Сетевые файловые системы и Linux. Что такое NFS? Network File System

Протокол сетевой файловой службы (Network File Server, NFS) - это открытый стандарт на предоставление пользователю удаленного доступа к файловым системам. Созданные на его основе централизованные файловые системы облегчают ежедневное выполнение таких задач, как резервное копирование или проверка на вирусы, а объединенные дисковые разделы проще обслуживать, чем множество небольших и распределенных.

Кроме того, что система NFS предоставляет возможность централизованного хранения, oна оказалась весьма полезной и для других приложений, включая работу с бездисковыми и тонкими клиентами, разбиение сети на кластеры, а также для совместно работающего межплатформенного ПО.

Лучшее понимание как самого протокола, так и деталей его реализации позволит легче справиться с практическими задачами. Данная статья посвящена NFS и состоит из двух логических частей: вначале описывается сам протокол и цели, поставленные при его разработке, а затем реализации NFS в Solaris и UNIX.

С ЧЕГО ВСЕ НАЧИНАЛОСЬ...

Протокол NFS разработан компанией Sun Microsystems и в 1989 г. появился в Internet в виде документа RFC 1094 под следующим названием: «Спецификация протокола сетевой файловой системы» (Network File System Protocol Specification, NFS). Интересно отметить, что и стратегия компании Novell в то время была направлена на дальнейшее усовершенствование файловых служб. До недавнего времени, пока движение за открытые коды еще не набрало силу, Sun не стремилась раскрывать секреты своих сетевых решений, однако даже тогда в компании понимали всю важность обеспечения взаимодействия с другими системами.

В документе RFC 1094 содержались две первоначальные спецификации. К моменту его публикации Sun разрабатывала уже следующую, третью версию спецификации, которая изложена в RFC 1813 «Спецификация протокола NFS, версия 3» (NFS Version 3 Protocol Specification). Версия 4 данного протокола определена в RFC 3010 «Спецификация протокола NFS, версия 4» (NFS Version 4 Protocol).

NFS широко используется на всех типах узлов UNIX, в сетях Microsoft и Novell, а также в таких решениях компании IBM, как AS400 и OS/390. Будучи неизвестной за пределами сетевого «королевства», NFS, пожалуй, самая распространенная платформенно-независимая сетевая файловая система.

ПРАРОДИТЕЛЕМ БЫЛ UNIX

Хотя NFS - платформенно-независимая система, ее прародителем является UNIX. Другими словами, иерархичность архитектуры и методы доступа к файлам, включая структуру файловой системы, способы идентификации пользователей и групп и приемы работы с файлами - все это очень напоминает файловую систему UNIX. Например, файловая система NFS, будучи по структуре идентичной файловой системе UNIX, монтируется непосредственно в ней. При работе с NFS на других операционных системах идентификационные параметры пользователей и права доступа к файлам подвергаются преобразованию (mapping).

NFS

Система NFS предназначена для применения в клиент-серверной архитектуре. Клиент получает доступ к файловой системе, экспортируемой сервером NFS, посредством точки монтирования на клиенте. Такой доступ обычно прозрачен для клиентского приложения.

В отличие от многих клиент-серверных систем, NFS для обмена информацией использует вызовы удаленных процедур (Remote Procedure Calls, RPC). Обычно клиент устанавливает соединение с заранее известным портом и затем, в соответствии с особенностями протокола, посылает запрос на выполнение определенного действия. В случае вызова удаленных процедур клиент создает вызов процедуры и затем отправляет его на исполнение серверу. Подробное описание NFS будет представлено ниже.

В качестве примера предположим, что некий клиент смонтировал каталог usr2 в локальной корневой файловой системе:

/root/usr2/ -> remote:/root/usr/

Если клиентскому приложению необходимы ресурсы этого каталога, оно просто посылает запрос операционной системе на него и на имя файла, а та предоставляет доступ через клиента NFS. Для примера рассмотрим простую команду UNIX cd, которая «ничего не знает» о сетевых протоколах. Команда

Cd /root/usr2/

разместит рабочий каталог на удаленной файловой системе, «даже не догадываясь» (пользователю тоже нет в этом необходимости), что файловая система является удаленной.

Получив запрос, сервер NFS проверит наличие у данного пользователя права на выполнение запрашиваемого действия и в случае положительного ответа осуществит его.

ПОЗНАКОМИМСЯ ПОБЛИЖЕ

С точки зрения клиента, процесс локального монтирования удаленной файловой системы средствами NFS состоит из нескольких шагов. Как уже упоминалось, клиент NFS подаст вызов удаленной процедуры для выполнения ее на сервере. Заметим, что в UNIX клиент представляет собой одну программу (команда mount), в то время как сервер на самом деле реализован в виде нескольких программ со следующим минимальным набором: служба преобразования портов (port mapper), демон монтирования (mount daemon) и сервер NFS.

Вначале клиентская команда mount взаимодействует со службой преобразования портов сервера, ожидающей запросы через порт 111. Большинство реализаций клиентской команды mount поддерживает несколько версий NFS, что повышает вероятность нахождения общей для клиента и сервера версии протокола. Поиск ведется, начиная с самой старшей версии, поэтому, когда общая будет найдена, она автоматически станет и самой новой версией из поддерживаемых клиентом и сервером.

(Излагаемый материал ориентирован на третью версию NFS, поскольку она наиболее распространена на данный момент. Четвертая версия большинством реализаций пока не поддерживается.)

Служба преобразования портов сервера откликается на запросы в соответствии с поддерживаемым протоколом и портом, на котором работает демон монтирования. Клиентская программа mount вначале устанавливает соединение с демоном монтирования сервера, а затем передает ему с помощью RPC команду mount. Если данная процедура выполнена успешно, то клиентское приложение соединяется с сервером NFS (порт 2049) и, используя одну из 20 удаленных процедур, которые определены в RFC 1813 и приводятся нами в Таблице 1, получает доступ к удаленной файловой системе.

Смысл большинства команд интуитивно понятен и не вызывает каких-либо затруднений у системных администраторов. Приведенный ниже листинг, полученный с помощью tcdump, иллюстрирует команду чтения, создаваемую командой UNIX cat для прочтения файла с именем test-file:

10:30:16.012010 eth0 > 192.168.1.254. 3476097947 > 192.168.1.252.2049: 144 lookup fh 32,0/ 224145 "test-file" 10:30:16.012010 eth0 > 192.168.1.254. 3476097947 > 192.168.1.252.2049: 144 lookup fh 32,0/ 224145 "test-file" 10:30:16.012729 eth0 192.168.1.254.3476097947: reply ok 128 lookup fh 32,0/224307 (DF) 10:30:16.012729 eth0 192.168.1.254.3476097947: reply ok 128 lookup fh 32,0/224307 (DF) 10:30:16.013124 eth0 > 192.168.1.254. 3492875163 > 192.168.1.252.2049: 140 read fh 32,0/ 224307 4096 bytes @ 0 10:30:16.013124 eth0 > 192.168.1.254. 3492875163 > 192.168.1.252.2049: 140 read fh 32,0/ 224307 4096 bytes @ 0 10:30:16.013650 eth0 192.168.1.254.3492875163: reply ok 108 read (DF) 10:30:16.013650 eth0 192.168.1.254.3492875163: reply ok 108 read (DF)

NFS традиционно реализуется на основе UDP. Однако некоторые версии NFS поддерживают TCP (в спецификации протокола определена поддержка TCP). Главное преимущество TCP - более эффективный механизм повторной передачи в ненадежно работающих сетях. (В случае UDP, если произошла ошибка, то полное сообщение RPC, состоящее из нескольких пакетов UDP, пересылается заново. При наличии TCP заново пересылается лишь испорченный фрагмент.)

