Импульсные и цифровые устройства. Импульсные устройства

ИМПУЛЬСНАЯ ТЕХНИКА, область радиотехники и электроники, охватывающая разработку и использование методов и средств генерирования, преобразования и усиления электрических импульсов, их измерения и индикации, а также исследование импульсных процессов в электрических цепях. Наиболее широко электрические импульсы - как одиночные, так и последовательности (серии) импульсов, образующих импульсные сигналы, - используются в системах автоматики, телемеханики и вычислительной техники, радиосвязи и радиолокации, телевидения и измерительной техники.

Импульсные сигналы, несущие информацию или управляющие работой электронных устройств, различаются по амплитуде, длительности и частоте следования импульсов, а также их взаимному расположению в серии. Большое значение в импульсной технике имеет скважность - отношение периода повторения импульсов одной серии к их длительности. Скважность, например, определяет отношение пиковой мощности импульсных сигналов к их средней мощности, что для многих импульсных устройств является важнейшим показателем работы.

Длительность импульсов в зависимости от области применения может изменяться в значительных пределах. В автоматике, например, оперируют с импульсами длительностью порядка 0,01-1 с, в импульсной радиосвязи - 10 -4 -10 -6 с, в вычислительной технике - до 10 -9 с. Часто даже в одной области техники применяют импульсы с различной длительностью и частотой следования. При воздействии импульсов тока или напряжения на электрическую цепь, обладающую свойством запасать энергию, возникают переходные процессы, значение которых в импульсной технике весьма велико. Явления, связанные с переходными процессами, часто используют в работе импульсных устройств, но в ряде случаев они оказывают вредное влияние и приводят к схемному и конструктивному усложнению аппаратуры. Специфичность методов и средств формирования, преобразования, измерения и регистрации импульсных сигналов и анализа процессов в импульсных устройствах обусловлены главным образом их нестационарностью.

Для импульсных сигналов характерна высокая концентрация энергии в небольших временных интервалах; например, мощность в радиоимпульсе, излучаемом радиолокационным передатчиком, достигает десятков МВт и более, что в несколько тысяч раз выше мощности, усреднённой за время передачи всей последовательности импульсов. Такая концентрация энергии позволяет решать многие задачи при передаче электрических сигналов, когда отклик на выходе системы пропорционален мощности сигнала на её входе. Мощные кратковременные электромагнитные импульсы широко применяются в физических исследованиях свойств материи, сопровождают природные явления. Воздействия электромагнитных импульсов приводят к нарушениям работы в первую очередь систем энергоснабжения, к помехам, перебоям в работе радиотехнических служб (связи, вещания, радиолокации, радионавигации, радиоастрономии и др.), радиоэлектронной аппаратуры.

Первые импульсные системы - искровые радиопередатчики для телеграфных и речевых сигналов - созданы А. С. Поповым в 1895 и 1903 годах соответственно. Бурное развитие импульсной техники с начала 1930-х годов связано, прежде всего, с зарождением и совершенствованием радиолокации и телевидения. В 1930-40-х годах были заложены основы формирования импульсов практически любой формы с помощью усилительных элементов - радиоламп, а также пассивных элементов - резисторов, конденсаторов, катушек индуктивности; в 1950-х годах на смену радиолампам пришли транзисторы, позднее интегральные аналоговые микросхемы, всё шире стали применяться цифровые методы. В конце 20 века формирование импульсов аппаратным методом заменяется формированием вычислительными (программными) методами, позволяющими синтезировать импульсы заданной формы с необходимыми параметрами.

С. Л. Мишенков.

Импульсные устройства предназначены для генерирования, формирования, усиления, передачи, преобразования и измерения электрической импульсов. К ним относятся импульсные генераторы, импульсные трансформаторы, триггеры, мультивибраторы, счётчики импульсов и др. Импульсные устройства подвергаются прерывистому воздействию электрических сигналов, различающихся по форме, амплитуде и длительности, частоте следования, а также по расположению их в серии согласно избранному виду импульсной модуляции и некоторому условному коду. В импульсных устройствах используются одиночные импульсы и последовательности (серии) импульсов. В радиолокаторах, системах радионавигации, радиосвязи и т. п. импульсные сигналы имеют частотное заполнение от десятков Гц до десятков ГГц. С помощью импульсных устройств можно весьма точно фиксировать время воздействия импульсных сигналов, изготовлять бесконтактные электронные ключи. В логических схемах на импульсных устройствах используется чёткое разделение двух возможных состояний электронной схемы: «есть напряжение» - «нет напряжения» («да» - «нет»). Для выполнения логических операций разной сложности служат, например, дифференцирующие цепи и интегрирующие цепи, формирующие линии, импульсные трансформаторы и усилители, линии задержки, ограничители, фиксаторы уровня, пересчётные схемы, триггеры, мультивибраторы, блокинг-генераторы, импульсные делители частоты, селекторы импульсов, кодирующие устройства (и декодирующие), дешифраторы, матрицы, элементы памяти ЭВМ и др. С помощью соответствующих преобразований и логических операций над импульсными сигналами выделяют, анализируют, распознают и регистрируют полезную информацию, содержащуюся в обрабатываемых импульсах. Импульсные устройства широко применяются в радиоизмерительных приборах (частотомерах, осциллографах, анализаторах спектра, измерителях временных интервалов и др.).

