Что такое ком порт в компьютере. Подключаем com порт usb в Windows

StopBits - задает количество стоповых бит. Поле может
принимать следующие значения:


  • ONESTOPBIT - один стоповый бит;
  • ONE5STOPBIT - полтора стоповых бита (практически не
    используется);
  • TWOSTOPBIT - два стоповых бита.

После того как все поля структуры DCB заполнены, необходимо
произвести конфигурирование порта, вызвав функцию SetCommState:

BOOL SetCommState(

HANDLE hFile,

LPDCB lpDCB

В случае успешного завершения функция вернет отличное от нуля
значение, а в случае ошибки - нуль.

Второй обязательной структурой для настройки порта является
структура COMMTIMEOUTS. Она определяет параметры временных задержек
при приеме-передаче. Вот описание этой структуры:

typedef struct _COMMTIMEOUTS {

DWORD ReadIntervalTimeout;

DWORD ReadTotalTimeoutMultiplier;

DWORD ReadTotalTimeoutConstant;

DWORD WriteTotalTimeoutMultiplier;

DWORD WriteTotalTimeoutConstant;

} COMMTIMEOUTS,*LPCOMMTIMEOUTS;

Поля структуры COMMTIMEOUTS имеют следующие значения:


  • ReadIntervalTimeout - максимальное временной промежуток
    (в миллисекундах), допустимый между двумя считываемыми с
    коммуникационной линии последовательными символами. Во время
    операции чтения временной период начинает отсчитываться с момента
    приема первого символа. Если интервал между двумя
    последовательными символами превысит заданное значение, операция
    чтения завершается и все данные, накопленные в буфере, передаются
    в программу. Нулевое значение данного поля означает, что данный
    тайм-аут не используется.
  • ReadTotalTimeoutMultiplier - задает множитель (в


    умножается на количество запрошенных для чтения символов.
  • ReadTotalTimeoutConstant - задает константу (в

    операции чтения. Для каждой операции чтения данное значение
    плюсуется к результату умножения ReadTotalTimeoutMultiplier на
    количество запрошенных для чтения символов. Нулевое значение полей
    ReadTotalTimeoutMultiplier и ReadTotalTimeoutConstant означает,
    что общий тайм-аут для операции чтения не используется.
  • WriteTotalTimeoutMultiplier - задает множитель (в
    миллисекундах), используемый для вычисления общего тайм-аута

    умножается на количество записываемых символов.
  • WriteTotalTimeoutConstant - задает константу (в
    миллисекундах), используемую для вычисления общего тайм-аута
    операции записи. Для каждой операции записи данное значение
    прибавляется к результату умножения WriteTotalTimeoutMultiplier на
    количество записываемых символов. Нулевое значение полей
    WriteTotalTimeoutMultiplier и WriteTotalTimeoutConstant означает,
    что общий тайм-аут для операции записи не используется.

Немного поподробнее о тайм-аутах. Пусть мы считываем из порта 50
символов со скоростью 9 600 бит/с. Если при этом используется 8 бит
на символ, дополнение до четности и один стоповый бит, то на один
символ в физической линии приходится 11 бит (включая стартовый бит).
Значит, 50 символов на скорости 9 600 бит/с будут приниматься

50×11/9600=0,0572916 с

или примерно 57,3 миллисекунды, при условии нулевого интервала
между приемом последовательных символов. Если же интервал между
символами составляет примерно половину времени передачи одного
символа, т. е. 0,5 миллисекунд, то время приема будет

50×11/9600+49×0,0005=0,0817916 с

или примерно 82 миллисекунды. Если в процессе чтения прошло более
82 миллисекунд, то мы вправе предположить, что произошла ошибка в
работе внешнего устройства и можем прекратить считывание, тем самым
избежав зависания программы. Это и есть общий тайм-аут операции
чтения. Аналогично существует и общий тайм-аут операции записи.

Формула для вычисления общего тайм-аута операции, например,
чтения, выглядит так:

NumOfChar x ReadTotalTimeoutMultiplier +
ReadTotalTimeoutConstant

где NumOfChar - число символов, запрошенных для операции чтения.

В нашем случае тайм-ауты записи можно не использовать и
установить их равными нулю.