ДОСТУП В NFS

В реализациях NFS обычно поддерживаются четыре способа предоставления прав доступа: посредством атрибутов пользователя/файла, на уровне разделяемых ресурсов, на уровне главного узла, а также в виде комбинации других методов доступа.

Первый способ основывается на встроенной в UNIX системе прав доступа к файлам для индивидуального пользователя или группы. Для упрощения обслуживания идентификация пользователей и групп должна быть единообразной для всех клиентов и серверов NFS. Защиту следует тщательно продумать: в NFS можно по неосторожности предоставить такой доступ к файлам, который не планировался при их создании.

Доступ на уровне разделяемых ресурсов позволяет ограничивать права, разрешив только определенные действия, независимо от принадлежности файла или привилегий UNIX. Например, работу с файловой системой NFS можно ограничить только чтением. Большинство реализаций NFS позволяет дополнительно ограничить доступ на уровне разделяемых ресурсов конкретными пользователями и/или группами. Например, группе «Отдел кадров» разрешается просмотр информации и не более того.

Доступ на уровне главного узла позволяет монтировать файловую систему только на конкретных узлах, что, вообще говоря, хорошая идея, поскольку файловые системы могут легко создаваться на любых узлах, поддерживающих NFS.

Комбинированный доступ просто объединяет вышеописанные виды (например, доступ на уровне разделяемых ресурсов с доступом, предоставляемым конкретному пользователю) или разрешает пользователям работу с NFS только с определенного узла.

NFS В СТИЛЕ «ПИНГВИН»

Относящийся к Linux излагаемый материал основывается на системе Red Hat 6.2 с ядром версии 2.4.9, которая поставляется с пакетом nfs-utils версии 0.1.6. Существуют и более новые версии: на момент написания этой статьи самое последнее обновление пакета nfs-utils имело номер 0.3.1. Его можно загрузить по адресу: .

Пакет nfs-utils содержит следующие исполняемые файлы: exportfs, lockd, mountd, nfsd, nfsstat, nhfsstone, rquotad, showmount и statd.

К сожалению, иногда поддержка NFS вызывает путаницу у администраторов Linux, поскольку наличие той или иной функциональной возможности напрямую зависит от номеров версий как ядра, так и пакета nfs-utils. К счастью, в настоящее время положение дел в этой области улучшается: последние дистрибутивные комплекты включают самые новые версии и того, и другого. Для предыдущих выпусков в разделе 2.4 документа NFS-HOWTO приводится полный список функциональных возможностей системы, имеющихся в наличии для каждой комбинации ядра и пакета nfs-utils. Разработчики поддерживают обратную совместимость пакета с более ранними версиями, уделяя много внимания обеспечению безопасности и устранению программных ошибок.

Поддержку NFS следует инициировать во время компиляции ядра. Если необходимо, в ядро нужно добавить и возможность работы с NFS версии 3.

Для дистрибутивов, поддерживающих linuxconf, легко сконфигурировать службы NFS как для клиентов, так и для серверов. Однако быстрый способ установки NFS с помощью linuxconf не дает информации о том, какие файлы были созданы или отредактированы, что очень важно знать администратору для понимания ситуации в случае сбоя системы. Архитектура NFS в Linux имеет слабую связь с версией BSD, поэтому необходимые файлы и программы поддержки легко найти администраторам, работающим с BSD, Sun OS 2.5 или более ранними версиями NFS.

Файл /etc/exports, как и в более ранних версиях BSD, определяет файловые системы, к которым разрешен доступ клиентам NFS. Кроме того, он содержит ряд дополнительных возможностей, относящихся к вопросам управления и безопасности, предоставляя администратору средство для тонкой настройки. Это текстовый файл, состоящий из записей, пустых или закомментированных строк (комментарии начинаются с символа #).

Предположим, что мы хотим предоставить клиентам доступ только для чтения к каталогу /home на узле Lefty. Этому в /etc/exports будет соответствовать следующая запись:

/home (ro)

Здесь нам необходимо сообщить системе, какие каталоги мы собираемся сделать доступными с помощью демона монтирования rpc.mountd:

# exportfs -r exportfs: В /home (ro) не указано имя узла, введите *(ro) чтобы избежать предупреждения #

При запуске команда exportfs выводит предупреждение о том, что /etc/ exports не ограничивает доступ к отдельному узлу, и создает соответствующую запись в /var/lib/nfs/etab из /etc/exports, сообщающую, какие ресурсы можно просмотреть с помощью cat:

# cat /var/lib/nfs/etab /home (ro,async,wdelay,hide,secure,root_ squash, no_all_squash,subtree_check, secure_locks, mapping=identity,anonuid= -2,anongid=-2)

Другие параметры, перечисленные в виде списка в etab, включают значения по умолчанию, используемые NFS. Детали будут описаны ниже. Чтобы предоставить доступ к каталогу /home, необходимо запустить соответствующие службы NFS:

# portmap # rpc.mountd # rpc.nfsd # rpc.statd # rpc.rquotad

В любой момент после запуска демона монтирования (rpc.mountd) cправиться об отдельных файлах, доступных для вывода, можно, просмотрев содержимое файла /proc/fs/nfs/exports:

# cat /proc/fs/nfs/exports # Version 1.0 # Path Client(Flags) # IPs /home 192.168.1.252(ro,root_squash,async, wdelay) # 192.168.1.252 #

То же самое можно просмотреть и с помощью команды showmount с параметром -e:

# showmount -e Export list for lefty: /home (everyone) #

Забегая несколько вперед, скажу, что команду showmount можно также использовать для определения всех смонтированных файловых систем, или, другими словами, чтобы выяснить, какие узлы являются клиентами NFS для системы, на которой запущена команда showmount. Команда showmount -a выведет все клиентские точки монтирования:

# showmount -a All mount points on lefty: 192.168.1.252:/home #

Как указывалось выше, большинство реализаций NFS поддерживает различные версии этого протокола. Реализация в Linux позволяет ограничивать список запускаемых версий NFS путем указания ключа -N для демона монтирования. Например, для запуска NFS третьей версии, и только ее, введите следующую команду:

# rpc.mountd -N 1 -N 2

Привередливым пользователям может показаться неудобным, что в Linux демон NFS (rpc.nfsd) находится в режиме ожидания пакетов версий 1 и 2, хотя это и достигает желаемого эффекта отказа от поддержки соответствующего протокола. Будем надеяться, что разработчики следующих версий внесут необходимые исправления и сумеют добиться большей согласованности компонентов пакета в отношении различных версий протокола.

«ЗАПЛЫВ С ПИНГВИНАМИ»

Доступ к сконфигурированной выше Lefty, экспортируемой файловой системе NFS на базе Linux, зависит от клиентской операционной системы. Стиль установок для большинства операционных систем семейства UNIX совпадает со стилем либо исходных систем Sun OS и BSD, либо более новой Solaris. Так как данная статья посвящена обеим системам, Linux и Solaris, давайте рассмотрим клиентскую конфигурацию Solaris 2.6 с точки зрения установления соединения с Linux-версией NFS, описанной нами выше.

