Многоядерные процессоры: принципы работы. На что влияет количество ядер процессора? Многоядерный процессор

Процессор – это основное устройство ЭВМ, выполняющее логические и арифметические операции, и осуществляющее управление всеми компонентами ЭВМ. Процессор представляет собой миниатюрную тонкую кремниевую пластинку прямоугольной формы, на которой размещается огромное количество транзисторов, реализующих все функции, выполняемые процессором. Кремневая пластинка – очень хрупкая, а так как ее любое повреждение приведет к выходу из строя процессора, то она помещается в пластиковый или керамический корпус.

1. Введение 2. Ядро процессора 2.1. Принцип работы ядра процессора 2.2. Способы повышения производительности ядра процессора 2.2.1. Конвейеризация 2.2.2. Суперскалярность 2.2.3. Параллельная обработка данных 2.2.4. Технология Hyper-threading 2.2.5. Технология Turbo Boost. 2.2.6. Эффективность выполнения команд. 2.3 Способы снижения энергопотребления ядра процессора 3. КЭШ-память

1. Введение.

Современный процессор – это сложное и высокотехнологическое устройство, включающее в себя все самые последние достижения в области вычислительной техники и сопутствующих областей науки.

Большинство современных процессоров состоит из:

    одного или нескольких ядер, осуществляющих выполнение всех инструкций;

    нескольких уровней КЭШ-памяти (обычно, 2 или три уровня), ускоряющих взаимодействие процессора с ОЗУ;

    контроллера ОЗУ;

    контроллера системной шины (DMI, QPI, HT и т.д.);

И характеризуется следующими параметрами:

    типом микроархитектуры;

    тактовой частотой;

    набором выполняемых команд;

    количеством уровней КЭШ-памяти и их объемом;

    типом и скоростью системной шины;

    размерами обрабатываемых слов;

    наличием или отсутствием встроенного контроллера памяти;

    типом поддерживаемой оперативной памяти;

    объемом адресуемой памяти;

    наличием или отсутствием встроенного графического ядра;

    энергопотреблением.

Упрощенная структурная схема современного многоядерного процессора представлена на рисунке 1.

Начнем обзор устройства процессора с его основной части – ядра.

2. Ядро процессора.

Ядро процессора – это его основная часть, содержащая все функциональные блоки и осуществляющая выполнение всех логических и арифметических операций.

На рисунке 1 приведена структурная схема устройства ядра процессора. Как видно на рисунке, каждое ядро процессора состоит из нескольких функциональных блоков:

    блока выборки инструкций;

    блоков декодирования инструкций;

    блоков выборки данных;

    управляющего блока;

    блоков выполнения инструкций;

    блоков сохранения результатов;

    блока работы с прерываниями;

    набора регистров;

    счетчика команд.

Блок выборки инструкций осуществляет считывание инструкций по адресу, указанному в счетчике команд. Обычно, за такт он считывает несколько инструкций. Количество считываемых инструкций обусловлено количеством блоков декодирования, так как необходимо на каждом такте работы максимально загрузить блоки декодирования. Для того чтобы блок выборки инструкций работал оптимально, в ядре процессора имеется предсказатель переходов.

Предсказатель переходов пытается определить, какая последовательность команд будет выполняться после совершения перехода. Это необходимо, чтобы после условного перехода максимально нагрузить конвейер ядра процессора.

Блоки декодирования , как понятно из названия, – это блоки, которые занимаются декодированием инструкций, т.е. определяют, что надо сделать процессору, и какие дополнительные данные нужны для выполнения инструкции. Задача эта для большинства современных коммерческих процессоров, построенных на базе концепции CISC, – очень сложная. Дело в том, что длина инструкций и количество операндов – нефиксированные, и это сильно усложняет жизнь разработчикам процессоров и делает процесс декодирования нетривиальной задачей.

Часто отдельные сложные команды приходится заменять микрокодом – серией простых инструкций, в совокупности выполняющих то же действие, что и одна сложная инструкция. Набор микрокода прошит в ПЗУ, встроенном в процессоре. К тому же микрокод упрощает разработку процессора, так как отпадает надобность в создании сложноустроенных блоков ядра для выполнения отдельных команд, да и исправить микрокод гораздо проще, чем устранить ошибку в функционировании блока.

В современных процессорах, обычно, бывает 2-4 блока декодирования инструкций, например, в процессорах Intel Core 2 каждое ядро содержит по два таких блока.

Блоки выборки данных осуществляют выборку данных из КЭШ-памяти или ОЗУ, необходимых для выполнения текущих инструкций. Обычно, каждое процессорное ядро содержит несколько блоков выборки данных. Например, в процессорах Intel Core используется по два блока выборки данных для каждого ядра.

Управляющий блок на основании декодированных инструкций управляет работой блоков выполнения инструкций, распределяет нагрузку между ними, обеспечивает своевременное и верное выполнение инструкций. Это один из наиболее важных блоков ядра процессора.