После заполнения структуры COMMTIMEOUTS, необходимо вызвать
функцию установки тайм-аутов:

BOOL SetCommTimeouts(

HANDLE hFile,

LPCOMMTIMEOUTS lpCommTimeouts

Поскольку операции передачи-приема ведутся на малой скорости,
используется буферизация данных. Для задания размера буфера приема и
передачи необходимо воспользоваться функцией:

BOOL SetupComm(

HANDLE hFile,

DWORD dwInQueue,

DWORD dwOutQueue

Допустим, вы обмениваетесь с внешним устройством пакетами
информации размером 1024 байта, тогда разумным размером буферов
будет значение 1200. Функция SetupComm интересна тем, что она может
просто принять ваши размеры к сведению, внеся свои коррективы, либо
вообще отвергнуть предложенные вами размеры буферов - в таком случае
эта функция завершится ошибкой.

Приведу пример открытия и конфигурирования последовательного
порта COM1. Для краткости - без определения ошибок. В данном примере
порт открывается для работы со скоростью 9 600 бит/c, используется 1
стоповый бит, бит четности не используется:

#include

. . . . . . . . . .

HANDLE handle;

COMMTIMEOUTS CommTimeOuts;

DCB dcb;

handle = CreateFile(«COM1», GENERIC_READ | GENERIC_WRITE,
NULL, NULL, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL);

SetupComm(handle, SizeBuffer, SizeBuffer);

GetCommState(handle, &dcb);

dcb.BaudRate = CBR_9600;

dcb.fBinary = TRUE;

dcb.fOutxCtsFlow = FALSE;

dcb.fOutxDsrFlow = FALSE;

dcb.fDtrControl = DTR_CONTROL_HANDSHAKE;

dcb.fDsrSensitivity = FALSE;

dcb.fNull = FALSE;

dcb.fRtsControl = RTS_CONTROL_DISABLE;

dcb.fAbortOnError = FALSE;

dcb.ByteSize = 8;

dcb.Parity = NOPARITY;

dcb.StopBits = 1;

SetCommState(handle, &dcb);

CommTimeOuts.ReadIntervalTimeout= 10;

CommTimeOuts.ReadTotalTimeoutMultiplier = 1;

// значений этих тайм – аутов вполне хватает для уверенного
приема

// даже на скорости 110 бод

CommTimeOuts.ReadTotalTimeoutConstant = 100;

// используется в данном случае как время ожидания
посылки

CommTimeOuts.WriteTotalTimeoutMultiplier = 0;

CommTimeOuts.WriteTotalTimeoutConstant = 0;

SetCommTimeouts(handle, &CommTimeOuts);

PurgeComm(handle, PURGE_RXCLEAR);

PurgeComm(handle, PURGE_TXCLEAR);

После открытия порта первым делом необходимо сбросить его, так
как в буферах приема и передачи может находиться “мусор”. Поэтому в
конце примера мы применили ранее не известную нам функцию
PurgeComm:

BOOL PurgeComm(

HANDLE hFile,

DWORD dwFlags

Эта функция может выполнять две задачи: очищать очереди
приема-передачи в драйвере или же завершать все операции
ввода-вывода. Какие именно действия выполнять, задается другим
параметром:


  • PURGE_TXABORT
    записи, даже если они не завершены;
  • PURGE_RXABORT - немедленно прекращает все операции
    чтения, даже если они не завершены;
  • PURGE_TXCLEAR - очищает очередь передачи в драйвере;
  • PURGE_RXCLEAR - очищает очередь приема в
    драйвере.
    Эти значения можно комбинировать с помощью побитовой
    операции OR. Очищать буферы рекомендуется также после ошибок
    приема-передачи и после завершения работы с портом.

Настало время для рассмотрения непосредственно операций
чтения-записи для порта. Как и для работы с файлами, используются
функции ReadFile и WriteFile. Вот их прототипы:

BOOL ReadFile(

HANDLE hFile,

LPVOID lpBuffer,

DWORD nNumOfBytesToRead,

LPDWORD lpNumOfBytesRead,

LPOVERLAPPED lpOverlapped

BOOL WriteFile(

HANDLE hFile,

LPVOID lpBuffer,

DWORD nNumOfBytesToWrite,

LPDWORD lpNumOfBytesWritten,

LPOVERLAPPED lpOverlapped

Рассмотрим назначение параметров этих функций:


  • hFile - описатель открытого файла коммуникационного
    порта;
  • lpBuffer - адрес буфера. Для операции записи данные из
    этого буфера будут передаваться в порт. Для операции чтения в этот
    буфер будут помещаться принятые из линии данные;
  • nNumOfBytesToRead, nNumOfBytesToWrite - число ожидаемых
    к приему или предназначенных для передачи байт;
  • nNumOfBytesRead, nNumOfBytesWritten - число фактически
    принятых или переданных байт. Если принято или передано меньше
    данных, чем запрошено, то для дискового файла это свидетельствует
    об ошибке, а для коммуникационного порта - совсем не обязательно.
    Причина в тайм-аутах.
  • LpOverlapped - адрес структуры OVERLAPPED, используемой
    для асинхронных операций.