Благодаря свойствам, унаследованным Solaris 2.6, ее легко сконфигурировать для работы в качестве клиента NFS. Для этого требуется лишь одна команда:

# mount -F nfs 192.168.1.254:/home /tmp/tmp2

Предположим, что предыдущая команда mount выполнена успешно, тогда команда mount без параметров выведет следующее:

# mount / on /dev/dsk/c0t0d0s0 read/write/setuid/ largefiles on Mon Sep 3 10:17:56 2001 ... ... /tmp/tmp2 on 192.168.1.254:/home read/ write/remote on Mon Sep 3 23:19:25 2001

Давайте проанализируем вывод tcpdump, полученный на узле Lefty, после того, как пользователь ввел команду ls /tmp/tmp2 на узле Sunny:

# tcpdump host lefty and host sunny -s512 06:07:43.490583 sunny.2191983953 > lefty.mcwrite.n.nfs: 128 getattr fh Unknown/1 (DF) 06:07:43.490678 lefty.mcwrite.n.nfs > sunny.2191983953: reply ok 112 getattr DIR 40755 ids 0/0 sz 0x000001000 (DF) 06:07:43.491397 sunny.2191983954 > lefty.mcwrite.n.nfs: 132 access fh Unknown/10001 (DF) 06:07:43.491463 lefty.mcwrite.n.nfs > sunny.2191983954: reply ok 120 access c0001 (DF) 06:07:43.492296 sunny.2191983955 > lefty.mcwrite.n.nfs: 152 readdirplus fh 0,1/16777984 1048 bytes @ 0x000000000 (DF) 06:07:43.492417 lefty.mcwrite.n.nfs > sunny.2191983955: reply ok 1000 readdirplus (DF)

Мы видим, что узел Sunny запрашивает для ls описатель файла (fh), на что узел Lefty в ответ посылает OK и возвращает структуру каталога. Затем Sunny проверяет разрешение на право доступа к содержимому каталога (132 access fh) и получает ответ с разрешением от Lefty. После этого узел Sunny, используя процедуру readdirplus, считывает полное содержимое каталога. Вызовы удаленных процедур описаны в документе RFC 1813 и приведены нами в начале данной статьи.

Хотя последовательность команд для доступа к удаленным файловым системам очень проста, ряд обстоятельств может привести к некорректному монтированию системы. Перед монтированием каталога точка монтирования должна уже существовать, в противном случае ее необходимо создать с помощью команды mkdir. Обычно единственной причиной ошибок на клиентской стороне является отсутствие локального каталога для монтирования. Большинство же проблем, связанных с NFS, обязано своим происхождением несоответствию между клиентом и сервером или некорректной конфигурации сервера.

Проще всего устранить проблемы на сервере с узла, на котором работает сервер. Однако, когда администрированием сервера занимается вместо вас кто-то другой, это не всегда возможно. Быстрый способ убедиться, что соответствующие службы сервера правильно сконфигурированы, - использовать команду rpcinfo с параметром -p. С узла Solaris Sunny можно определить, какие процессы RPC зарегистрированы на узле Linux:

# rpcinfo -p 192.168.1.254 program vers proto port service 100000 2 tcp 111 rpcbind 100000 2 udp 111 rpcbind 100024 1 udp 692 status 100024 1 tcp 694 status 100005 3 udp 1024 mountd /100005 3 tcp 1024 mountd 100003 2 udp 2049 nfs 100003 3 udp 2049 nfs 100021 1 udp 1026 nlockmgr 100021 3 udp 1026 nlockmgr 100021 4 udp 1026 nlockmgr #

Заметим, что здесь же приводится информация о версиях, что достаточно полезно, когда для работы системы требуется поддержка различных протоколов NFS. Если какая-либо служба не запущена на сервере, то такая ситуация должна быть исправлена. В случае неудачного монтирования приводимая ниже команда rpcinfo -p позволит выяснить, что служба mountd на сервере не работает:

# rpcinfo -p 192.168.1.254 program vers proto port service 100000 2 tcp 111 rpcbind ... ... 100021 4 udp 1026 nlockmgr #

Команда rpcinfo очень полезна для выяснения, активен ли тот или иной удаленный процесс. Параметр -p - самый важный из ключей. Для ознакомления со всеми возможностями rpcinfo обратитесь к справочной странице man.

Другое полезное средство - команда nfsstat. С ее помощью можно узнать, обращаются ли в действительности клиенты к экспортируемой файловой системе, а также вывести статистическую информацию в соответствии с версией протокола.

Наконец, еще одним достаточно полезным инструментом определения причин сбоев системы является tcpdump:

# tcpdump host lefty and host sunny -s512 tcpdump: listening on eth0 06:29:51.773646 sunny.2191984020 > lefty.mcwrite.n.nfs: 140 lookup fh Unknown/1"test.c" (DF) 06:29:51.773819 lefty.mcwrite.n.nfs > sunny.2191984020: reply ok 116 lookup ERROR: No such file or directory (DF) 06:29:51.774593 sunny.2191984021 > lefty.mcwrite.n.nfs: 128 getattr fh Unknown/1 (DF) 06:29:51.774670 lefty.mcwrite.n.nfs > sunny.2191984021: reply ok 112 getattr DIR 40755 ids 0/0 sz 0x000001000 (DF) 06:29:51.775289 sunny.2191984022 > lefty.mcwrite.n.nfs: 140 lookup fh Unknown/1"test.c" (DF) 06:29:51.775357 lefty.mcwrite.n.nfs > sunny.2191984022: reply ok 116 lookup ERROR: No such file or directory (DF) 06:29:51.776029 sunny.2191984023 > lefty.mcwrite.n.nfs: 184 create fh Unknown/1 "test.c" (DF) 06:29:51.776169 lefty.mcwrite.n.nfs > sunny.2191984023: reply ok 120 create ERROR: Permission denied (DF)

Вышеприведенный листинг, полученный после выполнения инструкции touch test.c, отражает следующую последовательность действий: сначала команда touch пытается получить доступ к файлу по имени test.c, затем она ищет каталог с этим же именем, а после неудачных попыток пытается создать файл test.c, что также не приводит к успеху.

Если файловая система смонтирована, то большинство типичных ошибок связано с обычными правами доступа UNIX. Использование uid или NIS+ в Sun помогает избежать глобального установления прав доступа на все файловые системы. Некоторые администраторы практикуют «открытые» каталоги, когда права доступа на их чтение даются «всему миру». Однако этого следует избегать по причинам безопасности. Даже отбросив в сторону проблемы защиты, все равно придется признать такой подход порочной практикой, поскольку пользователи редко создают данные с намерением сделать их доступными для чтения всем подряд.

Обращения привилегированного пользователя (root) к смонтированным файловым системам NFS трактуются по-особому. Чтобы избежать предоставления привилегированному пользователю неограниченного доступа, запросы от него трактуются так, как будто бы они поступают от пользователя nobody («никто»). Этот действенный механизм ограничивает доступ привилегированного пользователя глобально доступными для чтения и разрешенными для записи файлами.

