Особенности изменения яркости и контраста цифровых изображений. Критерии и методы укрупнённой оценки качества изображений в растровых графических форматах

Все прекрасно знаете, что фотоаппараты не идеальны и не всегда точно подбирают цвет (свет) на фото. Бывает, вспышка не успевает зарядиться и мы наблюдаем практически черный квадрат Малевича, бывает она сработает чересчур сильно и мы наблюдаем белый квадрат неизвестного художника с красными точками посередине (глазенки хомячка), а бывает что мы пытаемся не зависеть от вспышки, пробуем снять без нее, а фото получается желтовато-коричневатого мутного оттенка. Все это с легкость можно вылечить средствами Photoshop (безусловно, в разумных пределах! Конечно же, полностью черный или полностью засвеченный кадр восстановить не удастся).

Как правильно менять яркость, контрастность и насыщенность

Давайте начнем сначала с некратких, а затем кратких определений, чтобы понимать что же мы с вами меняем.

Что нам говорят по этой теме словари:

Яркость — световая характеристика тел. Отношение силы света, излучаемого поверхностью, к площади ее проекции на плоскости, перпендикулярной оси наблюдения.

Контрастность — различимость предмета наблюдения от окружающего его фона (монохроматическое излучение); цветовая контрастность - разновидность оптической контрастности, связанная с разницей цветовых оттенков.

Насыщенность — в физическом плане насыщенность цвета определяется характером распределения излучения в спектре видимого света.

Гхм… Неудобоваримые термины… Попробую сформулировать попроще и касательно данной темы:

Яркость — количество белого цвета на вашем фото. Чем выше вы ставите яркость, тем светлее становится кадр.

Контрастность — разница между разными, расположенными рядом цветами. Чем выше контрастность, тем более резко мы наблюдаем переход от одного цвета к другому (иногда контрастность срабатывает как повышение резкости).

Насыщенность — насколько сочно и ярко у вас выглядит тот или иной цвет. Можно увеличивать ее в нескромных пределах — тогда фото начинает даже «резать» глаз.

Можно, конечно, расписать по пунктам каждую из этих характеристик, но это было бы неправильно. Правильно комплексно менять все три настройки кадра. Как? Сейчас разберем…

Возьмем для рассмотрения вот такое вот темное, слабоконтрастное фото…

Команды эти прячутся в меню «Изображение», далее «Коррекция», затем «Яркость / Контрастность» и «Цветой тон / Насыщенность»:

и

При нажатии кнопки «Яркость / Контрастность» мы наблюдаем такое вот окошко:

При выборе «Цветой фон / Насыщенность» вот такое:

Для начала открываем «Яркость / Контрастность» и спокойно и умиротворенно двигаем оба ползунка вправо до требуемого значения яркости и контраста (все это делается чисто интуитивным образом и в каждом случае по-своему!). Не следует выставлять всегда точно такие же значения как на этом вот кадре:

Мне вот показалось что сначала нужно выставить яркость на +120, а контрастность на +30. Но всем заметно что цвета чересчур яркие и ненатуральные. Хорошо, что мы знаем где находится меню «Цветовой фон / Насыщенность», которая нам поможет это исправить:

Мне кажется, что если сбросить значение насыщенности на 13 пунктов получается неплохо. Вот, вроде бы, и все, но я всегда перестраховываюсь и еще разок захожу в «Яркость / Контрастность», проверяя, может что -то еще следует поменять для достижения наиболее красивого результата и реалистичного фото.

Одной из самых главных характеристик телевизора при выборе является значение контрастности изображения на экране телеприемника. Если вы выбираете телевизор по качеству картинки, то обязательно обратите внимание на значение контрастности у разных моделей.

По определению контрастность равна отношению яркости в самой светлой точке экрана к яркости точки, где самое тёмное изображение. Другими словами уровень белого делим на уровень черного и получаем контрастность. Только вот значения этих уровней можно получить только при специальной проверке телевизора с применением специализированных приборов. Поэтому простому пользователю приходится верить или производителям или различным обзорам на сайтах, где тестируют телевизоры. Кому больше доверять и как проверяют контрастность, и поговорим дальше.