В случае нормального завершения функции возвращают значение,
отличное от нуля, в случае ошибки - нуль.

Приведу пример операции чтения и записи:

#include

…………..

DWORD numbytes, numbytes_ok, temp;

COMSTAT ComState;

OVERLAPPED Overlap;

char buf_in = «Hello!»;

numbytes = 6;

// если temp не равно нулю, значит - порт в состоянии
ошибки

if(!temp) WriteFile(handle, buf_in, numbytes,
&numbytes_ok, &Overlap);

ClearCommError(handle, &temp, &ComState);

if(!temp) ReadFile(handle, buf_in, numbytes, &numbytes_ok,
&Overlap);

// в переменной numbytes_ok содержится реальное число
переданных-

// принятых байт

В этом примере мы использовали две неизвестные нам ранее
структуры COMSTAT и OVERLAPPED, а также функцию ClearCommError. Для
нашего случая связи “по трем проводам” структуру OVERLAPPED можно не
рассматривать (просто использовать, как в примере). Прототип функции
ClearCommError имеет вид:

BOOL ClearCommError(

HANDLE hFile,

LPDWORD lpErrors,

LPCOMSTAT lpStat

Эта функция сбрасывает признак ошибки порта (если таковая имела
место) и возвращает информацию о состоянии порта в структуре
COMSTAT:

typedef struct _COMSTAT

DWORD fCtsHold:1;

DWORD fDsrHold:1;

DWORD fRlsdHold:1;

DWORD fXoffHold:1;

DWORD fXoffSent:1;

DWORD fEof:1;

DWORD fTxim:1;

DWORD fReserved:25;

DWORD cbInQue;

DWORD cbOutQue;

} COMSTAT, *LPCOMSTAT;

Нам могут пригодиться два поля этой структуры:


  • CbInQue - число символов в приемном буфере. Эти символы
    приняты из линии, но еще не считаны функцией ReadFile;
  • CbOutQue - число символов в передающем буфере. Эти
    символы еще не переданы в линию.

Остальные поля данной структуры содержат информацию об
ошибках.

И наконец, после завершения работы с портом его следует закрыть.
Закрытие объекта в Win32 выполняет функция CloseHandle:

BOOL CloseHandle(

HANDLE hObject

На нашем сайте вы можете найти полный текст класса для работы с
последовательным портом в асинхронном режиме “по трем проводам”, а
также пример программы с использованием этого класса. Все это
написано под Builder С++, но, поскольку используются только функции
API Win32, текст программы легко изменить под любой компилятор С++.
Возможно также, что класс написан не совсем “по правилам” - прошу
извинить, автор не является “правильным” программистом и пишет так,
как ему удобно J .

Ой, а что это за штучка? Зачем она нужна? Ничего, если я пальцем потрогаю? Что? Лучше не надо? Хорошо, не буду. Но мне страсть как интересно: разъём в компьютере есть, а никто ничего к нему почему-то не подключает. Как он вообще называется? Порт? Ух ты! Класс! А что это такое?..

Этот порт также называется серийным (Serial port ), хотя сокращение «COM» на самом деле означает «коммуникационный» - Communication port (изначально предназначен для двустороннего движения данных - настоящей коммуникации). А ещё чаще его именуют последовательным , поскольку передаёт биты строго один за другим.

Кроме последовательного, в компьютерах есть и параллельный порт, предназначенный, в основном, для подключения принтеров. Его нередко так и называют: принтерный. Там передача данных номинально односторонняя (хотя лишь номинально).

Вполне возможно, COM-порт есть и в вашем компьютере. Это, скорее всего, слегка продолговатое гнездо с девятью контактами в два ряда, пять и четыре штуки в каждом, а также с резьбой для болтиков на концах. К нему полагается кабель с разъёмом, соответственно, с девятью гнёздами, расположенными в такой же конфигурации.

Разъём вставляется в гнездо с контактами и прикручивается вышеуказанными болтиками, чтобы не выпасть. Таким образом можно, к примеру, соединить напрямую два компьютера с помощью нуль-модемного кабеля. Что и делалось раньше, в эпоху первых ПК.

Нынче таким образом подключают спутниковые ресиверы, приборы различных систем безопасности, комплексы управления производственным процессом и прочие заумные устройства.