Лит.: Ицхоки Я. С., Овчинников Н. И. Импульсные цифровые устройства. М., 1972; Ерофеев Ю. Н. Импульсные устройства. 3-е изд. М., 1989, Зельдин Е. А. Импульсные устройства на микросхемах. М., 1991; Фролкин В. Т., Попов Л. Н. Импульсные и цифровые устройства. М., 1992; Браммер Ю. А., Пащук И. Н. Импульсные и цифровые устройства. 8-е изд. М., 2006.

В книге описаны импульсные и цифровые сигналы, элементная база импульсных и цифровых устройств, формирователи, усилители и генераторы импульсов, триггеры, цифровые функциональные узлы и устройства.
Для студентов электрорадиоприборостроительных средних профессиональных учебных заведений.

Структура импульсных сигналов.
Для сокращения написания сигналы импульсных устройств будем называть импульсными. Случаи, когда это может привести к смещению понятий, будут отмечены особо.

Ранее подчеркивалось, что информация запечатлевается в изменениях электрического колебания. Импульсная последовательность становится сигналом, когда в соответствии с передаваемой информацией изменяются ее параметры: амплитуда импульсов, их длительность или фаза. В частном случае информация может выражаться появлением импульса, изменением его длительности или временного положения относительно опорного импульса.

Различают амплитудно-импульсную (АИМ), широтно-импульсную (ШИМ) и фазоимпульсную (ФИМ) модуляции. При каждом виде модуляции один из параметров импульсной последовательности принимает значение, пропорциональное величине непрерывного модулирующего сигнала в момент присутствия импульса.

ОГЛАВЛЕНИЕ
Предисловие
Введение
Глава 1. Сигналы импульсных и цифровых устройств
§ 1.1. Общие сведения
§ 1.2. Сигналы импульсных устройств
§ 1.3. Сигналы цифровых устройств
Глава 2. Импульсные усилители и ключи
§ 2.1. Общие сведения
§ 2.2. Статический режим транзисторного усилителя
§ 2.3. Некоррелированный транзисторный усилитель
§ 2.4. Корректированный транзисторный усилитель
§ 2.5. Эмиттерный повторитель
§ 2.6. Интегральные усилители
§ 2.7. Транзисторные ключи
Контрольные вопросы и упражнения
Глава 3. Элементная база импульсных и цифровых устройств
§ 3.1. Общие сведения
§ 3.2. Операционные усилители
§ 3.3. Аналоговые компараторы
§ 3.4. Простейшие логические элементы ИЛИ, И, НЕ
§ 3.5. Логические элементы И-НЕ, ИЛИ-НЕ
§ 3.6. Параметры логических элементов
§ 3.7. Реализация логических функций в разных базисах
Контрольные вопросы и упражнения
Глава 4. Формирователи импульсов
§ 4.1. Общие сведения
§ 4.2. Дифференцирующие цепи
§ 4.3. Интегрирующие цепи
§ 4.4. Интеграторы и дифференциаторы на микросхемах операционных усилителей
§ 4.5. Диодные ограничители амплитуды
§ 4.6. Транзисторный усилитель-ограничитель
§ 4.7. Ограничители на микросхемах операционных усилителей
§ 4.8. Формирователь импульсов с контуром ударного возбуждения
§ 4.9. Формирующие линии
§ 4.10. Формирователи импульсов на логических элементах
Контрольные вопросы и упражнения
Глава 5. Генераторы прямоугольных импульсов
§ 5.1. Общие сведения
§ 5.1. Транзисторные мультивибраторы
§ 5.3. Интегральные мультивибраторы
§ 5.4. Мультивибраторы на логических элементах
§ 5.5. Мультивибраторы на микросхемах операционных усилителей
§ 5.6. Транзисторные блокинг-генераторы
§ 5.7. Блокинг-генераторы на интегральных микросхемах
Контрольные вопросы и упражнения
Глава 6. Генераторы пилообразных импульсов
§ 6.1. Общие сведения
§ 6.2. Генераторы линейно изменяющегося напряжения
§ 6.3. Генераторы линейно изменяющегося тока
Контрольные вопросы и упражнения
Глава 7. Триггеры
§ 7.1. Общие сведения
§ 7.2. Транзисторные триггеры
§ 7.3. Интегральные триггеры
Контрольные вопросы и упражнения
Глава 8. Функциональные узлы цифровых и импульсных устройств
§ 8.1. Общие сведения
§ 8.2. Счетчики
§ 8.3. Регистры
§ 8.4. Дешифраторы и шифраторы
§ 8.5. Коммутаторы
§ 8.6. Цифровой компаратор
§ 8.7. Сумматоры
§ 8.8. Цифроаналоговые и аналого-цифровые преобразователи
§ 8.9. Полупроводниковые запоминающие устройства
§ 8.10. Программируемая логическая матрица
§ 8.11. Таймеры
Контрольные вопросы и упражнения
Глава 9. Цифровые и импульсные устройства
§ 9.1. Общие сведения
§ 9.2. Преобразователи кодов
§ 9.3. Цифровая индикация
§ 9.4. Электронные часы
§ 9.5. Цифровой вольтметр
§ 9.6. Устройство сбора и отображения информации
§ 9.7. Электронный кодовый замок
§ 9.8. Устройство для умножения кодов
§ 9.9. Формирователь пачек импульсов
§ 9.10. Запоминающее устройство микропроцессорной системы
§ 9.11. Преобразователи напряжение - частота
§ 9.12. Символьный дисплей
§ 9.13. Селекторы импульсов
Заключение
Приложения
Литература.