СЕРВЕР NFS, ВЕРСИЯ SOLARIS

Конфигурирование Solaris для работы в качестве сервера NFS так же просто, как и в случае с Linux. Однако команды и местоположение файлов несколько отличаются. При начальной загрузке Solaris по достижении уровня загрузки 3 (run level 3) автоматически запускаются службы NFS и экспортируются все файловые системы. Для запуска этих процессов вручную введите команду:

#/usr/lib/nfs/mountd

Для запуска демона монтирования и сервера NFS введите:

#/usr/lib/nfs/nfsd

Начиная с версии 2.6 в Solaris для указания экспортируемых файловых систем больше не используется файл экспорта. Теперь файлы экспортируются с помощью команды share. Предположим, мы хотим позволить удаленным узлам смонтировать /export/home. Введем для этого следующую команду:

Share -F nfs /export/home

Мероприятия по обеспечению безопасности

БЕЗОПАСНОСТЬ В LINUX

Некоторые системные службы NFS на основе Linux имеют дополнительный механизм ограничения доступа посредством управляющих списков или таблиц. На внутреннем уровне этот механизм реализован с помощью библиотеки tcp_wrapper, которая для формирования списков контроля доступа использует два файла: /etc/hosts.allow и /etc/hosts/deny. Исчерпывающий обзор правил работы с tcp_wrapper выходит за рамки данной статьи, основной же принцип состоит в следующем: сопоставление вначале производится с etc/hosts.allow, а затем с /etc/hosts. deny. Если правило не найдено, то запрашиваемая системная служба не представляется. Чтобы обойти последнее требование и обеспечить очень высокий уровень безопасности, в конец /etc/hosts.deny можно добавить следующую запись:

ALL: All

После этого можно использовать /etc/ hosts.allow, чтобы установить тот или иной режим работы. Например, файл /etc/hosts. allow, который я использовал при написании данной статьи, содержал следующие строки:

Lockd:192.168.1.0/255.255.255.0 mountd:192.168.1.0/255.255.255.0 portmap:192.168.1.0/255.255.255.0 rquotad:192.168.1.0/255.255.255.0 statd:192.168.1.0/255.255.255.0

При этом разрешается определенный вид доступа к узлам до того, как будет предоставлен доступ на уровне приложений. В Linux доступом на уровне приложений управляет файл /etc/exports. Он состоит из записей в следующем формате:

Экспортируемый каталог {пробел} узел|сеть(опции)

«Экспортируемый каталог» - это каталог, обработка запроса к которому разрешена демону nfsd. «Узел|сеть» - это узел или сеть, имеющие доступ к экспортируемой файловой системе, а «опции» определяют те ограничения, какие демон nfsd налагает на использование данного разделяемого ресурса, - доступ только для чтения или преобразование идентификатора пользователя (user id mapping).

В следующем примере всему домену mcwrite.net предоставлен доступ в режиме только для чтения к /home/mcwrite.net:

/home/mcwrite.net *.mcwrite.net(ro)

Другие примеры можно найти на справочной странице exports man.

БЕЗОПАСНОСТЬ NFS В SOLARIS

В Solaris возможности по предоставлению доступа к NFS аналогичны Linux, однако в этом случае ограничения задаются с помощью определенных параметров в команде share с ключом -o. Следующий пример показывает, как разрешить монтирование в режиме только для чтения /export/mcwrite.net на любом узле домена mcwrite.net:

#share -F nfs -o ro=.mcwrite.net/ export/ mcwrite.net

Справочная страница man для share_nfs подробно описывает предоставление доступа с помощью управляющих списков в Solaris.

Ресурсы Internet

В NFS и RPC не обошлось без «дыр». Вообще говоря, NFS не следует использовать при работе в Internet. Нельзя делать «дыры» в брандмауэрах, предоставляя какой бы то ни было доступ посредством NFS. Необходимо тщательно следить за всеми появляющимися заплатами для RPC и NFS, в чем могут помочь многочисленные источники информации по вопросам безопасности. Два наиболее популярных источника - Bugtraq и CERT:

Первый можно регулярно просматривать в поисках необходимой информации или воспользоваться подпиской на периодическую рассылку новостей. Второй предоставляет, может быть, не столь оперативную, по сравнению с другими, информацию, зато в достаточно полном объеме и без оттенка сенсационности, свойственной некоторым сайтам, посвященным информационной безопасности.

Сетевые службы

Лекция 10

Совокупность серверной и клиентской частей ОС, предоставляющих доступ к конкретному типу ресурса компьютера через сеть, называется сетевой службой . Клиентская часть обращается с сетевыми запросами к серверной части другого компьютера. Серверная часть удовлетворяет запросы к локальным ресурсам сервера. Клиентская часть – активная, серверная – пассивная.

При сетевом взаимодействии значительное место занимает доступ через сеть к файловой системе. В этом случае клиентская и серверная части, совместно с сетевой файловой системой образуют файловую службу

Ключевым компонентом распределенной ОС является сетевая файловая система. Сетевая файловая система поддерживается одним или несколькими компьютерами, хранящими файлы (файловые сервера)

Клиентские компьютеры подсоединяются или монтируют эти файловые системы к своим локальным файловым системам

Файловая служба включает программы-серверы и программы-клиенты, взаимодействующие по сети с помощью протокола.

Файловые службы включает собственно файловую службу (файловые операции) и службу каталогов (управление каталогами)

Модель сетевой файловой службы включает следующие элементы:

Локальная файловая система (FAT, NTFS)

Интерфейс локальной файловой системы (системные вызовы)

Сервер сетевой файловой системы

Клиент сетевой файловой системы (Windows Explorer, UNIX shell и пр.)

Интерфейс сетевой файловой системы(повторяет системные вызовы локальной файловой системы)

Протокол клиент-сервер сетевой файловой системы (SMB-Server Message Block для Windows, NFS (Network File System) и FTP (File Transfer Protocol) для UNIX)

Интерфейс сетевой файловой системы

Существуют несколько типов интерфейсов, которые характеризуются:

Структура файлов . Большинство сетевых ФС поддерживают неструктурированные файлы

Модифицируемость файлов . В большинстве сетевых ФС имеется возможность модифицировать файл. Некоторые распределенные ФС запрещают операции модификации. Возможны лишь create и read. Для таких файлов легче организовать кэширование и тиражирование.

Семантика разделения файлов:

Семантика UNIX (централизованная). Если чтение следует за несколькими операциями записи, то читается последнее обновление. Этот принцип возможен и в распределенной файловой системе, при условии одного файлового сервера и отсутствия кэширование файлов у клиента.

Сеансовая семантика. Изменения начинаются после открытия файла, а завершаются после закрытия. Другими словами, для других процессов изменения видны лишь после закрытия файла. В данном случае имеется проблема при совместном доступе к файлу. Семантика неизменяемых файлов. Файл можно только создать и читать. Можно также заново создать файл под другим именем. Следовательно файл нельзя модифицировать, но можно заменить новым файлом. Проблема совместного доступа при этом отсутствует.



Механизм транзакций. Это способ работы с разделяемыми файлами с помощью механизма транзакций (неделимых операций)

Контроль доступа . Например для Windows NT/2000 существует два механизма: на уровне каталогов (для FAT) и на уровне файлов (NTFS)

Единица доступа. Модель загрузки-выгрузки файла целиком (FTP). Вторая модель - использование операций над файлами.

Сетевые файловые системы

Одна из наиболее полезных функций, которая может быть реализована с помощью сети, это разделение файлов через сетевую файловую систему. Обычно используется система, называемая Network File System или NFS, которая разработана корпорацией Sun.

При работе с сетевой файловой системой любые операции над файлами, производимыми на локальном компьютере, передаются через сеть на удаленную машину. При работе сетевой файловой системы программа считает, что все файлы на удаленном компьютере находятся на компьютере, где она запущена. Таким образом, разделение информации посредством такой системы не требует внесения каких-либо изменений в программу.

Почта

Электронная почта является самым важным средством связи между компьютерами. Электронные письма хранятся в одном файле в специальном формате. Для чтения и отправления писем применяются специальные программы.