Вероятно, такой порт есть и в вашем ноутбуке (конечно, если оный имеется у вас в хозяйстве). Он служит, например, для синхронизации с настольным компьютером. Правда, на практике в наши дни такое соединение используется не так уж часто - никто не хочет морочить себе голову с кабелями, ведь можно использовать другие технологии, более современные и эффективные.

Нынче для коммуникации с разными устройствами всё чаще используют USB-порт (он тоже, кстати, фактически последовательный). Мобильные модемы, принтеры, адаптеры Wi-Fi - всё большее количество приборов подключается именно через USB.

Кроме того, при наличии таких технологий как Ethernet и FireWire (для Apple), соединять компьютеры проводами через COM-порты не так уж целесообразно. Ну а если вспомнить о Bluetooth (что переводится как «синий зуб»), то и вовсе можно отправлять последовательный порт в музей.

Впрочем, операционная система Windows по-прежнему называет свои каналы передачи информации не иначе как COM1, COM2 и так далее.

Почему? Потому что драйверы, к примеру, для того же Bluetooth, могут представляться системе именно как COM-порты. Мол, а вот и мы, прошу любить и жаловать, извольте назначить нам каналы для обмена данными. Ну и что, что мы как бы не совсем настоящие? Всё равно придётся нас обслуживать.

В Unix (и её разновидностях вроде Linux) тоже есть некоторые особенности по поводу отношения к подключаемым устройствам. Поскольку Unix считает всё вокруг файлами (даже оборудование!), то и держит свои последовательные порты в виде оных с именами вроде ttyS0, ttyS1, ttyS2 (если это Linux) или ttyu0, ttyu1, ttyu2 (в FreeBSD).

Если вы являетесь простым пользователем и вам не доводится работать со специфическими приборами, спутниковыми ресиверами и прочими хитрыми устройствами, то совершенно незачем бежать в компьютерные магазины и искать кабель для COM-порта.

Данные из одного компьютера в другой можно перекачать множеством других способов, в том числе и вообще без каких либо проводов. В крайнем случае, перенести на флэшке, если локальная сеть по какой-либо причине не функционирует.

Коротко говоря, хотя такая штука как COM-порт продолжает существовать с точки зрения операционной системы и даже используется в качестве канала связи виртуально, на практике большинству пользователей можно о нём забыть с совершенно спокойной совестью.

Правда, любознательность - это всегда похвально. Так что спрашивайте, интересуйтесь, изучайте. Но руками без разрешения лучше не трогайте.

Предыдущие публикации:

В последнее время последовательный способ передачи данных вытесняет параллельный.
За примерами далеко ходить не надо: появление шин USB и SATA говорит само за себя.
И действительно, параллельную шину трудно масштабировать (удлинить шлейф, увеличить частоту тактирования шины), неудивительно, что технологии поворачиваются к параллельным шинам задней частью.

Последовательные интерфейсы

На сегодня существует великое множество различных интерфейсов последовательной передачи данных.
Кроме уже упомянутых USB и SATA еще можно вспомнить как минимум два широко известных стандарта RS-232 и MIDI (он же и GamePort).
Объединяет их все то же - последовательная передача каждого бита информации, или Serial Interface.
Преимуществ у подобных интерфейсов великое множество, и самое главное из них - малое количество соединительных проводов, а следовательно, меньшая цена.

Передача данных

Последовательную передачу данных можно реализовать двумя способами: асинхронным и синхронным.

Синхронная передача данных предполагает синхронизацию работы приемника и передатчика посредством включения тактовой информации в передаваемый сигнал или путем использования специальной синхро-линии.
Приемник и передатчик должны быть соединены специальным синхронизационным кабелем, который обеспечивает работу устройств на одной частоте.

Асинхронная передача подразумевает использование специальных битов, маркирующих начало и конец данных – стартового (логический ноль) и стопового (логическая единица) бита.
Также возможно использование специального бита четности, который определяет четное или нечетное количество передаваемых единичных битов (в зависимости от принятого соглашения).
На принимающей стороне проводится анализ этого бита, и если бит четности не соответствует количеству единичных битов, то пакет данных пересылается снова.

Стоит отметить, что такая проверка позволяет обнаружить ошибку только в том случае, если был передан неправильно только один бит, в случае, если неправильно передались несколько битов, эта проверка уже становится некорректной.
Посылка следующего пакета данных может происходить в любой момент после посылки стопового бита, и, естественно, должна начинаться со стартового бита.
Ничего не понятно?