Мы сказали, что контрастность одна из самых важных характеристик телевизора. Поэтому производители стараются максимально повысить это значение для улучшения продаж. Производитель может в лаборатории измерить яркость пикселя, при подаче сигнала, который никогда в реальных условиях не используется. Затем измерить яркость этого пикселя при отсутствии сигнала, что невозможно при обычном просмотре. После этого высчитывается значение контрастности. И вот значения, измеренные в таких условиях, и попадают в паспорт изделия. Из-за этого и видим сегодня, что значения контрастности многих телевизоров просто зашкаливают. Все это возможно, потому что в мире нет обязательных правил по измерению контрастности дисплеев.


большая контрастность

Разделяют статическую (естественную) и динамическую контрастность . Естественная контрастность зависит только от возможностей дисплея, а динамическая получается в результате применения дополнительных технологий.

Статическая контрастность измеряется по яркости точек в одном сюжете (самой яркой и самой темной). При измерении динамической контрастности используются технологии для её завышения. Сам телевизор при воспроизведении видео регулирует контрастность в зависимости от сюжета, который в данный момент показан на экране. То есть регулируется подсветка в жк матрице. При показе яркого сюжета световой поток от подсветки увеличивается. А когда сюжет меняется на темный (ночь, темная комната и т.д.), то и подсветка начинает уменьшать свой световой поток. Получается, что на ярких сценах из-за увеличения света от подсветки значение уровня черного плохое, а на темных сценах уровень черного хорош, но световой поток уменьшится. Нам это тяжело заметить, потому что на ярких сценах и подсвеченный черный кажется полностью черным. А на темных сценах яркость светлых объектов кажется достаточной. Такая особенность человеческого зрения.

Такая схема управления подсветкой увеличивает контрастность, хотя и не настолько как заявляют производители. И действительно многие телевизоры с динамической контрастностью выигрывают по качеству изображения у аппаратов, которые не имеют такой схемы регулировки.

Но все равно дисплеи с высокой естественной контрастностью будут цениться выше. Это можно продемонстрировать, если вывести на экран картинку, где будет изображен белый текст на черном фоне. У экрана с высокой статической контрастностью текст действительно будет белым, а фон будет черным. А вот дисплей с высокой динамической контрастностью если и покажет черный фон, то буквы будут уже серыми. Поэтому и при воспроизведении обычного видео на экране с повышенной естественной контрастностью картинка буде максимально приближена к реальному изображению. Например, на фоне вечернего неба будут яркие уличные фонари. А на фоне дневного яркого неба черная машина действительно будет черной. Такое изображение мы видим в кинотеатрах.

Максимально реальным, по контрастности , изображение было на экранах кинескопных телевизоров. Но с приходом эры HDTV эти телеприемники уступили свое место на рынке другим аппаратам. Сегодня значения высокой естественной контрастности достигаются при использовании домашних проекторов LCOS. Первое место среди этих устройств занимают аппараты фирмы JVC со своей версией D-ILA. Далее можно отметить Sony с технологией SXRD. На третье место уже можно поставить плазменные телевизоры.

Производители жк телевизоров внедрили в последние годы несколько технологий для достижения того уровня контрастности, которая возможна в других моделях. Наилучшие результаты в повышении контрастности дает применение светодиодной подсветки с локальным затемнением. При этом невозможно регулировать подсветку каждого пикселя и не происходит управление каждым светодиодом в отдельности, но все равно результат получается хорошим. Но производители отказались от самого эффективного вида подсветки, когда светодиоды расположены по всей площади экрана. Такое производство оказалось дорогим. Сегодня в основном используется так называемая боковая подсветка. Здесь светодиоды располагаются сверху и снизу. Для боковой подсветки так же разработаны схемы локального затемнения. Телевизоры с такой подсветкой показывают достаточно хорошие результаты по значению контрастности.

Во время выбора телевизора в магазине оценить качество контрастности дисплея тяжело . Мешает внешнее яркое освещение, экраны могут иметь разное покрытие: антибликовое или глянцевое. В паспорте не всегда написано правдивое значение контрастности, потому что производители его измеряют в лабораториях и при подаче на экран специальных сигналов. Даже прочитав несколько обзоров в Интернете не всегда понятно, какое настоящее значение контрастности. Ведь каждый меряет его по-своему.