Дата публикации: 24.02.2014 10:04 UTC

  • Цифровая обработка в оптико-электронных системах, Часть 1, 2017
  • Учебник младшего специалиста радиотехнических войск, Часть 1, Инце А.К., 1980
  • Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий, Федоров А.А., Старкова Л.Е., 1987

МОСКВА «СОВЕТСКОЕ РАДИО»

Книга может служить учебником по курсу «Импульсные и цифровые устройства». В книге излагаются линейные и нелинейные устройства преобразования и формирования импульсных сигналов, электронные ключи, разнообразные импульсные устройства регенеративного типа, устройства формирования пилообразного напряжения и тока, логические схемы, основные элементы цифровых устройств и многокаскадные устройства функционального назначения. При изложении уделяется внимание обеспечению надежного и стабильного режима работы устройств при действии неизбежных в условиях эксплуатации дестабилизирующих факторов и помеховых импульсов.

Ицхоки Я. С, Овчинников Н. И. Импульсные и цифровые устройства. Москва, Издательство «Советское радио». 1972, 592 с

Предисловие

РАЗДЕЛ ПЕРВЫЙ. ОБЩИЕ СВЕДЕНИЯ ОБ ИМПУЛЬСНЫХ ПРОЦЕССАХ
Глава 1. Вводные сведения
§1.1. Импульсный режим работы и его особенности
§ 1.2. Роль импульсной техники в радиоэлектронике
§ 1.3. Предмет курса
§ 1.4. Из истории развития импульсной техники

Глава 2. Характеристика формы импульсов
§2.1. Форма и параметры импульсов
§ 2.2. Параметры типовых импульсов
§ 2.3. Аналитическое выражение импульсов
§ 2.4. Приближенная оценка длительности фронта
§ 2.5. Активная ширина спектра импульсов

РАЗДЕЛ ВТОРОЙ. ЛИНЕЙНЫЕ УСТРОЙСТВА ФОРМИРОВАНИЯ И ПРЕОБРАЗОВАНИЯ ИМПУЛЬСОВ
Глава 3. Интегрирующие цепи
§ 3.1. Назначение и принцип работы интегрирующей цепи
§ 3.2. Требования к параметрам интегрирующей цепи
§ 3.3. Варианты схем интегрирующей цепи

Глава 4. Дифференцирующие и укорачивающие цепи
§ 4.1. Дифференцирующие цепи
§ 4.2 Укорачивающие цепи

Глава 5. Импульсные трансформаторы
§ 5.1 Назначение импульсных трансформаторов
§ 5.2. Намагничивание сердечника трансформатора
§ 5.3. Эквивалентная схема трансформаторной цепи
§ 5.4. Искажение формы трансформированного импульса
§ 5.5. Требования к конструкции трансформатора

Глава 6. Линии временной задержки сигналов
§ 6.1 Назначение линии временной задержки
§ 6.2. Свойства немскажающих электрических систем временной задержки
§ 6.3. Электромагнитные линии временной задержки
§ 6.4. Искусственные линии задержки (ИЛЗ)
§ 6.5. Ультразвуковые линии задержки (УЛЗ)

Глава 7. Линейные формирующие цепи
§ 7.1. Общие положения
§ 7.2. Формирующие электромагнитные линии
§ 7.3. Искусственные формирующие линии
§ 7.4. Формирующие реактивные двухполюсники
§ 7.5. Схемы включения формирующих цепей

РАЗДЕЛ ТРЕТИЙ. ЭЛЕКТРОННЫЕ КЛЮЧИ И НЕЛИНЕЙНЫЕ УСТРОЙСТВА ПРЕОБРАЗОВАНИЯ ФОРМЫ СИГНАЛОВ
Глава 8. Электронные ключи
§ 8.1. Общие положения
§ 8.2. Транзисторный ключ (ТК)
§ 8.3. Переходные процессы в транзисторном ключе
§ 8.4. Варианты транзисторных ключевых схем
§ 8.5. Диодный ключ

Глава 9. Нелинейные устройства преобразования сигналов и формирования импульсов
§ 9.1. Амплитудные ограничители
§ 9.2. Формирование импульсов путем ограничения и дифференцирования синусоидального напряжения
§ 9.3. Пик-трансформатор
§ 9.4. Фиксаторы уровня

РАЗДЕЛ ЧЕТВЕРТЫЙ. РЕГЕНЕРАТИВНЫЕ ИМПУЛЬСНЫЕ УСТРОЙСТВА
Глава 10. Общие свойства регенеративных импульсных устройств
§ 10.1. Принципы построения регенеративных устройств
§ 10.2. Режимы работы регенеративных устройств

Глава 11. Мультивибраторы
§ 11.1. Мультивибраторы с анодно-сеточными связями
§ 11.2. Мультивибратор с коллекторно-базовыми связями
§.11.3. Ждущий мультивибратор с эмиттерной связью
§ 11.4. Типовые схемы ждущих мультивибраторов
§ 11.5. Ждущий мультивибратор с транзисторами разного типа проводимости
§ 11.6. Мультивибратор с мостовыми цепями
§ 11.7. Многофазные мультивибраторы