Ну, если бы все компьютерные технологии были просты, то любая домохозяйка давно бы уже лепила параллельно с пельменями новые протоколы …
Попробуем взглянуть на процесс по-другому.
Данные передаются пакетами, примерно как IP пакеты, вместе с данными идут и информационные биты, количество этих битов может варьироваться от 2 до 3 с половиной.
С половиной?!
Да, ты не ослышался, именно с половиной!

Стоповый бит, а вернее передаваемый сигнал соответствующий стоповому биту, может иметь длительность большую, чем сигнал соответствующий биту-единице, но меньшую чем для двух битов.
Так вот, пакет всегда начинается со стартового бита, который всегда имеет значение ноль, после чего идут биты данных, потом бит четности, а потом и стоповый бит, всегда равный единице.
Потом через некоторый произвольный промежуток времени поход битов на Москву продолжается.

Такой способ передачи подразумевает, что приемник и передатчик должны работать с одной скоростью (ну, или почти с одной), иначе пришедшие биты данных приемник будет либо не успевать обрабатывать, либо принимать старый бит за новый.
Для того чтобы этого избежать, каждый бит стробируется, то есть посылается синхронно со специальным сигналом - «стробом», формируемым внутри прибора.
Существует ряд определенных скоростей работы асинхронных устройств - 50, 75, 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19 200, 38 400, 57 600 и 115 200 бит в секунду.

Ты наверняка слышал, что в качестве единицы измерения скорости передачи данных используется «бод» - частота изменения состояния линии, и эта величина будет совпадать со скоростью передачи данных только в случае если сигнал может иметь одно из двух значений.
Если же в одном изменении сигнала закодировано несколько бит (а это встречается у многих модемов), скорость передачи и частота изменения линии будут совершенно различными величинами.

Теперь пару слов о загадочном термине «пакет данных».
Под пакетом в данном случае понимается набор битов, передаваемых между стартовым и стоповым битами.
Их число может изменяться от пяти до восьми.
Можно задаться вопросом, почему именно пять-восемь бит?
Почему бы не передать сразу, скажем, килобайт данных внутри пакета?

Ответ очевиден: передавая маленькие пакеты данных, мы пусть и проигрываем, отправляя с ними три служебных бита (от 50 до 30 процентов данных), зато если при передаче пакет будет испорчен, мы легко узнаем это (помнишь про бит четности?) и быстро передадим его снова.
А вот в килобайте данных ошибку обнаружить будет уже трудно, и передавать его будет гораздо сложнее.

В качестве примера асинхронного последовательного устройства передачи данных можно привести COM-порт компьютера, любимый модем с дизайном от Труссарди и мышь, подключаемую к этому же порту, которую недалекие секретарши почему-то все время стараются засунуть в PS/2.
Работают все эти устройства по интерфейсу RS-232, вернее по асинхронной его части, поскольку в стандарте описана и синхронная передача данных.

Драйвер AMD Radeon Software Adrenalin Edition 19.9.2 Optional

Новая версия драйвера AMD Radeon Software Adrenalin Edition 19.9.2 Optional повышает производительность в игре «Borderlands 3» и добавляет поддержку технологии коррекции изображения Radeon Image Sharpening.

Накопительное обновление Windows 10 1903 KB4515384 (добавлено)

10 сентября 2019 г. Microsoft выпустила накопительное обновление для Windows 10 версии 1903 - KB4515384 с рядом улучшений безопасности и исправлением ошибки, которая нарушила работу Windows Search и вызвала высокую загрузку ЦП.

Иногда приходится решать задачу связи электронного устройства с компьютером, будь то просто обмен данными или удалённое управление. Эта статья описывает, как это можно реализовать, используя последовательный порт. Главным его преимуществом является то, что стандартный программный интерфейс Windows (API) позволяет производить непосредственное управление выходными линиями, давая прямой контроль над ними, и имеет функцию ожидания некоторого события, связанного с COM-портом. Также стандарт RS-232, по которому выполнены COM-порты, допускает подключение и отключение кабелей во время работы устройств (hot plug).

Описание

COM-порт (последовательный порт) – двунаправленный интерфейс, передающий данные в последовательном виде (бит за битом) по протоколу RS-232. Это довольно-таки распространённый протокол, применяемый для связи одного устройства (например, компьютера) с другими посредством проводов длиной до 30м. Уровни логических сигналов здесь отличаются от стандартных: уровень логической единицы – от +5 до +15В, уровень логического нуля – от -5 до -15В, что требует дополнительных преобразований схемы, но обеспечивает хорошую помехоустойчивость.