Есть несколько методик измерения контрастности . Подают на вход сначала черное поле и замеряют яркость, а затем – белое поле и замеряют яркость. Получается хорошая контрастность, но при реальном просмотре никогда не будет полностью белой или полностью черной картинки. При это еще и при показе обычного видеосигнала в телевизоре включается видеообработка, которая так же вносит свои изменения. Более правдивые показания дает тест по методу ANSI, когда на экран подается шахматное поле с белыми и черными полями. Это больше соответствует обычному изображению. Но при этом белые поля будут влиять на измерения значения яркости черных полей. Так что единого правильного метода измерения контрастности нет.

Так что рекомендации по выбору телевизора с хорошей контрастностью остаются те же. Если вы будете смотреть в основном кино в затененной комнате, то лучше всего подойдет плазма. В освещенной комнате хорошие результаты покажет LCD телевизор со светодиодной подсветкой из-за своей большой яркости. Между этими моделями можно поставить жк телевизор при наличии запаса по светоотдачи. И нужно запомнить главное, любой телевизор нуждается в правильной настройке. Отрегулируйте правильно яркость и контрастность аппарата для получения максимально качественного изображения.

Дополнительно:

1. Линейное изменение яркости и контраста. При линейном изменении яркость и контраст в большинстве графических про­грамм (например, в программе Adobe Photoshop) оптимизируются одновременно и объединены одним диалогом.

Для линейного изменения яркости и контраста нужно выбрать из меню Изображение команду Коррекция и включить функцию Яр-


кость/Контраст. Затем в открывшемся диалоговом окнезадать нужное значение яркости и контраста 1 (рис. 209).

Рис. 209. Изображение, подвергнутое обработке, и диалоговое окно линейного изменения яркости и контраста

В диалоговом окне Яркость/Контраст всего две полосы, в ко­торых перемещением движков изменяют яркость и контраст. Для того чтобы изображение сделать более светлым, движок значения яркости перемещают вправо, более темным - влево. Аналогично увеличивают и уменьшают общий контраст изображения.

Данная функция изменения яркости и контраста позволяет пред­варительно оценить эффект обработки, для этого в диалоговом окне должен быть включен флажок Просмотр. В случае, если результат обработки устраивает пользователя, то нажимают кнопку Да.

При линейной коррекции яркость каждого элемента увеличива­ется на фиксированную величину. Например, указывая в про­граммном диалоге величину 10 единиц, программа должна следить

Команды и функции по обработке изображений приведены для программы Adobe Photoshop версии 4. 0. В более современных версиях программы названия команд и функций по обработке изображений могут отличаться.


за тем, чтобы интервал яркостей не выходил за верхний (255) и нижний (0) пределы.

Линейное изменение яркости и контраста при значительной сте­пени коррекции приводит к потере деталей изображения. Так, при выявлении деталей в светах они теряются в тенях и наоборот. Приемлемые результаты получают при небольшой коррекции ярко­сти или же, когда действие изменения ограничивается определен­ным диапазоном яркостей.

Кроме того, при линейном «осветлении», т. е. увеличении ярко­стей всех градаций на одну величину, не учитывается физиология зрения человека.

Человек воспринимает изменения яркости почти логарифмиче­ски, и поэтому, чтобы добиться равномерного осветления, адекват­но учитывающего физиологию зрения человека, его следует произ­водить нелинейно, например в соответствии с экспоненциальной (показательной) функцией. При этом потери информации будут уменьшаться.

2. Нелинейное изменение яркости и контраста. Нелинейно изменять яркость и контраст можно, используя различные функции:

Функция «Кривые», позволяющая изменять яркость и кон­
траст с помощью градационной кривой или таблицы сопоставления
значений;


Функция «Уровни», изменяющая яркость и контраст:

а) глобально, с помощью гамма-характеристики;

б) селективно, для «светов», теней и средних тонов изображения.
Такие стандартные функции имеются в каждой современной

программе обработки изображений, например в программе Adobe Photoshop.