Глава 12. Блокинг-генераторы
§ 12.1. Общая характеристика блокинг-генератора
§ 12.2. Ламповый блокинг-генератор
§ 12.3. Варианты схем ламповых блокинг-генераторов
§ 12.4. Транзисторный блокинг-генератор

Глава 13. Импульсные делители частоты
§ 13.1 Принцип действия делителя частоты
§ 13.2. Стабильность режима деления частоты
§ 13.3. Ступенчатый делитель частоты

Глава 14. Триггеры
§ 14.1. Общие свойства триггеров и требования к ним
§ 14.2. Симметричный транзисторный триггер
§ 14.3. Схемы запуска триггера
§ 14.4. Обеспечение состояний покоя триггера
§ 14.5. Варианты схем триггеров

Глава 15. Импульсные устройства на полупроводниковых приборах с отрицательным сопротивлением
§ 15.1 Устройства на туннельных диодах (УТД)
§ 15.2. Устройства на лавинных транзисторах (УЛТ)

РАЗДЕЛ ПЯТЫЙ. ГЕНЕРАТОРЫ ЛИНЕЙНО ИЗМЕНЯЮЩЕГОСЯ НАПРЯЖЕНИЯ И ТОКА
Глава 16. Простейшие генераторы линейно изменяющегося напряжения. Методы линеаризации
§ 16.1. Параметры линейно изменяющегося напряжения
§ 16.2. Принцип построения генераторов ЛИН
§ 16.3. Простейшие генераторы ЛИН
§ 16.4. ГЛИН с токостабнлизующим элементом
§ 16.5. ГЛИН с компенсирующей э. д. с, вводимой посредством неинвертирующего усилителя
§ 16.6. ГЛИН с компенсирующей э. д. с, вводимой посредством инвертирующего усилителя

Глава 17. Генераторы ЛИН фантастронного типа
§ 17.1. Общие сведения
§ 17.2. Фантастрон со связью по экранирующей сетке
§ 17.3. Фантастрон с катодной связью
§ 17.4. Транзисторный фантастрон

Глава 18. Генераторы пилообразного тока
§ 18.1. Параметры пилообразного тока
§ 18.2. Принцип формирования пилообразного тока
§ 18.3. Схемы генераторов пилообразного тока

РАЗДЕЛ ШЕСТОЙ. ЭЛЕМЕНТЫ ЛОГИЧЕСКИХ СХЕМ
Глава 19. Общая характеристика логических схем
§ 19.1. Основные логические операции
§ 19.2. Классификация и характеристики логических схем

Глава 20. Основные логические схемы
§ 20.1. Схема логического отрицания (НЕ)
§ 20.2. Диодные схемы логического умножения (И)
§ 20.3. Диодные схемы логического сложения (ИЛИ)
§ 20.4. Логические схемы на туннельных диодах

Глава 21. Сложные и комбинированные логические схемы
§ 21.1. Диодно-транзнсторные логические схемы (ДТЛС)
§ 21.2. Транзисторные логические схемы (ТЛС)
§ 21.3. Логическая схема запрещения (ЗАПРЕТ)
§ 21.4. Логические схемы равнозначности и неравнозначности
§ 21.5. Многоступенчатые диодные логические схемы

РАЗДЕЛ СЕДЬМОЙ. МНОГОКАСКАДНЫЕ ИМПУЛЬСНЫЕ УСТРОЙСТВА
Глава 22. Устройства кодирования сигналов
§ 22.1. Формирование импульсных кодов с фиксированными интервалами между импульсами
§ 22.2 Формирование импульсных кодов с регулируемыми интервалами между импульсами
§ 22.3. Регистрация двоичного цифрового кода
§ 22.4. Диодные дешифраторы
§ 22.5. Цифровые счетчики импульсов
§ 22.6. Кодирование непрерывно изменяющихся величин

Глава 23. Селекция импульсных сигналов
§ 23.1. Общие сведения
§ 23.2. Амплитудная селекция импульсов
§ 23.3 Селекция импульсов по частоте повторения
§ 23.4 Селекция импульсов по длительности
§ 23.5. Селекция кодированной серии импульсов

ПРЕДИСЛОВИЕ

Книга может служить учебником по курсу «Импульсные и цифровые устройства» для ряда радиотехнических вузов. В соответствии с программой курса в книге излагаются линейные и нелинейные устройства преобразования и формирования импульсных сигналов, электронные ключи, релаксаторы, импульсные делители частоты, триггеры, устройства формирования пилообразного напряжения и тока, устройства для выполнения логических операций и некоторые многокаскадные устройства функционального назначения.

Рассматриваются импульсные устройства, построенные на электронных лампах и, в особенности, на полупроводниковых приборах: транзисторах (в основном), диодах, туннельных диодах и лавинных транзисторах. Наряду с изложением принципа работы устройств, и анализом протекающих в них процессов выводятся основные закономерности процессов и расчетные соотношения. При этом особое внимание уделяется выявлению условий устойчивой и надежной работы устройств и выбору надлежащих режимов их работы с учетом действия неизбежных при эксплуатации устройств дестабилизирующих факторов и помеховых импульсов.

