3. Таблица исходных данных.

    Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:

    Рис. 4. Таблица спецификаций переменных.

    Задача исследования

    Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 (Pt_Poor ) как зависимую переменную.

    Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 (Pop_Chng ) как переменную-предиктор.

    Просмотр результатов

    Коэффициенты регрессии

    Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.

    На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на.40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p<.05 . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на.65.

    Распределение переменных

    Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .

    Рис. 6. Гистограмма переменной Pt_Poor.

    Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся "внутри диапазона."

    Рис. 7. Гистограмма переменной Pt_Poor.

    Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.

    Диаграмма рассеяния

    Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.

    Рис. 8. Диаграмма рассеяния.

    Диаграмма рассеяния показывает явную отрицательную корреляцию (-.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.

    Критерии значимости

    Рис. 9. Таблица, содержащая критерии значимости.

    Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p<.001 .

    Итог

    На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.