А. Изменение яркости и контраста с помощью градационной кривой.

Яркость и контраст цифровых изображений можно изменять произвольно, задавая вид градационной кривой.

Для того чтобы воспользоваться этой функцией, нужно в меню Изображение выбрать команду Коррекция и включить функцию Кривые. При этом откроется диалоговое окно (см. рис. 200), в кото­ром нужно задать вид градационной кривой для обрабатываемого изображения.

При этом необходимо на графике зафиксировать точки, которые будут ограничивать корректируемый участок тонового диапазона, например область «светов». Для этого подводят курсор к опреде­ленной точке на градационной кривой и, нажав левую кнопку мыши, фиксируют ее. Далее в отмеченном диапазоне графика изменяют вид градационной кривой до получения требуемого результата.


Под графикам представлены две кнопки инструментов для по-строения кривых: слева - инструмент для работы с гладкой кри­вой, справа - для работы с произвольной кривой. Чем больше угол наклона градационной кривой к горизонтали, тем выше кон­траст изображения.

Если результат обработки устраивает пользователя, то нажи­мают кнопку Да в диалоговом окне.

На рис. 210 представлены обработанное изображение и вид градационной кривой, позволяющие получить более светлое изо­бражение и выявить детали в области теней.

Excel для Office 365 Word для Office 365 Outlook для Office 365 PowerPoint для Office 365 Excel 2019 Word 2019 Outlook 2019 PowerPoint 2019 Project профессиональный 2019 Excel 2016 Word 2016 Outlook 2016 PowerPoint 2016 Project профессиональный 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Excel 2010 Word 2010 Outlook 2010 PowerPoint 2010 Excel 2007 Word 2007 Outlook 2007 PowerPoint 2007 Project Online Desktop Client Project профессиональный 2013 Project стандартный 2013 Project стандартный 2016 Project стандартный 2019 Меньше

Изменение яркости экрана

Вы хотите настроить яркость экрана ?

    Windows 10 : нажмите кнопку Пуск , выберите пункт Параметры , а затем - _гт_ системы . в разделе яркость и цвет установите ползунок изменить яркость , чтобы настроить яркость. Дополнительные сведения см. в статье изменение яркости экрана

    Windows 8 : нажмите клавиши Windows + C. Выберите пункт Параметры , а затем - изменить параметры ПК . Выберите компьютер и устройства, _гт_ дисплей . Включите автоматическУю настройку яркости экрана . Дополнительные сведения см. в статье Настройка яркости и контрастности

Подробнее о корректировке рисунков в приложениях Office.

В этом видеоролике демонстрируется несколько способов настройки рисунка.

(По время воспроизведения видео можно щелкнуть стрелку изменения размера в правом нижнем углу кадра, чтобы увеличить размер изображения.)


Длительность: 1:35

Настройка яркости, четкости или контрастности

Примечание: , даже если вы внесли исправления. Эта функция недоступна в Word или Excel.

Изменение цветовой схемы Office для повышения контрастности

Является ли цветовая схема Office слишком яркой? Вам нужна более контрастность приложений Office ? Дополнительные сведения см. в разделе Изменение темы Office (office 2016 и 2013) .

Вы можете изменить яркость, контрастность или резкость изображения с помощью средств исправления.

По часовой стрелке с левого верхнего угла: исходный рисунок, рисунок с увеличенной плавностью, увеличенной контрастностью и увеличенной яркостью.


Настройка яркости и контрастности рисунка

Совет: Если вы используете PowerPoint, вы по-прежнему можете сохранить исходную версию рисунка , даже если вы изменили яркость рисунка. Эта функция недоступна в Word или Excel.

Главный редактор - Владимир Крылов, к.т.н.
Зам. главного редактора - Михаил Никуличев, к.ф.н.

Первая часть статьи посвящена характеристикам современных светодиодных экранов, влияющим на качество изображения – управления яркостью методами ШИМ, формирование изображения с временным разделением и частоте рефреша экранов. Во второй части статьи рассмотрены - динамический диапазон яркости, цветопередача и контрастность экранов, драйверы и современные системы управления светодиодными экранами, электромагнитная совместимость и индустриальные помехи экранов.