У каждого пользователя имеется отдельный почтовый ящик, файл, где информация хранится в специальном формате, в котором хранится приходящая почта. Если на компьютер приходит письмо, то программа обработки почты находит файл почтового ящика соответствующего пользователя и добавляет туда полученное письмо. Если же почтовый ящик пользователя находится на другом компьютере, то письмо перенаправляется на этот компьютер, где проходит его последующая обработка.

Почтовая система состоит из множества различных программ. Доставка писем к локальным или удаленным почтовым ящикам производится одной программой (например, sendmail или smail), в то время как для обычной отправки или просмотра писем применяется большое количество различных программ (например, Pine или elm).Файлы почтовых ящиков обычно хранятся в каталоге /var/spool/mail.

Вопросы

1. Что такое NOS и каково ее назначение?

2. Какие функции сети выполняет сетевая операционная система?

3. Из каких частей состоит структура NOS?

4. Что такое редиректор?

5. Как подразделяются сетевые операционные системы по правам доступа к ресурсам?

6. Как подразделяются сетевые операционные системы по масштабу сетей?

7. Как зависят свойства сетевой операционной системы от масштаба сетей?

8. Дать характеристику сетевой операционной системы NetWare фирмы Novell.

9. Из каких элементов состоит структура сетевой операционной системы NetWare?

10. Дать характеристику файловой системы сетевой ОС NetWare.

11. Какие уровни протоколов поддерживает сетевая операционная система NetWare?

12. Перечислить функции протоколов IPX, SPX.

13. Дать характеристику сетевой операционной системы Windows NT.

14. Перечислить задачи сетевой операционной системы Windows NT.

15. Из каких элементов состоит структура сетевой операционной системы Windows NT?

16. Дать характеристику файловой системы сетевой ОС Windows NT.

17. Какие принципы защиты используются в сетевой ОС Windows NT?

18. Перечислить особенности сетевой операционной системы Windows NT с точки зрения реализации сетевых средств.

19. Назвать свойства сетевой операционной системы Windows NT.

20. Каковы области использования Windows NT?

21. Дать характеристику сетевой операционной системы UNIX.

22. Перечислить функции сетевой операционной системы UNIX.

23. Дать характеристику файловой системы сетевой ОС UNIX.

24. Какие принципы защиты используются UNIX?

25. Дать обзор сетевой операционной системы Linux.

Важнейший компонент любой распределенной системы - файловая система, которая в этом случае также является распределенной. Как и в централизованных системах, функцией файловой системы является хранение программ и данных и предоставление клиентам доступа к ним. Распределенная файловая система поддерживается одним или более компьютерами, хранящими файлы. Файловые серверы обычно содержат иерархические файловые системы, каждая из которых имеет корневой каталог и каталоги более низких уровней. Во многих сетевых файловых системах клиентский компьютер может подсоединять и монтировать эти файловые системы к своим локальным файловым системам, обеспечивая пользователю удобный доступ к удаленным каталогам и файлам. При этом данные монтируемых файлов никуда не перемещаются физически, оставаясь на серверах.

С программной точки зрения распределенная файловая система (ФС) - это сетевая служба, включающая программы-серверы и программы-клиенты, взаимодействующие между собой по определенному протоколу. Файловая служба в распределенных файловых системах имеет две функционально различные части: собственно файловую службу и службу каталогов файловой системы. Первая имеет дело с операциями над отдельными файлами, такими как чтение, запись или добавление (изменение), а вторая - с созданием каталогов и управлением ими, добавлением и удалением файлов из каталогов и т. п.

В хорошо организованной распределенной системе пользователи не знают, как реализована файловая система (сколько файловых серверов, где они расположены, как они работают). В идеале для пользователя сетевая файловая система должна выглядеть так, как его собственная на его компьютере, т. е. быть совершенно прозрачной. Однако в реальности сетевые файловые системы пока еще не полностью соответствуют такому идеалу.

Сетевая файловая система в общем случае включает следующие элементы :

Локальные файловые системы;

Интерфейсы локальной файловой системы;

Серверы сетевой файловой системы;

Клиенты сетевой файловой системы;

Интерфейсы сетевой файловой системы;

Протокол клиент-сервер сетевой файловой системы.

Клиенты сетевой ФС - это программы, работающие на многочисленных компьютерах, подключенных к сети. Эти программы обслуживают запросы приложений на доступ к файлам, хранящимся на удаленных компьютерах. Клиент сетевой ФС передает по сети запросы другому программному компоненту - серверу сетевой ФС, работающему на удаленном компьютере. Сервер, получив запрос, может выполнить его самостоятельно либо, что является более распространенным вариантом, передать запрос для обработки локальной файловой системе. После получения ответа от локальной ФС сервер передает его по сети__

Клиент и сервер сетевой ФС взаимодействуют друг с другом по сети по определенному протоколу. В случае совпадения интерфейсов локальной и сетевой ФС этот протокол может быть достаточно простым. Одним из механизмов, используемых для этой цели, может быть механизм RPC.

В операционных системах Windows основной сетевой файловой службы является протокол SMB (Server Message Block), который был совместно разработан компаниями Microsoft, Intel и IBM. Его последние расширенные версии получили название Common Internet File System, CIFS.

Протокол работает на прикладном уровне модели OSI. Для передачи по сети своих сообщений SMB использует различные транспортные протоколы. Исторически первым таким протоколом был NetBIOS (и его более поздняя версия NetBEUI), но сейчас сообщения SMB могут передаваться и с помощью других протоколов (TCP/UDP и IPX).

SMB относится к классу протоколов, ориентированных на соединение. Его работа начинается с того, что клиент отправляет серверу специальное сообщение с запросом на установление соединения. Если сервер готов к установлению соединения, он отвечает сообщением-подтверждением. После установления соединения клиент может обращаться к серверу, передавая ему в сообщениях SMB команды манипулирования файлами и каталогами. В процессе работы возможно возникновение ряда ситуаций, которые могут повлиять на эффективность удаленного доступа к файлам :

1. Отказ компьютера, на котором выполняется сервер сетевой файловой системы, во время сеанса связи с клиентом. Локальная ФС запоминает состояние последовательных операций, которые приложение выполняет с одним и тем же файлом, за счет ведения__ внутренней таблицы открытых файлов (системные вызовы open, read, write изменяют состояние этой таблицы). При крахе системы таблица открытых файлов теряется после перезагрузки серверного компьютера. В этом случае приложение, работаю-щее на клиентском компьютере, не может продолжить работу с файлами, открытыми до краха.

Одно из решений проблемы основано на передаче функции ведения и хранения таблицы открытых файлов от сервера клиенту. При такой организации протокол клиент-сервер упрощается, так как перезагрузка сервера приводит только к паузе в обслуживании.

2. Большие задержки в обслуживании из-за запросов в сети и перезагрузки файлового сервера при подключении большого числа клиентов. Решением проблемы может быть кэширование файлов (частично или целиком) на стороне клиента. Однако в этом случае протокол должен учитывать возможность образования нескольких копий одного и того же файла, которые могут независимо модифицироваться разными пользователями, т. е. протокол должен обеспечивать согласованность копий файлов, имеющихся на разных компьютерах.

3. Потери данных и разрушение целостности файловой системы при сбоях и отказах компьютеров, играющих роль файловых серверов. Для повышения отказоустойчивости сетевой ФС можно хранить несколько копий каждого файла (или целиком всей ФС) на нескольких серверах. Такие копии файла называются репликами (replica).