Блоки выполнения инструкций включают в себя несколько разнотипных блоков:

ALU – арифметическое логическое устройство;

FPU – устройство по выполнению операций с плавающей точкой;

Блоки для обработки расширения наборов инструкций. Дополнительные инструкции используются для ускорения обработки потоков данных, шифрования и дешифрования, кодирования видео и так далее. Для этого в ядро процессора вводят дополнительные регистры и наборы логики. На данный момент наиболее популярными расширениями наборов инструкция являются:

MMX (Multimedia Extensions) – набор инструкций, разработанный компанией Intel, для ускорения кодирования и декодирования потоковых аудио и видео-данных;

SSE (Streaming SIMD Extensions) – набор инструкций, разработанный компанией Intel, для выполнения одной и той же последовательности операций над множеством данных с распараллеливанием вычислительного процесса. Наборы команд постоянно совершенствуются, и на данный момент имеются ревизии: SSE, SSE2, SSE3, SSSE3, SSE4;

ATA (Application Targeted Accelerator) – набор инструкций, разработанный компанией Intel, для ускорения работы специализированного программного обеспечения и снижения энергопотребления при работе с такими программами. Эти инструкции могут использоваться, например, при расчете контрольных сумм или поиска данных;

3DNow – набор инструкций, разработанный компанией AMD, для расширения возможностей набора инструкций MMX;

AES (Advanced Encryption Standard) – набор инструкций, разработанный компанией Intel, для ускорения работы приложений, использующих шифрование данных по одноименному алгоритму.

Блок сохранения результатов обеспечивает запись результата выполнения инструкции в ОЗУ по адресу, указанному в обрабатываемой инструкции.

Блок работы с прерываниями. Работа с прерываниями – одна из важнейших задач процессора, позволяющая ему своевременно реагировать на события, прерывать ход работы программы и выполнять требуемые от него действия. Благодаря наличию прерываний, процессор способен к псевдопараллельной работе, т.е. к, так называемой, многозадачности.

Обработка прерываний происходит следующим образом. Процессор перед началом каждого цикла работы проверяет наличие запроса на прерывание. Если есть прерывание для обработки, процессор сохраняет в стек адрес инструкции, которую он должен был выполнить, и данные, полученные после выполнения последней инструкции, и переходит к выполнению функции обработки прерывания.

После окончания выполнения функции обработки прерывания, из стека считываются сохраненные в него данные, и процессор возобновляет выполнение восстановленной задачи.

Регистры – сверхбыстрая оперативная память (доступ к регистрам в несколько раз быстрее доступа к КЭШ-памяти) небольшого объема (несколько сотен байт), входящая в состав процессора, для временного хранения промежуточных результатов выполнения инструкций. Регистры процессора делятся на два типа: регистры общего назначения и специальные регистры.

Регистры общего назначения используются при выполнении арифметических и логических операций, или специфических операций дополнительных наборов инструкций (MMX, SSE и т.д.).

Регистры специального назначения содержат системные данные, необходимые для работы процессора. К таким регистрам относятся, например, регистры управления, регистры системных адресов, регистры отладки и т.д. Доступ к этим регистрам жестко регламентирован.

Счетчик команд – регистр, содержащий адрес команды, которую процессор начнет выполнять на следующем такте работы.

В наши дни минимально допустимой нормой комплектации более менее серьёзной вычислительной техники считается наличие двухъядерного процессора. Причём, данный параметр актуален даже для мобильных компьютерных устройств, планшетных ПК и солидных смартфонов-коммуникаторов . Поэтому будем разбираться, что же это за ядра такие и почему о них важно знать любому пользователю.

Суть простыми словами

Первый двухъядерный чип, предназначенный именно для массового потребления, появился в мае 2005-го. Изделие называлось Pentium D (формально относилось к серии Pentium 4). До этого подобные структурные решения применялись на серверах и для специфических целей, в персональные компьютеры не вставлялись.

Вообще, сам по себе процессор (микропроцессор, CPU, Central Processing Unit, центральное процессорное устройство, ЦПУ) - это кристалл, на который с помощью нанотехнологий наносятся миллиарды микроскопических транзисторов, резисторов и проводников. Потом напыляются золотые контакты, «камушек» монтируется в корпусе микросхемы, а затем всё это интегрируется в чипсет .

Теперь представьте себе, что внутри микросхемы установили два таких кристалла. На одной подложке, взаимосвязанные и действующие как единое устройство. Это и есть двухъядерный предмет обсуждения.

Конечно, два «камушка» - не предел. В момент написания статьи мощным считается ПК, оборудованный чипом с четырьмя ядрами, не считая вычислительных ресурсов видеокарты. Ну а на серверах стараниями фирмы AMD уже используется аж шестнадцать.

Нюансы терминологии

У каждого из кристаллов обычно имеется своя собственная кэш-память первого уровня. Однако если оная второго уровня у них общая, то это всё равно один микропроцессор, а не два (или больше) самостоятельных.