Рассмотрим 9-пинововый разъём (DB-9M). Ниже представлена его распиновка:

№ вывода Наименование Характер сигнала Сигнал
1 DCD Входной Data carrier detect
2 RxD Выходной Transmit data
3 TxD Входной Receive data
4 DTR Выходной Data terminal ready
5 GND - Ground
6 DSR Входной Data set ready
7 RTS Выходной Request to send
8 CTS Входной Clear to send
9 RI Входной Ring indicator

Больше всего нас будут интересовать пины 2 (передача данных),3 (приём данных) и 5 (земля). Это минимальный набор для возможности двухстороннего общения приборов.

Подробно останавливаться на описании протокола не буду. Для этого есть ГОСТ’ы и т.п. Поэтому мы пойдём дальше и поговорим о том, как же управлять этим зверем.

Применение

Как уже говорилось, уровни ЛС RS-232 отличаются от стандартных уровней ТТЛ. Следовательно, нам необходимо как-то преобразовывать величины напряжений. Т.е. сделать 5В из +15В и 0В из -15В (и наоборот). Один из способов (и, наверное, самый простой) – использование специальной микросхемы MAX232. Она проста в понимании и одновременно может преобразовывать два логических сигнала.

Ниже приведена схема её включения:


Думаю, трудностей быть не должно. Это один из вариантов использования этой микросхемы: передача данных с микроконтроллера на ЭВМ и наоборот. Передаваемый сигнал поступает на ножки Tx IN с одной стороны и на Rx IN с другой. Входные сигналы снимаются с Tx OUT и Rx OUT соответственно.

Программирование

Для начала поговорим о программировании портов на низком уровне. Так будет более правильно. Я очень много нервов потратил, разбираясь с этим интерфейсом, пока не начал вникать в принцип его работы на более низком уровне, нежели простая передача символов. Если будет понятно это, значит и с языками высокого уровня проблем не будет.

Ниже представлены адреса COM-портов, с которыми нам придётся работать:

Название порта Адрес IRQ
COM 1 3F8h 4
COM 2 2F8h 3
COM 3 3E8h 4
COM 4 2E8h 3

Они могут различаться. Установить значения можно в настройках BIOS’а. Это базовые адреса. От них же и будут зависеть адреса регистров, отвечающие за работу портов:

Адрес DLAB Чтение/Запись Аббревиатура Название регистра
+ 0 =0 Write Transmitter Holding Buffer
=0 Read Receiver Buffer
=1 Read/Write Divisor Latch Low Byte
+ 1 =0 Read/Write IER Interrupt Enable Register
=1 Read/Write Divisor Latch High Byte
+ 2 - Read IIR Interrupt Identification Register
- Write FCR FIFO Control Register
+ 3 - Read/Write LCR Line Control Register
+ 4 - Read/Write MCR Modem Control Register
+ 5 - Read LSR Line Status Register
+ 6 - Read MSR Modem Status Register
+ 7 - Read/Write Scratch Register

Первая колонка – адрес регистра относительно базового. Например, для COM1: адрес регистра LCR будет 3F8h+3=3FB. Вторая колонка – DLAB (Divisor Latch Access Bit) бит, определяющий разное назначение для одного и того же регистра.. Т.е. он позволяет оперировать 12-ю регистрами, используя всего 8 адресов. Например, если DLAB=1, то, обращаясь по адресу 3F8h, мы будем устанавливать значение младшего байта делителя частоты тактового генератора. Если же DLAB=0, то, обращаясь по тому же адресу, в этот регистр будет записан передаваемый или принятый байт.

“Нулевой” регистр

Ему соответствуют регистры приёма/передачи данных и установки коэффициента делителя частоты генератора. Как уже было сказано выше, если DLAB=0, то регистр используется для записи принимаемых/передаваемых данных, если же он равен 1, то устанавливается значение младшего байта делителя частоты тактового генератора. От значения этой частоты зависит скорость передачи данных. Старший байт делителя записывается в следующую ячейку памяти (т.е. для порта COM1 это будет 3F9h). Ниже приведена зависимость скорости передачи данных от коэффициента делителя:

Interrupt Enable Register (IER)

Если DLAB=0, то он используется как регистр управления прерываниями от асинхронного адаптера, если DLAB=1, то в нём задаётся старший байт делителя частоты тактового генератора.

Interrupt Identification Register (IIR)

Прерывание – это событие, при котором останавливается выполнение основной программы и начинается выполнение процедуры прерываний. Этот регистр определяет тип произошедшего прерывания.

Line Control Register (LCR)

Это управляющий регистр.