Репликация файлов не только повышает отказоустойчивость, но и решает проблему перегрузки файловых серверов, так как запросы к файлам распределяются между несколькими серверами, что повышает производительность файловой системы.

4. Аутентификация выполняется на одном компьютере, например на клиентском, а авторизация, т. е. проверка прав доступа к каталогам или файлам, - на другом, выполняющем роль файлового сервера. Эта общая проблема всех сетевых служб должна учитываться протоколом взаимодействия клиентов и серверов файловой службы.

Перечисленные проблемы решаются комплексно путем создания службы центра лизованной аутентификации, репликации, кэширования и др. Эти дополнительные службы находят свое отражение в протоколе взаимодействия клиентов и серверов, в результате чего создаются различные протоколы этого типа, поддерживающие тот или иной набор дополнительных функций. Поэтому для одной и той же локальной ФС могут существовать различные протоколы сетевой ФС (рис. 5.30). Так, к файловой системе NTFS сегодня можно получить доступ с помощью протоколов SMB, NCP (NetWare Control Protocol) и NFS (Network File System - протокол сетевой ФС компании Sun Microsystems, используемой в различных вариантах ОС семейства UNIX).

С другой стороны, с помощью одного и того же протокола может реализоваться удаленный доступ к локальным ФС разного типа. Например, протокол SMB используется для доступа не только к ФС типа FAT, но и ФС NTFS, HPFS (рис. 5.31). Эти ФС могут располагаться как на разных, так и на одном компьютере.__

Контрольные вопросы к главе 5

1. Какими преимуществами обладают сети по сравнению с раздельным использованием компьютеров?

2. Всегда ли совпадают физическая и логическая топологии сети?

3. Как классифицируются сети по величине охватываемой территории?

4. Какой компьютер может выполнять роль сервера в сети?

5. Что такое файловый сервер и сервер печати?

6. Какие функции выполняют регистрационные серверы?

7. Какие функции выполняют серверы удаленного доступа?

8. Что такое прокси-сервер?

9. Перечислите возможных клиентов компьютерной сети.

10. Что такое ≪толстый≫ и ≪тонкий≫ клиенты в компьютерной сети?

11. Как вы понимаете термин ≪сегментация≫ сети?

12. Что такое МАС-адрес?

13. Чем распределенная ОС отличается от сетевой? Существуют ли в настоящее время по-настоящему распределенные сетевые системы?

14. Перечислите основные компоненты сетевой ОС. Что такое сетевая служба? Какие сетевые службы вы можете назвать?

15. Часть сетевых служб направлена не на пользователя, а на администратора. Какие это службы?

16. Что представляли собой первые сетевые ОС? Какие подходы к созданию сетевых ОС используются в настоящее время?

17. Назовите характерные черты одноранговых сетей. В чем основная особенность многоранговой сети?

18. Что такое серверная ОС? Какие они бывают? Чем серверная ОС отличается от клиентской?

19. Сколько вариантов двухзвенных схем используется для распределенной обработки приложений?

20. Чем хороша двухзвенная обработка приложений при сотрудничестве сервера и клиента?

21. Есть ли преимущества у трехзвенной схемы обработки приложений, в чем они заключаются?

22. Как могут взаимодействовать процессы в распределенных системах?

23. Какие основные примитивы используются в транспортной системе сетевой ОС?

24. Как организуется синхронизация процессов в сети?

25. Что понимается под вызовом удаленных процедур?

Доброго времени, читатели и гости . Очень большой перерыв между постами был, но я снова в бою). В сегодняшней статье рассмотрю работу протокола NFS , а так же настройку сервера NFS и клиента NFS на Linux .

Введение в NFS

NFS (Network File System - сетевая файловая система ) по моему мнению - идеальное решение в локальной сети, где необходим быстрый (более быстрый по сравнению с SAMBA и менее ресурсоемкий по сравнению с удаленными файловыми системами с шифрованием - sshfs, SFTP, etc...) обмен данными и во главе угла не стоит безопасность передаваемой информации. Протокол NFS позволяет монтировать удалённые файловые системы через сеть в локальное дерево каталогов , как если бы это была примонтирована дисковая файловая система. Тем самым локальные приложения могут работать с удаленной файловой системой, как с локальной. Но нужно быть осторожным (!) с настройкой NFS , ибо при определенной конфигурации можно подвесить операционную систему клиента в ожидании бесконечного ввода/вывода. Протокол NFS основан на работе протокола RPC , который пока не поддается моему пониманию)) поэтому материал в статье будет немного расплывчат... Прежде, чем Вы сможете использовать NFS, будь это сервер или клиент, Вы должны удостовериться, что Ваше ядро имеет поддержку файловой системы NFS. Проверить поддерживает ли ядро файловую систему NFS можно, просмотрев наличие соответствующих строк в файле /proc/filesystems :

ARCHIV ~ # grep nfs /proc/filesystems nodev nfs nodev nfs4 nodev nfsd

Если указанных строк в файле /proc/filesystems не окажется, то необходимо установить описанные ниже пакеты. Это скорее всего позволит установить зависимые модули ядра для поддержки нужных файловых систем. Если после установки пакетов, поддержка NFS не будет отображена в указанном файле, то необходимо будет , с включением данной функции.

История Network File System

Протокол NFS разработан компанией Sun Microsystems и имеет в своей истории 4 версии. NFSv1 была разработана в 1989 и являлась экспериментальной, работала на протоколе UDP. Версия 1 описана в . NFSv2 была выпущена в том же 1989 г., описывалась тем же RFC1094 и так же базировалась на протоколе UDP, при этом позволяла читать не более 2Гб из файла. NFSv3 доработана в 1995 г. и описана в . Основными нововведениями третьей версии стало поддержка файлов большого размера, добавлена поддержка протокола TCP и TCP-пакетов большого размера, что существенно ускорило работоспосбоность технологии. NFSv4 доработана в 2000 г. и описана в RFC 3010, в 2003 г. пересмотрена и описана в . Четвертая версия включила в себя улучшение производительности, поддержку различных средств аутентификации (в частности, Kerberos и LIPKEY с использованием протокола RPCSEC GSS) и списков контроля доступа (как POSIX, так и Windows-типов). NFS версии v4.1 была одобрена IESG в 2010 г., и получила номер . Важным нововведением версии 4.1, является спецификация pNFS - Parallel NFS, механизма параллельного доступа NFS-клиента к данным множества распределенных NFS-серверов. Наличие такого механизма в стандарте сетевой файловой системы поможет строить распределённые «облачные» («cloud») хранилища и информационные системы.

NFS сервер

Так как у нас NFS - это сетевая файловая система, то необходимо . (Так же можно почитать статью ). Далее необходимо . В Debian это пакет nfs-kernel-server и nfs-common , в RedHat это пакет nfs-utils . А так же, необходимо разрешить запуск демона на необходимых уровнях выполнения ОС (команда в RedHat - /sbin/chkconfig nfs on , в Debian - /usr/sbin/update-rc.d nfs-kernel-server defaults ).