Полноценным отдельным процессором ядро можно назвать только в том случае, если таковое обладает собственным кэшем обоих уровней. Но это нужно лишь для применения на очень мощных серверах и всяческих суперкомпьютерах (любимых игрушках учёных).

Впрочем, «Менеджер задач» в ОС Windows или «Системный монитор» в GNU/Linux может показывать ядра как CPU. В смысле, CPU 1 (ЦП 1), CPU 2 (ЦП 2) и так далее. Пусть это не вводит вас в заблуждение, ведь обязанность программы - не разбираться в инженерно-архитектурных нюансах, а всего лишь интерактивно отображать загрузку каждого из кристаллов.

Значит, плавно переходим к этой самой загрузке и вообще к вопросам целесообразности явления как такового.

Зачем это нужно

Количество ядер, отличающееся от единицы, задумано в первую очередь для распараллеливания выполняемых задач.

Предположим, вы включили ноутбук и читаете сайты во всемирной паутине . Скрипты, коими современные веб-страницы перегружены просто до неприличия (кроме мобильных версий), будут обрабатываться только одним ядром. На него и обрушится стопроцентная нагрузка, если что-то нехорошее сведёт браузер с ума.

Второй кристалл продолжит работать в нормальном режиме и позволит справиться с ситуацией - как минимум, открыть «Системный монитор» (или эмулятор терминала) и принудительно завершить спятившую программу.

Кстати, именно в «Системном мониторе» вы сможете собственными глазами увидеть, какой именно софт внезапно слетел с катушек и который из «камушков» заставляет кулер отчаянно завывать.

Некоторые программы изначально оптимизированы под многоядерную архитектуру процессоров и сразу же отправляют разные потоки данных в разные кристаллы. Ну а обычные приложения обрабатываются по принципу «один поток - одно ядро».

То бишь, прирост производительности станет ощутимым, если одновременно действует более одного потока. Ну а поскольку почти все ОС являются многозадачными, позитивный эффект от распараллеливания будет проявляться практически постоянно.

Как с этим жить

Касаемо вычислительной техники массового потребления, чипы с одним ядром нынче - это, в основном, ARM-процессоры в простеньких телефонах и миниатюрных медиаплеерах. Выдающейся производительности от таких приборов не требуется. Максимум - браузер Opera Mini запустить, клиент ICQ, несложную игру, прочие непритязательные приложения на Java.

Всё остальное, начиная даже с самых дешёвых планшетов, должно иметь в чипе минимум два кристалла, как сказано в преамбуле. Такие вещи и приобретайте. Исходя хотя бы из тех соображений, что практически весь пользовательский софт стремительно толстеет, потребляет всё больше системных ресурсов, поэтому запас мощности ничуть не помешает.

Предыдущие публикации:

Введение.

Современный процессор – это сложное и высокотехнологическое устройство, включающее в себя все самые последние достижения в области вычислительной техники и сопутствующих областей науки.

Большинство современных процессоров состоит из:

  • одного или нескольких ядер, осуществляющих выполнение всех инструкций;
  • нескольких уровней КЭШ-памяти (обычно, 2 или три уровня), ускоряющих взаимодействие процессора с ОЗУ;
  • контроллера ОЗУ;
  • контроллера системной шины (DMI, QPI, HT и т.д.);

И характеризуется следующими параметрами:

  • типом микроархитектуры;
  • тактовой частотой;
  • набором выполняемых команд;
  • количеством уровней КЭШ-памяти и их объемом;
  • типом и скоростью системной шины;
  • размерами обрабатываемых слов;
  • наличием или отсутствием встроенного контроллера памяти;
  • типом поддерживаемой оперативной памяти;
  • объемом адресуемой памяти;
  • наличием или отсутствием встроенного графического ядра;
  • энергопотреблением.

Упрощенная структурная схема современного многоядерного процессора представлена на рисунке 1.

Начнем обзор устройства процессора с его основной части – ядра.

Ядро процессора – это его основная часть, содержащая все функциональные блоки и осуществляющая выполнение всех логических и арифметических операций.

На рисунке 1 приведена структурная схема устройства ядра процессора. Как видно на рисунке, каждое ядро процессора состоит из нескольких функциональных блоков:

  • блока выборки инструкций;
  • блоков декодирования инструкций;
  • блоков выборки данных;
  • управляющего блока;
  • блоков выполнения инструкций;
  • блоков сохранения результатов;
  • блока работы с прерываниями;
  • ПЗУ, содержащего микрокод;
  • набора регистров;
  • счетчика команд.

Блок выборки инструкций осуществляет считывание инструкций по адресу, указанному в счетчике команд. Обычно, за такт он считывает несколько инструкций. Количество считываемых инструкций обусловлено количеством блоков декодирования, так как необходимо на каждом такте работы максимально загрузить блоки декодирования. Для того чтобы блок выборки инструкций работал оптимально, в ядре процессора имеется предсказатель переходов.