Каждая глава книги имеет свою порядковую нумерацию формул, рисунков и таблиц. При ссылке на формулу, рисунок и таблицу другой главы первая цифра указывает номер главы. В целях использования учебника при программированном обучении каждый параграф подразделяется на пункты, пронумерованные по порядку.

Главы 1-15 написаны Ицхоки Я. С., главы 16-24 написаны Овчинниковым Н. И.; общее редактирование книги выполнено Ицхоки Я. С.

Рукопись книги была внимательно просмотрена и обсуждена коллективами специалистов некоторых вузов; при этом был дан ряд полезных советов и рекомендаций. Авторы выражают признательность всем, принявшим участие в просмотре рукописи и ее обсуждении и, в особенности, официальным рецензентам-С. Я. Шацу и Г. Д. Федотову, а также А. А. Куликовскому, Б. X. Кривицкому, В. В. Григорину-Рябову, В. К. Любченко, В. Г. Позднякову, В. П. Дья-Еонову, Я. Е; Беленькому и Б. С. Мушу.

Скачать книгу Ицхоки Я. С., Овчинников Н. И. Импульсные и цифровые устройства . Москва, Издательство «Советское радио»». 1972

Скачать книгу Импульсные и цифровые устройства абсолютно бесплатно.

Для того, чтобы бесплатно скачать книгу с файлообменников нажмите на ссылки сразу за описанием бесплатной книги.

"Импульс - единственная сила, способная преодолеть и инерцию, и силу тяжести". /Уилл Фергюсон/
Лучший учебник советского времени по курсу "Импульсные и цифровые устройства". Если повезет, сейчас можно найти у букинистов. А вообще-то, каждый радиоинженер должен знать этот курс как молитву, так как импульсы "преследуют" нас повсюду: электромагнитные импульсы, видеоимпульсы, короткие и длинные импульсы, импульсные источники питания, импульсные генераторы, радиолокация, лазеры и многое другое.
В книге представлены линейные и нелинейные устройства преобразования и формирования импульсных сигналов, электронные ключи, разнообразные импульсные устройства регенеративного типа, устройства формирования пилообразного напряжения и тока, логические схемы, основные элементы цифровых устройств и многокаскадные устройства функционального назначения.
При изложении уделяется внимание обеспечению надежного и стабильного режима работы устройств при действии неизбежных в условиях эксплуатации дестабилизирующих факторов и помеховых импульсов.

Предисловие
РАЗДЕЛ ПЕРВЫЙ. ОБЩИЕ СВЕДЕНИЯ ОБ ИМПУЛЬСНЫХ ПРОЦЕССАХ
Глава 1. Вводные сведения
§1.1. Импульсный режим работы и его особенности
§ 1.2. Роль импульсной техники в радиоэлектронике
§ 1.3. Предмет курса
§ 1.4. Из истории развития импульсной техники

Глава 2. Характеристика формы импульсов
§2.1. Форма и параметры импульсов
§ 2.2. Параметры типовых импульсов
§ 2.3. Аналитическое выражение импульсов
§ 2.4. Приближенная оценка длительности фронта
§ 2.5. Активная ширина спектра импульсов

РАЗДЕЛ ВТОРОЙ. ЛИНЕЙНЫЕ УСТРОЙСТВА ФОРМИРОВАНИЯ И ПРЕОБРАЗОВАНИЯ ИМПУЛЬСОВ
Глава 3. Интегрирующие цепи
§ 3.1. Назначение и принцип работы интегрирующей цепи
§ 3.2. Требования к параметрам интегрирующей цепи
§ 3.3. Варианты схем интегрирующей цепи

Глава 4. Дифференцирующие и укорачивающие цепи
§ 4.1. Дифференцирующие цепи
§ 4.2 Укорачивающие цепи

Глава 5. Импульсные трансформаторы
§ 5.1 Назначение импульсных трансформаторов
§ 5.2. Намагничивание сердечника трансформатора
§ 5.3. Эквивалентная схема трансформаторной цепи
§ 5.4. Искажение формы трансформированного импульса
§ 5.5. Требования к конструкции трансформатора

Глава 6. Линии временной задержки сигналов
§ 6.1 Назначение линии временной задержки
§ 6.2. Свойства немскажающих электрических систем временной задержки
§ 6.3. Электромагнитные линии временной задержки
§ 6.4. Искусственные линии задержки (ИЛЗ)
§ 6.5. Ультразвуковые линии задержки (УЛЗ)

Глава 7. Линейные формирующие цепи
§ 7.1. Общие положения
§ 7.2. Формирующие электромагнитные линии
§ 7.3. Искусственные формирующие линии
§ 7.4. Формирующие реактивные двухполюсники
§ 7.5. Схемы включения формирующих цепей

РАЗДЕЛ ТРЕТИЙ. ЭЛЕКТРОННЫЕ КЛЮЧИ И НЕЛИНЕЙНЫЕ УСТРОЙСТВА ПРЕОБРАЗОВАНИЯ ФОРМЫ СИГНАЛОВ
Глава 8. Электронные ключи
§ 8.1. Общие положения
§ 8.2. Транзисторный ключ (ТК)
§ 8.3. Переходные процессы в транзисторном ключе
§ 8.4. Варианты транзисторных ключевых схем
§ 8.5. Диодный ключ