Установленные пакеты в Debian запускается в следующем порядке:

ARCHIV ~ # ls -la /etc/rc2.d/ | grep nfs lrwxrwxrwx 1 root root 20 Окт 18 15:02 S15nfs-common -> ../init.d/nfs-common lrwxrwxrwx 1 root root 27 Окт 22 01:23 S16nfs-kernel-server -> ../init.d/nfs-kernel-server

То есть, сначала запускается nfs-common , затем сам сервер nfs-kernel-server . В RedHat ситуация аналогичная, за тем лишь исключением, что первый скрипт называется nfslock , а сервер называется просто nfs . Про nfs-common нам сайт debian дословно говорит следующее: общие файлы для клиента и сервера NFS, этот пакет нужно устанавливать на машину, которая будет работать в качестве клиента или сервера NFS. В пакет включены программы: lockd, statd, showmount, nfsstat, gssd и idmapd . Просмотрев содержимое скрипта запуска /etc/init.d/nfs-common можно отследить следующую последовательность работы: скрипт проверяет наличие исполняемого бинарного файла /sbin/rpc.statd , проверяет наличие в файлах /etc/default/nfs-common , /etc/fstab и /etc/exports параметров, требующих запуск демонов idmapd и gssd , запускает демона /sbin/rpc.statd , далее перед запуском /usr/sbin/rpc.idmapd и /usr/sbin/rpc.gssd проверяет наличие этих исполняемых бинарных файлов, далее для демона /usr/sbin/rpc.idmapd проверяет наличие sunrpc, nfs и nfsd , а так же поддержку файловой системы rpc_pipefs в ядре (то есть наличие ее в файле /proc/filesystems ), если все удачно, то запускает /usr/sbin/rpc.idmapd . Дополнительно, для демона /usr/sbin/rpc.gssd проверяет модуль ядра rpcsec_gss_krb5 и запускает демон.

Если просмотреть содержимое скрипта запуска NFS-сервера на Debian (/etc/init.d/nfs-kernel-server ), то можно проследить следующую последовательность: при старте, скрипт проверяет существование файла /etc/exports , наличие nfsd , наличие поддержки файловой системы NFS в (то есть в файле /proc/filesystems ), если все на месте, то запускается демон /usr/sbin/rpc.nfsd , далее проверяет задан ли параметр NEED_SVCGSSD (задается в файле настроек сервера /etc/default/nfs-kernel-server ) и, если задан - запускает демона /usr/sbin/rpc.svcgssd , последним запускает демона /usr/sbin/rpc.mountd . Из данного скрипта видно, что работа сервера NFS состоит из демонов rpc.nfsd, rpc.mountd и если используется Kerberos-аутентификация, то и демон rcp.svcgssd. В краснойшляпе еще запускается демон rpc.rquotad и nfslogd (В Debian я почему-то не нашел информации об этом демоне и о причинах его отсутствия, видимо удален...).

Из этого становиться понятно, что сервер Network File System состоит из следующих процессов (читай - демонов) , расположенных в каталогах /sbin и /usr/sbin:

В NFSv4 при использовании Kerberos дополнительно запускаются демоны:

  • rpc.gssd - Демон NFSv4 обеспечивает методы аутентификации через GSS-API (Kerberos-аутентификация). Работает на клиенте и сервере.
  • rpc.svcgssd - Демон сервера NFSv4, который обеспечивает проверку подлинности клиента на стороне сервера.

portmap и протокол RPC (Sun RPC)

Кроме указанных выше пакетов, для корректной работы NFSv2 и v3 требуется дополнительный пакет portmap (в более новых дистрибутивах заменен на переименован в rpcbind ). Данный пакет обычно устанавливается автоматически с NFS как зависимый и реализует работу сервера RPС, то есть отвечает за динамическое назначение портов для некоторых служб, зарегистрированных в RPC сервере. Дословно, согласно документации - это сервер, который преобразует номера программ RPC (Remote Procedure Call) в номера портов TCP/UDP. portmap оперирует несколькими сущностями: RPC-вызовами или запросами , TCP/UDP портами , версией протокола (tcp или udp), номерами программ и версиями программ . Демон portmap запускается скриптом /etc/init.d/portmap до старта NFS-сервисов.

Коротко говоря, работа сервера RPC (Remote Procedure Call) заключается в обработке RPC-вызовов (т.н. RPC-процедур) от локальных и удаленных процессов. Используя RPC-вызовы, сервисы регистрируют или удаляют себя в/из преобразователя портов (он же отображатель портов, он же portmap, он же portmapper, он же, в новых версиях, rpcbind), а клиенты с помощью RPC-вызовов направляя запросы к portmapper получают необходимую информацию. Юзер-френдли названия сервисов программ и соответствующие им номера определены в файле /etc/rpc. Как только какой-либо сервис отправил соответствующий запрос и зарегистрировал себя на сервере RPC в отображателе портов, RPC-сервер присваивает сопоставляет сервису TCP и UDP порты на которых запустился сервис и хранит в себе ядре соответствующую информацию о работающем сервисе (о имени), уникальном номере сервиса (в соответствии с /etc/rpc) , о протоколе и порте на котором работает сервис и о версии сервиса и предоставляет указанную информацию клиентам по запросу. Сам преобразователь портов имеет номер программы (100000), номер версии - 2, TCP порт 111 и UDP порт 111. Выше, при указании состава демонов сервера NFS я указал основные RPC номера программ. Я, наверно, немного запутал Вас данным абзацем, поэтому произнесу основную фразу, которая должна внести ясность: основная функция отображателя портов заключается в том, чтобы по запросу клиента, который предоставил номер RPC-программы (или RPC-номер программы) и версию, вернуть ему (клиенту) порт, на котором работает запрошенная программа . Соответственно, если клиенту нужно обратиться к RPC с конкретным номером программы, он сначала должен войти в контакт с процессом portmap на серверной машине и определить номер порта связи с необходимым ему сервисом RPC.

Работу RPC-сервера можно представить следующими шагами:

  1. Преобразователь портов должен стартовать первым, обычно при загрузке системы. При этом создается конечная точка TCP и осуществляется открытие TCP порта 111. Также создается конечная точка UDP, которая находится в ожидании, когда на UDP порт 111 прибудет UDP датаграмма.
  2. При старте программа, работающая через сервер RPC создает конечную точку TCP и конечную точку UDP для каждой поддерживаемой версии программы. (Сервер RPC может поддерживать несколько версий. Клиент указывает требуемую версию при посылке RPC-вызова.) Динамически назначаемый номер порта закрепляется за каждой версией сервиса. Сервер регистрирует каждую программу, версию, протокол и номер порта, осуществляя соответствуюoий RPC-вызов.
  3. Когда программе клиента RPC необходимо получить необходимую информацию, она вызывает вызов процедуру преобразователя портов, чтобы получить динамически назначаемый номер порта для заданной программы, версии и протокола.
  4. В ответ на этот запрос север возвращает номер порта.
  5. Клиент отправляет сообщение RPC-запрос на номер порта, полученный в пункте 4. Если используется UDP, клиент просто посылает UDP датаграмму, содержащую сообщение RPC-вызова, на номер UDP порта, на котором работает запрошенный сервис. В ответ сервис отправляет UDP датаграмму, содержащую сообщение RPC отклика. Если используется TCP, клиент осуществляет активное открытие на номер TCP порта требуемого сервиса и затем посылает сообщение вызова RPC по установленному соединению. Сервер отвечает сообщением отклика RPC по соединению.