Предсказатель переходов пытается определить, какая последовательность команд будет выполняться после совершения перехода. Это необходимо, чтобы после условного перехода максимально нагрузить конвейер ядра процессора.

Блоки декодирования , как понятно из названия, – это блоки, которые занимаются декодированием инструкций, т.е. определяют, что надо сделать процессору, и какие дополнительные данные нужны для выполнения инструкции. Задача эта для большинства современных коммерческих процессоров, построенных на базе концепции CISC, – очень сложная. Дело в том, что длина инструкций и количество операндов – нефиксированные, и это сильно усложняет жизнь разработчикам процессоров и делает процесс декодирования нетривиальной задачей.



Часто отдельные сложные команды приходится заменять микрокодом – серией простых инструкций, в совокупности выполняющих то же действие, что и одна сложная инструкция. Набор микрокода прошит в ПЗУ, встроенном в процессоре. К тому же микрокод упрощает разработку процессора, так как отпадает надобность в создании сложноустроенных блоков ядра для выполнения отдельных команд, да и исправить микрокод гораздо проще, чем устранить ошибку в функционировании блока.

В современных процессорах, обычно, бывает 2-4 блока декодирования инструкций, например, в процессорах Intel Core 2 каждое ядро содержит по два таких блока.

Блоки выборки данных осуществляют выборку данных из КЭШ-памяти или ОЗУ, необходимых для выполнения текущих инструкций. Обычно, каждое процессорное ядро содержит несколько блоков выборки данных. Например, в процессорах Intel Core используется по два блока выборки данных для каждого ядра.

Управляющий блок на основании декодированных инструкций управляет работой блоков выполнения инструкций, распределяет нагрузку между ними, обеспечивает своевременное и верное выполнение инструкций. Это один из наиболее важных блоков ядра процессора.

Блоки выполнения инструкций включают в себя несколько разнотипных блоков:

ALU – арифметическое логическое устройство;

FPU – устройство по выполнению операций с плавающей точкой;

Блоки для обработки расширения наборов инструкций. Дополнительные инструкции используются для ускорения обработки потоков данных, шифрования и дешифрования, кодирования видео и так далее. Для этого в ядро процессора вводят дополнительные регистры и наборы логики. На данный момент наиболее популярными расширениями наборов инструкция являются:

MMX (Multimedia Extensions) – набор инструкций, разработанный компанией Intel, для ускорения кодирования и декодирования потоковых аудио и видео-данных;

SSE (Streaming SIMD Extensions) – набор инструкций, разработанный компанией Intel, для выполнения одной и той же последовательности операций над множеством данных с распараллеливанием вычислительного процесса. Наборы команд постоянно совершенствуются, и на данный момент имеются ревизии: SSE, SSE2, SSE3, SSSE3, SSE4;

ATA (Application Targeted Accelerator) – набор инструкций, разработанный компанией Intel, для ускорения работы специализированного программного обеспечения и снижения энергопотребления при работе с такими программами. Эти инструкции могут использоваться, например, при расчете контрольных сумм или поиска данных;

3DNow – набор инструкций, разработанный компанией AMD, для расширения возможностей набора инструкций MMX;

AES (Advanced Encryption Standard) – набор инструкций, разработанный компанией Intel, для ускорения работы приложений, использующих шифрование данных по одноименному алгоритму.

Блок сохранения результатов обеспечивает запись результата выполнения инструкции в ОЗУ по адресу, указанному в обрабатываемой инструкции.

Блок работы с прерываниями. Работа с прерываниями – одна из важнейших задач процессора, позволяющая ему своевременно реагировать на события, прерывать ход работы программы и выполнять требуемые от него действия. Благодаря наличию прерываний, процессор способен к псевдопараллельной работе, т.е. к, так называемой, многозадачности.

Обработка прерываний происходит следующим образом. Процессор перед началом каждого цикла работы проверяет наличие запроса на прерывание. Если есть прерывание для обработки, процессор сохраняет в стек адрес инструкции, которую он должен был выполнить, и данные, полученные после выполнения последней инструкции, и переходит к выполнению функции обработки прерывания.

После окончания выполнения функции обработки прерывания, из стека считываются сохраненные в него данные, и процессор возобновляет выполнение восстановленной задачи.

Регистры – сверхбыстрая оперативная память (доступ к регистрам в несколько раз быстрее доступа к КЭШ-памяти) небольшого объема (несколько сотен байт), входящая в состав процессора, для временного хранения промежуточных результатов выполнения инструкций. Регистры процессора делятся на два типа: регистры общего назначения и специальные регистры.

Регистры общего назначения используются при выполнении арифметических и логических операций, или специфических операций дополнительных наборов инструкций (MMX, SSE и т.д.).

Регистры специального назначения содержат системные данные, необходимые для работы процессора. К таким регистрам относятся, например, регистры управления, регистры системных адресов, регистры отладки и т.д. Доступ к этим регистрам жестко регламентирован.