Светодиодный экран – сложное электронное устройство, содержащее большое количество компонентов. Качество изображения и эксплуатационные характеристики светодиодного экрана зависят как от параметров компонентов, используемых в экране, так и от возможностей системы управления данным экраном.

С точки зрения качества изображения важны следующие характеристики экрана:

  • разрешение экрана (т.н. пространственное разрешение), в случае светодиодных экранов обычно выражаемое в виде расстояния между пикселями (pitch size);
  • максимальная яркость (измеряемая в Нитах);
  • динамический диапазон яркости, выражаемый в количестве уровней яркости, которые возможно отобразить на светодиодном экране (эта характеристика носит также название радиометрического или энергетического разрешения);
  • частота смены кадров, выражаемая в количестве кадров, показываемых за секунду (fps) (это временное разрешение);
  • частота обновления кадра (частота рефреша), измеряемая в Герцах (это тоже временное разрешение);
  • спектральное разрешение – насколько много спектральных составляющих формируют изображение;
  • однородность цвета по всему экрану;
  • баланс белого цвета и возможность его настройки;
  • линейность восприятия яркости – субъективная характеристика качества изображения, которая выражается в возможности различать глазом близкие уровни яркости, как на темных участках изображения, так и на ярких;
  • контрастность изображения экрана;
  • характеристика изменения качества изображения экрана в зависимости от угла обзора;

Кроме качества изображения отметим также такие эксплуатационные характеристики светодиодного экрана:

  • наличие системы мониторинга состояния светодиодного экрана;
  • развитость ПО (программного обеспечения) системы управления (возможность построения сетей светодиодных экранов, в том числе сетей, содержащих как светодиодные, так и LCD экраны, возможность управления экранами через Internet, наличие встроенной подсистемы информационной безопасности);
  • уровень электромагнитного излучения в виде индустриальных радиопомех, создаваемых светодиодным экраном.

Рассмотрим некоторые из вышеперечисленных характеристик подробнее.

Формирование изображения на светодиодном экране и управление яркостью Широтно-импульсная модуляция (PWM) и частота рефреша (refresh rate)

Исходное изображение для вывода на светодиодный экран формируется в виде компьютерного файла, чаще всего в виде видеоролика в некотором формате (*.avi, *.mpg). Этот файл декодируется управляющим компьютером (или видеоконтроллером), затем преобразуется в специальный цифровой поток, подающийся на микросхемы драйверов постоянного тока, которые, в свою очередь обеспечивают пропускание электрического тока через светодиод, что и вызывает излучение в определенном спектре.

Для формирования различных уровней яркости излучения светодиодов применяют технику широтно-импульсной модуляции - ШИМ (PWM - Pulse-width modulation). Суть этой техники заключается в том, что в зависимости от необходимого уровня яркости ток не постоянно подается на светодиод, а только в течение некоторого времени (зависящего от требуемого уровня яркости), затем прекращает подаваться, затем снова подается и т.д. Например, для формирования яркости в половину от максимальной надо пропускать ток половину времени некоторого цикла, в четверть яркости – четверть времени, и т. д. Иными словами, светодиод работает в режиме “включен-выключен”, причем время включения пропорционально требуемому уровню яркости.

Из этой техники следует, что на светодиоде (а значит и на экране) изображение формируется циклично. Время минимального цикла, за который происходит последовательное «включение» и “выключение” светодиода называется периодом обновления (рефреша, refresh time). Чаще используется обратная величина – частота рефреша (refresh rate).

Рассмотрим пример. Пусть частота рефреша светодиодного экрана равна 100 Гц. Если нам нужно обеспечить полную яркость – 100%, то мы постоянно подаем ток на светодиод весь период рефреша, равный в данном случае 1/100 с = 10 мс. Если требуется яркость 50%, то за это время мы в течение 5 мс подаем ток, в течение следующих 5 мс не подаем, в следующий цикл снова 5 мс подаем, 5 мс – нет и т.д. Если требуется яркость в 1% от максимальной, то ток подается в течение 0,1 мс и не подается в течение 9,9 мс.