Бит 7 1 Divisor Latch Access Bit – задание скорости обмена данными
0 Обычнй режим (управление прерываниями, приём/передача данных)
Бит 6 Имитировать обрыв линии (посылает последовательность из нескольких нулей)
Биты 3 – 5 Бит 5 Бит 4 Бит 3 Выбор чётности
X X 0 No Parity
0 0 1 Odd Parity
0 1 1 Even Parity
1 0 1 High Parity (Sticky)
1 1 1 Low Parity (Sticky)
Бит 2 Кол-во стоп-битов
0 1 стоп-бит
1 2 стоп-бита при 6,7 или 8 бит данных или 1.5 стоп-бита при 5 битах данных.
Биты 0 And 1 Бит 1 Бит 0 Число битов данных
0 0 5 бит
0 1 6 бит
1 0 7 бит
1 1 8 бит

Проверка чётности подразумевает под собой передачу ещё одного бита – бита чётности. Его значение устанавливается таким образом, чтобы в пакете битов общее количество единиц (или нулей) было четно или нечетно, в зависимости от установки регистров порта. Этот бит служит для обнаружения ошибок, которые могут возникнуть при передаче данных из-за помех на линии. Приемное устройство заново вычисляет четность данных и сравнивает результат с принятым битом четности. Если четность не совпала, то считается, что данные переданы с ошибкой.

Стоп-бит означает окончание передачи данных.

Modem Control Register (MCR)

Регистр управления модемом.

Бит Значение
0 Линия DTR
1 Линия RTS.
2 Линия OUT1 (запасная)
3 Линия OUT2 (запасная)
4 Запуск диагностики при входе асинхронного адаптера, замкнутом на его выход.
5-7 Равны 0

Line Status Register (LSR)

Регистр, определяющий состояние линии.

Бит Значение
0 Данные получены и готовы для чтения, автоматически сбрасывается при чтении данных.
1 Ошибка переполнения. Был принят новый байт данных, а предыдущий ещё не был считан программой. Предыдущий байт потерен.
2 Ошибка чётности, сбрасывается после чтения состояния линии.
3 Ошибка синхронизации.
4 Обнаружен запрос на прерывание передачи "BREAK" – длинная строка нулей.
5 Регистр хранения передатчика пуст, в него можно записать новый байт для передачи.
6 Регистр сдвига передатчика пуст. Этот регистр получает данные из регистра хранения и преобразует их в последовательный вид для передачи.
7 Тайм-аут (устройство не связано с компьютером).

Modem Status Register (MSR)

Регистр состояния модема.

Ну вот и всё. Оперируя этими регистрами, можно напрямую общаться с COM-портом, управлять передачей и приёмом данных. Если вам не хочется возиться с памятью, можно воспользоваться уже готовыми компонентами для различных сред программирования: C++, VB, Delphi, Pascal и т.д. Они интуитивно понятны, поэтому, думаю, здесь не стоит заострять на них внимание.

Serial port (серийный порт, последовательный порт или COM-порт -, communications port) — это последовательный интерфейс с двойной направленностью.

Почему порт назвается последовательным? Потому, что вся информация по этому порту передается шагом равным одному биту. В нем данные передаются бит за битом, в отличие от параллельного порта.

Несмотря на то, что в некоторых других интерфейсах как, например, в Ethernet , FireWire и USB , применяется последовательный обмен данными, название «последовательный порт» закрепилось за портом, обладающим стандартом RS-232C .

Данный порт, в сравнении с другими "последовательными" технологиями, обладает отличительной особенностью: в нем отсутствует какое-либо временное требование между 2 байтами. Временные требования существуют только между битами одного байта. Величина, обратная временной паузе между битами одного байта, носит название «baud rate» (скорость передачи). Кроме того, в данной технологии нет такого понятия, как "пакет". Другие технологии "последовательной" передачи данных (X.25, USB или Ethernet), используют "пакеты", также в них существуют и жесткие временные требования между битами одного пакета.

В части протоколов связи с индустриальным оборудованием имеются жесткие временные требования между байтами последовательного порта. Реализация в многозадачных операционных системах со слабой поддержкой реального времени этих протоколов очень сложна. К этим системам относятся и Windows. Вот почему для работы с этими протоколами зачастую применяют MS-DOS или более устаревшее программное обеспечение.

Самый распространенный для последовательного порта стандарт - RS-232C. Ранее последовательный порт применялся для подключения терминала, позднее его использовали для подключения модема или мыши. В настоящее время его применяют в качестве средства соединения с источниками бесперебойного питания, а также в качестве средства связи с аппаратными средствами разработки встраиваемых вычислительных систем, спутниковыми ресиверами, кассовыми аппаратами и приборами систем безопасности.