Счетчик команд – регистр, содержащий адрес команды, которую процессор начнет выполнять на следующем такте работы.

  • Tutorial

В этой статье я попытаюсь описать терминологию, используемую для описания систем, способных исполнять несколько программ параллельно, то есть многоядерных, многопроцессорных, многопоточных. Разные виды параллелизма в ЦПУ IA-32 появлялись в разное время и в несколько непоследовательном порядке. Во всём этом довольно легко запутаться, особенно учитывая, что операционные системы заботливо прячут детали от не слишком искушённых прикладных программ.

Цель статьи - показать, что при всём многообразии возможных конфигураций многопроцессорных, многоядерных и многопоточных систем для программ, исполняющихся на них, создаются возможности как для абстракции (игнорирования различий), так и для учёта специфики (возможность программно узнать конфигурацию).

Предупреждение о знаках ®, ™, в статье

Мой объясняет, почему сотрудники компаний должны в публичных коммуникациях использовать знаки авторского права. В этой статье их пришлось использовать довольно часто.

Процессор

Конечно же, самый древний, чаще всего используемый и неоднозначный термин - это «процессор».

В современном мире процессор - это то (package), что мы покупаем в красивой Retail коробке или не очень красивом OEM-пакетике. Неделимая сущность, вставляемая в разъём (socket) на материнской плате. Даже если никакого разъёма нет и снять его нельзя, то есть если он намертво припаян, это один чип.

Мобильные системы (телефоны, планшеты, ноутбуки) и большинство десктопов имеют один процессор. Рабочие станции и сервера иногда могут похвастаться двумя или больше процессорами на одной материнской плате.

Поддержка нескольких центральных процессоров в одной системе требует многочисленных изменений в её дизайне. Как минимум, необходимо обеспечить их физическое подключение (предусмотреть несколько сокетов на материнской плате), решить вопросы идентификации процессоров (см. далее в этой статье, а также мою заметку), согласования доступов к памяти и доставки прерываний (контроллер прерываний должен уметь маршрутизировать прерывания на несколько процессоров) и, конечно же, поддержки со стороны операционной системы. Я, к сожалению, не смог найти документального упоминания момента создания первой многопроцессорной системы на процессорах Intel, однако Википедия утверждает , что Sequent Computer Systems поставляла их уже в 1987 году, используя процессоры Intel 80386. Широко распространённой поддержка же нескольких чипов в одной системе становится доступной, начиная с Intel® Pentium.

Если процессоров несколько, то каждый из них имеет собственный разъём на плате. У каждого из них при этом имеются полные независимые копии всех ресурсов, таких как регистры, исполняющие устройства, кэши. Делят они общую память - RAM. Память может подключаться к ним различными и довольно нетривиальными способами, но это отдельная история, выходящая за рамки этой статьи. Важно то, что при любом раскладе для исполняемых программ должна создаваться иллюзия однородной общей памяти, доступной со всех входящих в систему процессоров.


К взлёту готов! Intel® Desktop Board D5400XS

Ядро

Исторически многоядерность в Intel IA-32 появилась позже Intel® HyperThreading, однако в логической иерархии она идёт следующей.

Казалось бы, если в системе больше процессоров, то выше её производительность (на задачах, способных задействовать все ресурсы). Однако, если стоимость коммуникаций между ними слишком велика, то весь выигрыш от параллелизма убивается длительными задержками на передачу общих данных. Именно это наблюдается в многопроцессорных системах - как физически, так и логически они находятся очень далеко друг от друга. Для эффективной коммуникации в таких условиях приходится придумывать специализированные шины, такие как Intel® QuickPath Interconnect. Энергопотребление, размеры и цена конечного решения, конечно, от всего этого не понижаются. На помощь должна прийти высокая интеграция компонент - схемы, исполняющие части параллельной программы, надо подтащить поближе друг к другу, желательно на один кристалл. Другими словами, в одном процессоре следует организовать несколько ядер , во всём идентичных друг другу, но работающих независимо.

Первые многоядерные процессоры IA-32 от Intel были представлены в 2005 году. С тех пор среднее число ядер в серверных, десктопных, а ныне и мобильных платформах неуклонно растёт.

В отличие от двух одноядерных процессоров в одной системе, разделяющих только память, два ядра могут иметь также общие кэши и другие ресурсы, отвечающие за взаимодействие с памятью. Чаще всего кэши первого уровня остаются приватными (у каждого ядра свой), тогда как второй и третий уровень может быть как общим, так и раздельным. Такая организация системы позволяет сократить задержки доставки данных между соседними ядрами, особенно если они работают над общей задачей.


Микроснимок четырёхядерного процессора Intel с кодовым именем Nehalem. Выделены отдельные ядра, общий кэш третьего уровня, а также линки QPI к другим процессорам и общий контроллер памяти.

Гиперпоток

До примерно 2002 года единственный способ получить систему IA-32, способную параллельно исполнять две или более программы, состоял в использовании именно многопроцессорных систем. В Intel® Pentium® 4, а также линейке Xeon с кодовым именем Foster (Netburst) была представлена новая технология - гипертреды или гиперпотоки, - Intel® HyperThreading (далее HT).