Глава 9. Нелинейные устройства преобразования сигналов и формирования импульсов
§ 9.1. Амплитудные ограничители
§ 9.2. Формирование импульсов путем ограничения и дифференцирования синусоидального напряжения
§ 9.3. Пик-трансформатор
§ 9.4. Фиксаторы уровня

РАЗДЕЛ ЧЕТВЕРТЫЙ. РЕГЕНЕРАТИВНЫЕ ИМПУЛЬСНЫЕ УСТРОЙСТВА
Глава 10. Общие свойства регенеративных импульсных устройств
§ 10.1. Принципы построения регенеративных устройств
§ 10.2. Режимы работы регенеративных устройств

Глава 11. Мультивибраторы
§ 11.1. Мультивибраторы с анодно-сеточными связями
§ 11.2. Мультивибратор с коллекторно-базовыми связями
§.11.3. Ждущий мультивибратор с эмиттерной связью
§ 11.4. Типовые схемы ждущих мультивибраторов
§ 11.5. Ждущий мультивибратор с транзисторами разного типа проводимости
§ 11.6. Мультивибратор с мостовыми цепями
§ 11.7. Многофазные мультивибраторы

Глава 12. Блокинг-генераторы
§ 12.1. Общая характеристика блокинг-генератора
§ 12.2. Ламповый блокинг-генератор
§ 12.3. Варианты схем ламповых блокинг-генераторов
§ 12.4. Транзисторный блокинг-генератор

Глава 13. Импульсные делители частоты
§ 13.1 Принцип действия делителя частоты
§ 13.2. Стабильность режима деления частоты
§ 13.3. Ступенчатый делитель частоты

Глава 14. Триггеры
§ 14.1. Общие свойства триггеров и требования к ним
§ 14.2. Симметричный транзисторный триггер
§ 14.3. Схемы запуска триггера
§ 14.4. Обеспечение состояний покоя триггера
§ 14.5. Варианты схем триггеров

Глава 15. Импульсные устройства на полупроводниковых приборах с отрицательным сопротивлением
§ 15.1 Устройства на туннельных диодах (УТД)
§ 15.2. Устройства на лавинных транзисторах (УЛТ)

РАЗДЕЛ ПЯТЫЙ. ГЕНЕРАТОРЫ ЛИНЕЙНО ИЗМЕНЯЮЩЕГОСЯ НАПРЯЖЕНИЯ И ТОКА
Глава 16. Простейшие генераторы линейно изменяющегося напряжения. Методы линеаризации
§ 16.1. Параметры линейно изменяющегося напряжения
§ 16.2. Принцип построения генераторов ЛИН
§ 16.3. Простейшие генераторы ЛИН
§ 16.4. ГЛИН с токостабнлизующим элементом
§ 16.5. ГЛИН с компенсирующей э. д. с, вводимой посредством неинвертирующего усилителя
§ 16.6. ГЛИН с компенсирующей э. д. с, вводимой посредством инвертирующего усилителя

Глава 17. Генераторы ЛИН фантастронного типа
§ 17.1. Общие сведения
§ 17.2. Фантастрон со связью по экранирующей сетке
§ 17.3. Фантастрон с катодной связью
§ 17.4. Транзисторный фантастрон

Глава 18. Генераторы пилообразного тока
§ 18.1. Параметры пилообразного тока
§ 18.2. Принцип формирования пилообразного тока
§ 18.3. Схемы генераторов пилообразного тока

РАЗДЕЛ ШЕСТОЙ. ЭЛЕМЕНТЫ ЛОГИЧЕСКИХ СХЕМ
Глава 19. Общая характеристика логических схем
§ 19.1. Основные логические операции
§ 19.2. Классификация и характеристики логических схем

Глава 20. Основные логические схемы
§ 20.1. Схема логического отрицания (НЕ)
§ 20.2. Диодные схемы логического умножения (И)
§ 20.3. Диодные схемы логического сложения (ИЛИ)
§ 20.4. Логические схемы на туннельных диодах

Глава 21. Сложные и комбинированные логические схемы
§ 21.1. Диодно-транзнсторные логические схемы (ДТЛС)
§ 21.2. Транзисторные логические схемы (ТЛС)
§ 21.3. Логическая схема запрещения (ЗАПРЕТ)
§ 21.4. Логические схемы равнозначности и неравнозначности
§ 21.5. Многоступенчатые диодные логические схемы

РАЗДЕЛ СЕДЬМОЙ. МНОГОКАСКАДНЫЕ ИМПУЛЬСНЫЕ УСТРОЙСТВА
Глава 22. Устройства кодирования сигналов
§ 22.1. Формирование импульсных кодов с фиксированными интервалами между импульсами
§ 22.2 Формирование импульсных кодов с регулируемыми интервалами между импульсами
§ 22.3. Регистрация двоичного цифрового кода
§ 22.4. Диодные дешифраторы
§ 22.5. Цифровые счетчики импульсов
§ 22.6. Кодирование непрерывно изменяющихся величин

Глава 23. Селекция импульсных сигналов
§ 23.1. Общие сведения
§ 23.2. Амплитудная селекция импульсов
§ 23.3 Селекция импульсов по частоте повторения
§ 23.4 Селекция импульсов по длительности
§ 23.5. Селекция кодированной серии импульсов

Название: Импульсные и цифровые устройства


Дорогие читатели если у Вас не получилось

скачать Импульсные и цифровые устройства

напишите об этом в комментарияхи и мы обязательно вам поможем.
Мы надеемся, что Вам понравилась книга и Вы получили удовольствие от чтения. В качестве благодарности можете оставить ссылку на наш сайт на форуме или блоге:) Электронная книга Импульсные и цифровые устройства предоставлена исключительно для ознакомления перед покупкой бумажной книги и не является конкурентом печатным изданиям.