Благодаря COM-порту появляется возможность подключить друг к другу два ПК, применяя так называемый «нуль-модемный кабель». Данный метод использовался со времен MS-DOS в целях перекачки файлов с одного компьютера на другой. В UNIX-системах он использовался для терминального доступа к другой машине, а в операционных системах Windows - для отладчика уровня ядра.

Довольно популярный в свое время в IBM-совместимых ПК последовательный порт, сегодня уже морально устарел. Однако, следует отметить, что он еще нередко используется в промышленном и узкоспециальном оборудовании, а также на некоторых современных компьютерах. Последовательный порт активно вытесняется интерфейсом USB и FireWire.

Однако имеются специальные стандарты эмуляции последовательного порта над USB и над Bluetooth . Кстати, любопытно, но именно Bluetooth-технология проектировалась разработчиками в качестве беспроводной версии последовательного порта. Программная эмуляция порта широко используется и по сей день. Так, практически все мобильные телефоны сегодня эмулируют внутри себя COM-порт и модем, с целью реализации тетеринга (доступа компьютера к сети Интернет через GPRS/EGDE/3G). А вот непосредственно для физического подключения к компьютеру применяется USB, Bluetooth или Wi-Fi технологии.

Кроме того, программная эмуляция последовательного порта возможна для гостевых пользователей виртуальных машин VMWare и Microsoft Hyper-V. Основной целью данной процедуры является подключение отладчика уровня ядра Windows к гостевому клиенту.

Достоинства COM-порта

Главное преимущество данной технологии состоит в простоте подключения.

Недостатки COM-порта

Главными недостатками данного порта являются его низкая скорость, большие размеры разъемов, а также высокие требования к времени отклика операционной системы. Также, в данном стандарте наблюдается высокое количество прерываний (одно прерывание на каждые 8 байт).

Разъемы

Самыми распространенными разъемами стандарта являются 9-ти и 25-ти контактные (DB-9 и DB-25, соответственно), которые были стандартизированы в 1969 году. Это D-образные разъемы. Помимо них использовались и другие, но из этого же семейства: DB-31 и круглые восьмиконтактные DIN-8.

Максимальная скорость передачи (в обычном исполнении) достигает 115 200 бод.

Аппаратура

Разъем обладает следующими контактами:

  • DTR (Data Terminal Ready) - выход на ПК, вход - на модеме. Отвечает за готовность компьютера к работе с модемом. Сброс вызывает почти полную перезагрузку модема. В случае с мышью, данный провод используется для осуществления питания.
  • DSR (Data Set Ready) - вход на ПК, выход - на модеме. Отвечает за готовность модема. Если линия в нуле, то в некоторых операционных системах невозможно открыть порт в качестве файла.
  • RxD (Receive Data) - вход на ПК, выход - на модеме. Обозначает поток входящих в ПК данных.
  • TxD (Transmit Data) - выход на ПК, вход - на модеме. Обозначает поток исходящих от ПК данных.
  • CTS (Clear to Send) - вход на ПК, выход - на модеме. Компьютер должен приостановить процесс передачи данных, пока данный провод не будет выставлен в единицу. Применяется в аппаратном протоколе управления потоком в целях недопущения переполнения на модеме.
  • RTS (Request to Send) - выход на ПК, вход - на модеме. Модем должен приостановить процесс передачи данных, до тех пор, пока провод не будет выставлен в единицу. Применяется в аппаратном протоколе управления потоком в целях недопущения переполнения в оборудовании/драйвере.
  • DCD (Carrier Detect) - вход на ПК, выход - на модеме. После установления связи с модемом с той стороны возводится в единицу, сбрасывается в ноль, в случае разрыва связи. Аппаратура ПК может производить прерывание, в случае наступления подобного события.
  • RI (Ring Indicator) - вход на ПК, выход - на модеме. После детерминации вызывного сигнала телефонного звонка, возводится модемом в единицу. Аппаратная часть ПК может производить прерывание, в случае наступления подобного события.
  • SG (Signal Ground) - общий сигнальный провод порта. Важно: земля - не общая . Обычно провод имеет изоляцию от корпуса ПК или модема.

В нуль-модемном кабеле применяются две перекрещенные пары: TXD/RXD и RTS/CTS.

UART 16550 - стандартная аппаратура порта. Сегодня включена в SuperIO микросхему на материнской плате. Со времен IBM PC, она оснащена аппаратной очередью байтов. Она существенно снижает число возникающих прерываний.