Ничто не ново под луной. HT - это частный случай того, что в литературе именуется одновременной многопоточностью (simultaneous multithreading, SMT). В отличие от «настоящих» ядер, являющихся полными и независимыми копиями, в случае HT в одном процессоре дублируется лишь часть внутренних узлов, в первую очередь отвечающих за хранение архитектурного состояния - регистры. Исполнительные же узлы, ответственные за организацию и обработку данных, остаются в единственном числе, и в любой момент времени используются максимум одним из потоков. Как и ядра, гиперпотоки делят между собой кэши, однако начиная с какого уровня - это зависит от конкретной системы.

Я не буду пытаться объяснить все плюсы и минусы дизайнов с SMT вообще и с HT в частности. Интересующийся читатель может найти довольно подробное обсуждение технологии во многих источниках, и, конечно же, в Википедии . Однако отмечу следующий важный момент, объясняющий текущие ограничения на число гиперпотоков в реальной продукции.

Ограничения потоков
В каких случаях наличие «нечестной» многоядерности в виде HT оправдано? Если один поток приложения не в состоянии загрузить все исполняющие узлы внутри ядра, то их можно «одолжить» другому потоку. Это типично для приложений, имеющих «узкое место» не в вычислениях, а при доступе к данным, то есть часто генерирующих промахи кэша и вынужденных ожидать доставку данных из памяти. В это время ядро без HT будет вынуждено простаивать. Наличие же HT позволяет быстро переключить свободные исполняющие узлы к другому архитектурному состоянию (т.к. оно как раз дублируется) и исполнять его инструкции. Это - частный случай приёма под названием latency hiding, когда одна длительная операция, в течение которой полезные ресурсы простаивают, маскируется параллельным выполнением других задач. Если приложение уже имеет высокую степень утилизации ресурсов ядра, наличие гиперпотоков не позволит получить ускорение - здесь нужны «честные» ядра.

Типичные сценарии работы десктопных и серверных приложений, рассчитанных на машинные архитектуры общего назначения, имеют потенциал к параллелизму, реализуемому с помощью HT. Однако этот потенциал быстро «расходуется». Возможно, по этой причине почти на всех процессорах IA-32 число аппаратных гиперпотоков не превышает двух. На типичных сценариях выигрыш от использования трёх и более гиперпотоков был бы невелик, а вот проигрыш в размере кристалла, его энергопотреблении и стоимости значителен.

Другая ситуация наблюдается на типичных задачах, выполняемых на видеоускорителях. Поэтому для этих архитектур характерно использование техники SMT с бóльшим числом потоков. Так как сопроцессоры Intel® Xeon Phi (представленные в 2010 году) идеологически и генеалогически довольно близки к видеокартам, на них может быть четыре гиперпотока на каждом ядре - уникальная для IA-32 конфигурация.

Логический процессор

Из трёх описанных «уровней» параллелизма (процессоры, ядра, гиперпотоки) в конкретной системе могут отсутствовать некоторые или даже все. На это влияют настройки BIOS (многоядерность и многопоточность отключаются независимо), особенности микроархитектуры (например, HT отсутствовал в Intel® Core™ Duo, но был возвращён с выпуском Nehalem) и события при работе системы (многопроцессорные сервера могут выключать отказавшие процессоры в случае обнаружения неисправностей и продолжать «лететь» на оставшихся). Каким образом этот многоуровневый зоопарк параллелизма виден операционной системе и, в конечном счёте, прикладным приложениям?

Далее для удобства обозначим количества процессоров, ядер и потоков в некоторой системе тройкой (x , y , z ), где x - это число процессоров, y - число ядер в каждом процессоре, а z - число гиперпотоков в каждом ядре. Далее я буду называть эту тройку топологией - устоявшийся термин, мало что имеющий с разделом математики. Произведение p = xyz определяет число сущностей, именуемых логическими процессорами системы. Оно определяет полное число независимых контекстов прикладных процессов в системе с общей памятью, исполняющихся параллельно, которые операционная система вынуждена учитывать. Я говорю «вынуждена», потому что она не может управлять порядком исполнения двух процессов, находящихся на различных логических процессорах. Это относится в том числе к гиперпотокам: хотя они и работают «последовательно» на одном ядре, конкретный порядок диктуется аппаратурой и недоступен для наблюдения или управления программам.

Чаще всего операционная система прячет от конечных приложений особенности физической топологии системы, на которой она запущена. Например, три следующие топологии: (2, 1, 1), (1, 2, 1) и (1, 1, 2) - ОС будет представлять в виде двух логических процессоров, хотя первая из них имеет два процессора, вторая - два ядра, а третья - всего лишь два потока.


Windows Task Manager показывает 8 логических процессоров; но сколько это в процессорах, ядрах и гиперпотоках?