План лекции

1. Общие сведения.

2. Мультивибраторы.

3. Блокинг-генератор.

3.1. Принцип работы блокинг-генератора.

3.2. Порядок расчета блокинг-генератора.

4. Генераторы пилообразного напряжения.

4.1. Основные параметры генераторов пилообразного напряжения.

4.2. Разновидности схем транзисторных генераторов пилообразного напряжения.

5. Триггер на транзисторах.

Общие сведения.

Импульсная техника – раздел электроники, предметом которого является разработка теоретических основ, практических методов и технических средств генерирования, преобразования и измерения параметров электрических импульсов, а также исследование импульсных процессов в электрических цепях.

Наиболее часто в импульсных электронных устройствах используются импульсы прямоугольной (рис. 1,а), трапецеидальной (рис. 1,б), треугольной (рис. 1,в) и экспоненциальной (рис. 1,г) формы.

Рисунок 1

Импульсы, формы которых приведены на рис. 1,а…г, являются идеализированными. Форма реальных импульсов не является геометрически правильной из-за нелинейности характеристик полупроводниковых приборов и влияния реактивных сопротивлений в схемах. Поэтому реальные прямоугольные импульсы, наиболее часто используемые в практических импульсных схемах, имеют форму, приведенную на рис. 1,д. Участки быстрого нарастания и спада напряжения или тока называются фронтом и срезом импульса , а интервал, на котором напряжение или ток изменяются сравнительно медленно, - вершиной импульса .



Упрощенная форма реального прямоугольного импульса показана на рисунке 1,е. Спрямленные отрезки ab, bc, cd отображают соответственно фронт, вершину и срез импульса, а отрезки de и ef – нарастание и спад обратного импульса. Скорость нарастания напряжения или тока на рисунке 1,е характеризуется крутизной фронта импульса

а убывание напряжения или тока на вершине относительным снижением

Одним из важнейших показателей импульсных сигналов является длительность импульсов . Помимо указанного параметра τ а, определяющего активную длительность вершины на уровне 0,5U m , длительность импульса характеризует время t и, определяемое либо на уровне 0,1U m , либо по основанию импульса (рис. 1,е).

К основным параметрам импульсов относится период повторения импульсов Т – интервал времени между началом двух соседних однополярных импульсов. Величину, обратную периоду повторения, называют частотой следования импульсов f. Часть периода Т занимает пауза t п – отрезок времени между окончанием и началом двух соседних импульсов t п = T – t и.

Отношение длительности импульса к периоду повторения называется коэффициентом заполнения

Величина, обратная коэффициенту заполнения, называется скважностью импульсов

Качество работы импульсных устройств во многом определяется временем восстановления импульса t вос (рис. 1,е). Чем меньше t вос, тем надежнее работает схема, тем выше ее быстродействие.

Мультивибраторы

Одним из наиболее распространенных генераторов импульсов прямоугольной формы является мультивибратор, представляющий собой двухкаскадный резистивный усилитель с глубокой положительной обратной связью. Одна из наиболее простых и типичных схем мультивибратора приведена на рис. 2. Элементы схемы подобраны так, чтобы обеспечить идентичность каждого из усилительных каскадов, собранных на однотипных транзисторах VТ1, VT2. При R1 = R4, R2 = R3, C1 = C2 и одинаковых параметрах транзистора мультивибратор называется симметричным.

Рисунок 2

Т.к. идеальной симметрии схемы практически невозможно, то любая, даже самая незначительная асимметрия мгновенно приведет к тому, что один из транзисторов закроется, а другой будет открыт и доведен до режима насыщения. Допустим, что по тем или иным причинам ток коллектора транзистора VT2 оказался несколько больше коллекторного тока транзистора VT1. Это приведет к увеличению падения напряжения на резисторе R4 и снижению отрицательного потенциала на коллекторе VT2. Через конденсатор С2 изменение потенциала коллектора транзистора VT2 передается на базу транзистора VT1. Это приведет к уменьшению тока коллектора транзистора VT1 и к увеличению отрицательного потенциала на его коллекторе. Через С1 изменение потенциала коллектора транзистора VT1 передается на базу транзистора VT2, что вызывает дополнительное увеличение тока коллектора этого транзистора. Далее процесс повторяется, и в конечном итоге транзистор VT2 полностью откроется и войдет в режим насыщения, а транзистор VT1 закроется. Этот процесс протекает лавинообразно.

В режиме запирания транзистора VT1 конденсатор С1 заряжается по цепи: 0, участок эмиттер – база открытого транзистора VT2, С1, R1, -Eк. В то же время конденсатор С2 разряжается через открытый транзистор VT2 и резистор R3.