Кроме этой техники применяются модифицированные методы PWM: Scrambled PWM (Macroblock), Sequential Split Modulation (Silicon Touch), Adaptive Pulse Density Modulation (MY-Semi). Суть этих техник заключается в “размазывании” времени “включения” светодиода по всему периоду рефреша. Так формирование 50%-ой яркости при частоте рефреша 100 Гц может выглядеть так: 1 мс - светодиод включен, 1 мс – выключен, 1 мс – включен, 1 мс – выключен и т.д. То есть для 50% яркости можно сказать, что период рефреша уменьшился в 5 раз и стал равен 2 мс. Соответственно частота рефреша увеличилась и стала 500 Гц. Но эти цифры справедливы лишь для формирования 50% яркости. Для каждой схемы формирования яркости есть минимальная яркость – 1 импульс (некоторое минимальное время) включения светодиода и остальное время он выключен.

Таким образом, четкая цикличность присущая традиционному PWM при применении модифицированных методов искажается, поскольку, в зависимости от уровня яркости можно выделить периоды с меньшим временем (и следовательно большей частотой рефреша). Можно, например, сказать, что для данного светодиодного экрана частота рефреша изменяется от 100 Гц до 1 кГц. Это означает, что минимальную яркость на светодиодном экране мы показываем с периодом рефреша 100 Гц. А при формировании больших уровней яркости можно выделить периоды (“включения-выключения” светодиодов) с меньшей длительностью.

Итак, для модифицированных методов PWM такое понятие как частота рефреша может трактоваться неоднозначно. Однако, если рассматривать период рефреша как минимальное время, за которое происходит обновление изображения для всех уровней яркости , то это значение не зависит от схемы формирования PWM.

Чересстрочная развертка или временное разделение (time division) светодиодных экранов

В ряде случаев конструкцией светодиодного экрана предусмотрен такой метод формирования изображения, при котором в один момент времени ток не может быть подан на все светодиоды сразу. Все светодиоды экрана разбиваются на несколько групп (как правило, две, четыре или восемь), которые включаются поочередно. То есть описанные выше методы формирования изображения применяются поочередно к каждой из этих групп. В случае двух таких групп формирование изображения аналогично применяемой в аналоговом телевидении чересстрочной развертке.

Данный способ применяется, в основном, для удешевления светодиодных экранов, так как для его реализации требуется меньше светодиодных драйверов (в два, четыре, восемь раз - в число раз соответствующее количеству поочередно включаемых групп), которые составляют существенную часть стоимости светодиодного экрана. Кроме этого, метод временного деления практически неизбежен при высоком разрешении (то есть малом шаге) светодиодного экрана, так как в этом случае чрезвычайно сложно обеспечить размещение большого количества драйверов и их теплоотвод.

Следует понимать, что при применении этого метода снижается максимальная яркость светодиодного экрана, а также уменьшается частота рефреша (в количество раз соответствующее количеству групп).

Предположим, что мы производим временное деление между двумя группами светодиодов. На одну группу подается ток в соответствии с требуемой яркостью и используемым методом PWM. Другая группа в это время отключена от источника тока. По прошествии периода рефреша группы меняются – теперь на вторую подается ток, а первая отключена. Поэтому, общий период, за который обновляется вся информация на светодиодном экране, увеличивается в два раза.

Понятие частота рефреша в этом случае еще более размывается. Строго говоря, период рефреша как минимальное время, за которое происходит обновление изображения для всего светодиодного экрана, увеличивается. Однако, если для каждой группы рассматривать только период, на котором формируется изображение методом PWM, то частота рефреша – прежняя.

Частота рефреша светодиодного экрана и человеческий глаз

Частота рефреша, в первую очередь, влияет на восприятие изображения глазом человека. Изображение, образно говоря, постоянно “мерцает”, хотя и с достаточно высокой частотой. Восприятие человеком световых образов – явление психофизическое и устроено таким образом, что отдельные вспышки света суммируются во времени. Это суммирование происходит в течение определенного времени (10 мс) и зависит от яркости вспышек (закон Блоха). Если свет “мерцает” достаточно быстро, с частотой выше некоторой пороговой (CFF – Critical Flicker Frequency), то глаз человека воспринимает этот свет так же, как если бы он горел постоянно (закон Тальбо-Плато). Пороговая частота CFF зависит от множества факторов, таких как спектр источника света, расположение источника по отношению к глазу, уровень яркости. Однако, можно с уверенностью сказать, что при обычных условиях эта частота не превышает 100 Гц.