Linux top показывает 4 логических процессора.

Это довольно удобно для создателей прикладных приложений - им не приходится иметь дело с зачастую несущественными для них особенностями аппаратуры.

Программное определение топологии

Конечно, абстрагирование топологии в единственное число логических процессоров в ряде случаев создаёт достаточно оснований для путаницы и недоразумений (в жарких Интернет-спорах). Вычислительные приложения, желающие выжать из железа максимум производительности, требуют детального контроля над тем, где будут размещены их потоки: поближе друг к другу на соседних гиперпотоках или же наоборот, подальше на разных процессорах. Скорость коммуникаций между логическими процессорами в составе одного ядра или процессора значительно выше, чем скорость передачи данных между процессорами. Возможность неоднородности в организации оперативной памяти также усложняет картину.

Информация о топологии системы в целом, а также положении каждого логического процессора в IA-32 доступна с помощью инструкции CPUID. С момента появления первых многопроцессорных систем схема идентификации логических процессоров несколько раз расширялась. К настоящему моменту её части содержатся в листах 1, 4 и 11 CPUID. Какой из листов следует смотреть, можно определить из следующей блок-схемы, взятой из статьи :

Я не буду здесь утомлять всеми подробностями отдельных частей этого алгоритма. Если возникнет интерес, то этому можно посвятить следующую часть этой статьи. Отошлю интересующегося читателя к , в которой этот вопрос разбирается максимально подробно. Здесь же я сначала кратко опишу, что такое APIC и как он связан с топологией. Затем рассмотрим работу с листом 0xB (одиннадцать в десятичном счислении), который на настоящий момент является последним словом в «апикостроении».

APIC ID
Local APIC (advanced programmable interrupt controller) - это устройство (ныне входящее в состав процессора), отвечающее за работу с прерываниями, приходящими к конкретному логическому процессору. Свой собственный APIC есть у каждого логического процессора. И каждый из них в системе должен иметь уникальное значение APIC ID. Это число используется контроллерами прерываний для адресации при доставке сообщений, а всеми остальными (например, операционной системой) - для идентификации логических процессоров. Спецификация на этот контроллер прерываний эволюционировала, пройдя от микросхемы Intel 8259 PIC через Dual PIC, APIC и xAPIC к x2APIC .

В настоящий момент ширина числа, хранящегося в APIC ID, достигла полных 32 бит, хотя в прошлом оно было ограничено 16, а ещё раньше - только 8 битами. Нынче остатки старых дней раскиданы по всему CPUID, однако в CPUID.0xB.EDX возвращаются все 32 бита APIC ID. На каждом логическом процессоре, независимо исполняющем инструкцию CPUID, возвращаться будет своё значение.

Выяснение родственных связей
Значение APIC ID само по себе ничего не говорит о топологии. Чтобы узнать, какие два логических процессора находятся внутри одного физического (т.е. являются «братьями» гипертредами), какие два - внутри одного процессора, а какие оказались и вовсе в разных процессорах, надо сравнить их значения APIC ID. В зависимости от степени родства некоторые их биты будут совпадать. Эта информация содержится в подлистьях CPUID.0xB, которые кодируются с помощью операнда в ECX. Каждый из них описывает положение битового поля одного из уровней топологии в EAX (точнее, число бит, которые нужно сдвинуть в APIC ID вправо, чтобы убрать нижние уровни топологии), а также тип этого уровня - гиперпоток, ядро или процессор, - в ECX.

У логических процессоров, находящихся внутри одного ядра, будут совпадать все биты APIC ID, кроме принадлежащих полю SMT. Для логических процессоров, находящихся в одном процессоре, - все биты, кроме полей Core и SMT. Поскольку число подлистов у CPUID.0xB может расти, данная схема позволит поддержать описание топологий и с бóльшим числом уровней, если в будущем возникнет необходимость. Более того, можно будет ввести промежуточные уровни между уже существующими.

Важное следствие из организации данной схемы заключается в том, что в наборе всех APIC ID всех логических процессоров системы могут быть «дыры», т.е. они не будут идти последовательно. Например, во многоядерном процессоре с выключенным HT все APIC ID могут оказаться чётными, так как младший бит, отвечающий за кодирование номера гиперпотока, будет всегда нулевым.

Отмечу, что CPUID.0xB - не единственный источник информации о логических процессорах, доступный операционной системе. Список всех процессоров, доступный ей, вместе с их значениями APIC ID, кодируется в таблице MADT ACPI .

Операционные системы и топология

Операционные системы предоставляют информацию о топологии логических процессоров приложениям с помощью своих собственных интерфейсов.