Переключение схемы из одного состояния в другое зависит от скорости заряда и разряда конденсаторов. По мере заряда конденсатора С1 положительный потенциал точки А все более нарастает, а по мере разряда конденсатора С2 положительный потенциал точки В все более снижается. В связи с этим потенциал базы транзистора VT2 постепенно повышается, а потенциал базы транзистора VT1 снижается. В определенный момент времени транзистор VT1 отопрется, начнется лавинообразный процесс нарастания тока этого транзистора, а транзистор VT2 запрется. Этот процесс переключения повторяется. Таким образом, транзисторы в мультивибраторе по очереди находятся или в режиме отсечки тока или в режиме насыщения и с каждого коллектора можно снять прямоугольные импульсы с амплитудой, почти равной величине напряжения питания источника. Схема будет генерировать импульсы (режим самовозбуждения ). Такой режим называется автоколебательным .

На рис. 3 приведены временные диаграммы токов, протекающих в транзисторах, и напряжений на коллекторах и базах транзисторов. Исходный момент t 0 соответствует тому случаю, когда транзистор VT1 заперт, а транзистор VT2 открыт. Моменты t 1 , t 2 , t 3 соответствуют переключению схемы.

Приведенная на рис. 2 схема получила название схемы с коллекторно-базовыми емкостными связями.

Рисунок 3

При расчете мультивибратора в автоколебательном режиме должны быть заданы: период следования импульсов Т; длительность импульсов t и; амплитуда импульсов U m ; длительность фронта τ ф; длительность среза τ с; время восстановления t вос; температура окружающей среды t окр (или допустимая температурная нестабильность мультивибратора σ Т в заданном диапазоне изменения температуры).

В результате расчета необходимо выбрать тип транзисторов и определить параметры элементов схемы.

1) Определяем напряжение источника питания

. (5)

Если напряжение источника питания задано и значительно превышает амплитуду импульсов U m , то можно расчет мультивибратора вести на бо́льшую амплитуду, чем задано, а импульсы снимать с помощью делителя напряжения в коллекторной цепи одного из транзисторов, как показано на рис. 4.

Рисунок 4

2) Выбираем тип транзисторов, параметры которых удовлетворяют условиям:

где U КБ max – максимально допустимое постоянное напряжение коллектор – база для выбранного типа транзистора;

f h 21э – предельная частота коэффициента передачи тока биполярного транзистора.

Если мультивибратор работает при повышенных температурах или от него требуется высокая температурная стабильность (σ Т < 5%), то выбирают кремниевые транзисторы; если допустимое значение σ Т > 5% - германиевые транзисторы.

При выборе транзисторов по их частотным свойствам, можно, кроме соотношения (7), руководствоваться следующими рекомендациями: если заданная длительность фронта τ ф не меньше (0,2 …),5)мкс, то могут быть использованы низкочастотные транзисторы; если же τ ф < (0,2 … 0,5)мкс – следует выбрать высокочастотные транзисторы.

3) Находим сопротивления резисторов R1 = R4 = Rк. При этом необходимо выполнить условие

, (8)

где I Ки max – максимально допустимый импульсный ток коллектора;

I КБ 0 – обратный ток транзистора.

Как правило, для маломощных транзисторов R к выбирают не менее (0,5 … 1) кОм, а для мощных – не менее (200 … 300) Ом.

4) Находим сопротивление резисторов R2 = R3 = R Б

где h 21э – коэффициент передачи тока;

К нас – коэффициент насыщения транзистора.

Коэффициент насыщения определяется из соотношения

. (10)

При К нас < 1 транзистор работает в ненасыщенном режиме, при К нас = 1 находится на грани насыщения, при К нас > 1 – в режиме насыщения.

Для обеспечения режима открытого транзистора при неглубоком насыщении выбирают К нас = 1…4.

В некоторых схемах симметричных мультивибраторов для регулировки периода автоколебаний в цепь баз транзисторов включают источник регулируемого напряжения (Е Б на рис. 5). Формула для определения периода генерируемых импульсов

, (11)

где R Б = R2 = R3; С = С1 = С2;

U Б m – часть напряжения, которая передается с коллекторов в цепи баз.

Рисунок 5

5) Определяем емкости конденсаторов С1 и С2. Для симметричного мультивибратора

. (12)

Для несимметричного мультивибратора

6) Находим время восстановления схемы

Как видно, для уменьшения t вос, т.е. для улучшения формы генерируемых импульсов, следует уменьшать величины R K и С. Однако с уменьшением емкости С уменьшаются длительность импульса и период колебаний. Для предотвращения этого необходимо увеличивать сопротивление резисторов R Б, но при этом ухудшается термостабильность схемы. Уменьшение R K также нецелесообразно, так как это приводит к увеличению тока насыщения транзистора и уменьшению перепада напряжения на коллекторе, что может нарушить самовозбуждение схемы. Поэтому, если полученное значение I вос оказалось больше заданного, в схему мультивибратора следует внести изменения. На рис. 6,а показана схема симметричного мультивибратора с корректирующими диодами.

Рисунок 6

В схеме ток заряда конденсаторов связи С1 и С2 замыкается не через коллекторные резисторы R1 и R4, а через вспомогательные резисторы R5, R6, что обеспечивается включением диодов VD1, VD2. Диоды не препятствуют развитию лавинообразных процессов нарастания и спадания токов транзисторов, но позволяют уменьшить постоянную времени заряда конденсаторов С1 и С2. Благодаря этому напряжение на коллекторе запертого транзистора после опрокидывания схемы устанавливается близким к –Ек намного быстрее (рис. 6,б), чем в основной схеме мультивибратора.

Блокинг-генератор