Таким образом, если рассматривать восприятие изображения на светодиодном экране, сформированного методом PWM или модифицированным PWM, человеческим глазом, то изображение с частотой рефреша 100 Гц и 1 кГц будут восприниматься одинаково.

Частота рефреша экрана и видеокамера

Однако, в качестве воспринимающей системы может выступать не только глаз человека, но и видеозаписывающая аппаратура, которая имеет характеристики, отличные от глаза. Это особенно актуально для светодиодных экранов, установленных на стадионах, спортивных сооружениях или концертных площадках, с которых обычно ведется видеотрансляция. Время экспозиции, или выдержка (shutter speed), в современных видеокамерах может меняться от секунд до тысячных долей секунды.

Рассмотрим светодиодный экран, в котором изображение формируется традиционным методом PWM с частотой рефреша 100 Гц. На экране демонстрируется статическое изображение. Предположим также, что мы снимаем светодиодный экран видеокамерой с выдержкой 1/8 с, т.е. время экспозиции 125 мс. За это время на фотосенсор попадет свет от 12,5 периодов рефреша. Когда мы делаем серию кадров с данной выдержкой, то разница в световом потоке, попадающем на светочувствительный элемент, не превышает потока, сформированного светодиодами за 0,5 периода рефреша, т.е. не более 4% от всего потока. Разница образуется за счет того, что видеокамера и светодиодный экран, естественно, не синхронизированы и каждый кадр, сделанный видеокамерой, попадает в разное время относительно начала цикла рефреша светодиода. Таким образом, видеоизображение с камеры будет показывать достаточно ровную картинку со светодиодного экрана.

Теперь уменьшим выдержку, с которой мы снимаем до 1/250 с, время экспозиции равно 4 мс. Это время в 2,5 раза меньше периода рефреша. Теперь соотношение между временем начала кадра видеокамеры и началом цикла PWM будет иметь существенное значение. Одни кадры могут попасть в начало цикла, другие в середину, третьи в конец. Таким образом, образуется значительная погрешность в световом потоке в разных кадрах. То есть, изображение, проигрываемое на видеокамере, будет случайно менять яркость, будет “плыть”. Кроме того, уменьшится яркость изображения, что, впрочем, характерно для всех снимаемых на короткой выдержке объектов. Если еще уменьшить выдержку, то с большей вероятностью будут появляться черные кадры (когда начало кадра видеокамеры попадает на тот участок цикла PWM, где светодиод “выключен”) и изображение с камеры начнет мерцать.

Таким образом, если мы хотим снимать на видеокамеру светодиодный экран, на котором изображение формируется с использованием традиционного PWM, то частота рефреша должна быть сопоставимой или превосходить выдержку, с которой снимает камера.

В случае применения модифицированных методов PWM можно провести те же рассуждения. В силу “размазывания” времени включения светодиода по циклу PWM на больших яркостях, изображение, снятое на видеокамеру будет более стабильно, чем при применении традиционного PWM. Но на малых яркостях ситуация остается прежней – картинка будет либо менять яркость, либо мерцать. Поскольку реальное изображение содержит, как правило, различные уровни яркости, то изображение, снятое на видеокамеру также будет иметь погрешности, хотя и иного свойства.

Итак, при видеосъемке избежать наличия искажения изображения при произвольных параметрах съемки не удается. Всегда можно найти значение выдержки, при которой видео будет искажено. Ситуация аналогична съемке аналогового телевизора аналоговой же камерой. В силу различий в частоте развертки при подобной съемке на снимаемом телевизоре видны диагональные черные полосы.