В Linux информация о топологии содержится в псевдофайле /proc/cpuinfo , а также выводе команды dmidecode . В примере ниже я фильтрую содержимое cpuinfo на некоторой четырёхядерной системе без HT, оставляя только записи, относящиеся к топологии:

Скрытый текст

ggg@shadowbox:~$ cat /proc/cpuinfo |grep "processor\|physical\ id\|siblings\|core\|cores\|apicid" processor: 0 physical id: 0 siblings: 4 core id: 0 cpu cores: 2 apicid: 0 initial apicid: 0 processor: 1 physical id: 0 siblings: 4 core id: 0 cpu cores: 2 apicid: 1 initial apicid: 1 processor: 2 physical id: 0 siblings: 4 core id: 1 cpu cores: 2 apicid: 2 initial apicid: 2 processor: 3 physical id: 0 siblings: 4 core id: 1 cpu cores: 2 apicid: 3 initial apicid: 3

В FreeBSD топология сообщается через механизм sysctl в переменной kern.sched.topology_spec в виде XML:

Скрытый текст

user@host:~$ sysctl kern.sched.topology_spec kern.sched.topology_spec: 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 0, 1 THREAD groupSMT group 2, 3 THREAD groupSMT group 4, 5 THREAD groupSMT group 6, 7 THREAD groupSMT group

В MS Windows 8 сведения о топологии можно увидеть в диспетчере задач Task Manager.

Ядро процессора

Термин «ядро микропроцессора» (англ. processor core ) не имеет чёткого определения и в зависимости от контекста употребления может обозначать:

  • часть микропроцессора , содержащую основные функциональные блоки.
  • набор параметров, характеризующий микропроцессор.
  • кристалл микропроцессора (CPU или GPU), чаще всего, открытый.
  • часть процессора, осуществляющая выполнение одного потока команд . Многоядерные процессоры имеют несколько ядер и поэтому способны осуществлять независимое параллельное выполнение нескольких потоков команд одновременно.

Ядро микропроцессора обычно имеет собственное кодовое обозначение (например, Deschutes).

Характеристики ядра

Типичными характеристиками ядра являются, например:

  • микроархитектура;
  • количество функциональных блоков (ALU , FPU , конвейеров и т.п.);
  • объём встроенной кэш-памяти ;
  • интерфейс (логический и физический);
  • тактовые частоты;
  • напряжение питания;
  • максимальное и типичное тепловыделение;
  • технология производства;
  • площадь кристалла.

Ревизии ядра

В процессе развития ядра микропроцессора в него вносятся изменения, часто значительные. Так, например, может быть добавлен дополнительный набор инструкций, уменьшены проектные нормы техпроцесса, увеличена тактовая частота. Также обычно исправляются найденные ошибки. Такие изменения называются ревизиями ядра. Ядра различных ревизий различаются между собой по номеру ревизии (например, Athlon XP Thoroughbred ревизий A0 и B0), который может быть закодирован в маркировке микропроцессора, либо запрограммирован в ядре. В последнем случае код номера ревизии (степпинг) можно узнать с помощью инструкции

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Ядро процессора" в других словарях:

    Ядро нечто центральное и самое важное, часто круглое. Это слово имеет различные значения в разных областях: Содержание 1 Ядерная физика 2 Биология 3 Науки о Земле 4 Спорт … Википедия

    Содержание 1 Ядерная физика 2 Биология 3 Науки о Земле … Википедия

    У этого термина существуют и другие значения, см. Ядро. Ядро центральная часть операционной системы (ОС), обеспечивающая приложениям координированный доступ к ресурсам компьютера, таким как процессорное время, память и внешнее аппаратное… … Википедия

    Термин «ядро микропроцессора» (англ. processor core) не имеет чёткого определения и в зависимости от контекста употребления может обозначать: часть микропроцессора, содержащую основные функциональные блоки. набор параметров, характеризующих… … Википедия

    Кэш микропроцессора кэш (сверхоперативная память), используемый микропроцессором компьютера для уменьшения среднего времени доступа к компьютерной памяти. Является одним из верхних уровней иерархии памяти … Википедия

    Эту страницу предлагается переименовать в Разъём процессора. Пояснение причин и обсуждение на странице Википедия:К переименованию/19 марта 2012. Возможно, её текущее название не соответствует нормам современного русского языка и/или… … Википедия

    Кэш (англ. cache, произносится kæʃ кЭш) промежуточный буфер с быстрым доступом, содержащий копию той информации, которая хранится в памяти с менее быстрым доступом, но с наибольшей вероятностью может быть оттуда запрошена. Доступ к данным в… … Википедия

    Ядро процессора Cell Cell микропроцессорная архитектура, совместно разработанная Sony, Toshiba и IBM, которые организовали альянс, известный как «STI». Разработка архитектуры и первые прототипы были созданы в STI Design Center за… … Википедия

    80486 DX2 x86 (англ. Intel 80x86) архитектура процессора c одноимённым наборо … Википедия

    - << Athlon >> Центральный процессор … Википедия

Книги

  • Ядро Cortex-M3 компании ARM Полное руководство , Ю Д.. Настоящая книга представляет собой исчерпывающее руководство по новому 32-битному процессору компании ARM - Cortex-M3. В данном руководстве подробно описана архитектурапроцессорного ядра…