Более важным для видеосъемки светодиодного экрана представляется вопрос однородности изображения, снятого на видеокамеру. Светодиодный экран – конструкция модульная, состоящая из нескольких блоков, изображение на которых непосредственно формируется различными контроллерами. Если эти контроллеры не синхронизируют начало цикла PWM, то есть начало цикла на разных участках светодиодного экрана приходится на разное время, то при съемке может произойти следующая ситуация. На одном участке светодиодного экрана начало кадра видеокамеры может совпасть с началом цикла PWM, а на другом, например, на середину. Если выдержка сопоставима с периодом рефреша, то на одном участке изображение будет светлее, а на другом темнее. Все изображение на светодиодном экране в этом случае будет разбиваться на прямоугольники разной яркости, что представляет больший дискомфорт для зрителя.

Стоимость увеличения частоты рефреша светодиодных экранов

Независимо от способа генерации PWM схемы их реализующие имеют общие черты. Схема генерации PWM имеет некоторую тактовую частоту F pwm . Пусть требуется сгенерировать N уровней яркости. В этом случае частота рефреша F r не может превышать F pwm /N .

Для иллюстрации приведем некоторые примеры:

Приведенные цифры предполагают, что существуют независимые схемы формирования PWM для каждого светодиода, то есть схема PWM реализована непосредственно в светодиодных драйверах экрана.

В случае применения простых драйверов и формирования PWM на контроллере светодиодного экрана, необходимо учитывать, сколько драйверов соединены последовательно и обслуживаются одной схемой PWM. Если одной схемой PWM обслуживаются M драйверов с 16-ю выходами, то частота рефреша не может превышать F pwm /(N*M*16) , что приводит к значительному уменьшению частоты рефреша либо необходимости существенно увеличивать тактовую частоту.

В случае применения временного деления (чересстрочной развертки), как мы уже говорили, частота рефреша уменьшается пропорционально коэффициенту деления.

Итак, для увеличения частоты рефреша светодиодных экранов возможны следующие варианты:

  • применение “интеллектуальных” драйверов;
  • увеличение тактовой частоты схемы генерации PWM;
  • уменьшение количества уровней яркости (глубины цвета).

Каждый из этих способов имеет свои достоинства и недостатки. Так интеллектуальные драйверы дороже обычных, повышение тактовой частоты увеличивает энергопотребление (а значит тепловыделение, необходимость теплоотвода во избежание перегрева), уменьшение количества уровней яркости снижает качество изображения.

Рефреш светодиодных экранов: Выводы

Часто такой параметр как частота рефреша светодиодных экранов используется в маркетинговых целях как один из показателей качества изображения. Предполагается, что чем выше частота рефреша, тем лучше светодиодный экран при прочих равных условиях. Однако, иногда приводятся цифры, вводящие в заблуждение потенциального покупателя. Например, указание частоты рефреша в несколько килогерц, как мы видели, может означать либо применение модифицированных методов PWM, для которых частота рефреша различна для различных уровней яркости, либо уменьшение глубины цвета.

Следует понимать, что высокие значения частоты рефреша и, одновременно, глубины цвета, скорее всего, предполагают, что этот рефреш в светодиодном экране достигается на определенных (высоких) уровнях яркости.

В случае применения чересстрочной развертки может быть указана частота соответствующая одному циклу PWM для одной группы светодиодов, в то время как реальная частота рефреша экрана (которая влияет на восприятие) в несколько раз ниже.

Более информативным, видимо, является указание глубины цвета и тактовой частоты PWM, с возможным добавлением диапазона частоты рефреша экрана (например, 200-1000 Гц) в случае использования модифицированных методов PWM. Если в светодиодном экране применено временное деление, то необходимо явно указать на этот метод формирования изображения (например time division = 1:1 – нет временного деления, time division = 1:2 – одновременно PWM работает на половине экрана и т. д.).

Для восприятия глазом этот параметр светодиодного экрана вообще несущественен. Для частот выше 100 Гц глаз человека не увидит разницу в качестве изображения. Следовательно, необходимо понять, нужна ли высокая частота рефреша и стоит ли за нее платить.

В случае активного использования светодиодного экрана в процессе видеосъемки этот показатель становится существенным, но следует также обратить внимание на однородность изображения при видеосъемке. Для таких светодиодных экранов, возможно, лучше провести тестовые съемки, чем полагаться лишь на такой параметр как частота рефреша.