Для получения информации от RPC-сервера используется утилита rpcinfo . При указании параметров -p host программа выводит список всех зарегистрированных RPC программ на хосте host. Без указания хоста программа выведет сервисы на localhost. Пример:

ARCHIV ~ # rpcinfo -p прог-ма верс прото порт 100000 2 tcp 111 portmapper 100000 2 udp 111 portmapper 100024 1 udp 59451 status 100024 1 tcp 60872 status 100021 1 udp 44310 nlockmgr 100021 3 udp 44310 nlockmgr 100021 4 udp 44310 nlockmgr 100021 1 tcp 44851 nlockmgr 100021 3 tcp 44851 nlockmgr 100021 4 tcp 44851 nlockmgr 100003 2 tcp 2049 nfs 100003 3 tcp 2049 nfs 100003 4 tcp 2049 nfs 100003 2 udp 2049 nfs 100003 3 udp 2049 nfs 100003 4 udp 2049 nfs 100005 1 udp 51306 mountd 100005 1 tcp 41405 mountd 100005 2 udp 51306 mountd 100005 2 tcp 41405 mountd 100005 3 udp 51306 mountd 100005 3 tcp 41405 mountd

Как видно, rpcinfo отображает (в столбиках слева направо) номер зарегистрированной программы, версию, протокол, порт и название. С помощью rpcinfo можно удалить регистрацию программы или получить информацию об отдельном сервисе RPC (больше опций в man rpcinfo). Как видно, зарегистрированы демоны portmapper версии 2 на udp и tcp портах, rpc.statd версии 1 на udp и tcp портах, NFS lock manager версий 1,3,4, демон nfs сервера версии 2,3,4, а так же демон монтирования версий 1,2,3.

NFS сервер (точнее демон rpc.nfsd) получает запросы от клиента в виде UDP датаграмм на порт 2049. Несмотря на то, что NFS работает с преобразователем портов, что позволяет серверу использовать динамически назначаемые порты, UDP порт 2049 жестко закреплен за NFS в большинстве реализаций.

Работа протокола Network File System

Монтирование удаленной NFS

Процесс монтирования удаленной файловой системы NFS можно представить следующей схемой:

Описание протокола NFS при монтировании удаленного каталога:

  1. На сервере и клиенте запускается RPC сервер (обычно при загрузке), обслуживанием которого занимается процесс portmapper и регистрируется на порту tcp/111 и udp/111.
  2. Запускаются сервисы (rpc.nfsd,rpc.statd и др.), которые регистрируются на RPC сервере и регистрируются на произвольных сетевых портах (если в настройках сервиса не задан статичный порт).
  3. команда mount на компьютере клиента отправляет ядру запрос на монтирование сетевого каталога с указанием типа файловой системы, хоста и собственно - каталога, ядро отправляет формирует RPC-запрос процессу portmap на NFS сервере на порт udp/111 (если на клиенте не задана опция работать через tcp)
  4. Ядро сервера NFS опрашивает RPC о наличии демона rpc.mountd и возвращает ядру клиента сетевой порт, на котором работает демон.
  5. mount отправляет RPC запрос на порт, на котором работает rpc.mountd. Теперь NFS сервер может проверить достоверность клиента основываясь на его IP адресе и номере порта, чтобы убедиться, можно ли этому клиенту смонтировать указанную файловую систему.
  6. Демон монтирования возвращает описание запрошенной файловой системы.
  7. Команда mount клиента выдает системный вызов mount, чтобы связать описатель файла, полученный в шаге 5, с локальной точкой монтирования на хосте клиента. Описатель файла хранится в коде NFS клиента, и с этого момента любое обращение пользовательских процессов к файлам на файловой системе сервера будет использовать описатель файла как стартовую точку.

Обмен данными между клиентом и сервером NFS

Типичный доступ к удаленной файловой системе можно описать следующей схемой:

Описание процесса обращения к файлу, расположенному на сервере NFS:

  1. Клиенту (пользовательскому процессу) безразлично, получает ли он доступ к локальному файлу или к NFS файлу. Ядро занимается взаимодействием с железом через модули ядра или встроенные системные вызовы.
  2. Модуль ядра kernel/fs/nfs/nfs.ko, который выполняет функции NFS клиента отправляет RPC запросы NFS серверу через модуль TCP/IP. NFS обычно использует UDP, однако более новые реализации могут использовать TCP.
  3. NFS сервер получает запросы от клиента в виде UDP датаграмм на порт 2049. Несмотря на то, что NFS может работать с преобразователем портов, что позволяет серверу использовать динамически назначаемые порты, UDP порт 2049 жестко закреплен за NFS в большинстве реализаций.
  4. Когда NFS сервер получает запрос от клиента, он передаётся локальной подпрограмме доступа к файлу, которая обеспечивает доступ к локальному диску на сервере.
  5. Результат обращения диску возвращается клиенту.

Настройка сервера NFS

Настройка сервера в целом заключается в задании локальных каталогов, разрешенных для монтирования удаленными системами в файле /etc/exports . Это действие называется экспорт иерархии каталогов . Основными источниками информации об экспортированных каталогах служат следующие файлы:

  • /etc/exports - основной конфигурационный файл, хранящий в себе конфигурацию экспортированных каталогов. Используется при запуске NFS и утилитой exportfs.
  • /var/lib/nfs/xtab - содержит список каталогов, монтированных удаленными клиентами. Используется демоном rpc.mountd, когда клиент пытается смонтировать иерархию (создается запись о монтировании).
  • /var/lib/nfs/etab - список каталогов, которые могут быть смонтированы удаленными системами с указанием всех параметров экспортированных каталогов.
  • /var/lib/nfs/rmtab - список каталогов, которые не разэкспортированы в данный момент.
  • /proc/fs/nfsd - специальная файловая система (ядро 2.6) для управления NFS сервером.
    • exports - список активных экспортированных иерархий и клиентов, которым их экспортировали, а также параметры. Ядро получает данную информацию из /var/lib/nfs/xtab.
    • threads - содержит число потоков (также можно изменять)
    • с помощью filehandle можно получить указатель на файл
    • и др...
  • /proc/net/rpc - содержит "сырую" (raw) статистику, которую можно получить с помощью nfsstat, а также различные кеши.
  • /var/run/portmap_mapping - информация о зарегистрированных в RPC сервисах

Прим: вообще, в интернете куча трактовок и формулировок назначения файлов xtab, etab, rmtab, кому верить - не знаю Даже на http://nfs.sourceforge.net/ трактовка не однозначна.

Настройка файла /etc/exports

В простейшем случае, файл /etc/exports является единственным файлом, требующим редактирования для настройки NFS-сервера. Данный файл управляет следующими аспектами:

  • Какие клиенты могут обращаться к файлам на сервере
  • К каким иерархиям каталогов на сервере может обращаться каждый клиент
  • Как пользовательские имена клиентов будут отображаться на локальные имена пользователей

Каждая строка файла exports имеет следующий формат:

точка_экспорта клиент1 (опции ) [клиент2(опции) ...]

Где точка_экспорта абсолютный путь экспортируемой иерархии каталогов, клиент1 - n имя одного или более клиентов или IP-адресов, разделенные пробелами, которым разрешено монтировать точку_экспорта . Опции описывают правила монтирования для клиента , указанного перед опциями .

Вот типичный пример конфигурации файла exports:

ARCHIV ~ # cat /etc/exports /archiv1 files(rw,sync) 10.0.0.1(ro,sync) 10.0.230.1/24(ro,sync)

В данном примере компьютерам files и 10.0.0.1 разрешен доступ к точке экспорта /archiv1, при этом, хосту files на чтение/запись, а для хоста 10.0.0.1 и подсети 10.0.230.1/24 доступ только на чтение.

Описания хостов в /etc/exports допускается в следующем формате:

  • Имена отдельных узлов описываются, как files или files.DOMAIN.local.
  • Описание маски доменов производится в следующем формате: *DOMAIN.local включает все узлы домена DOMAIN.local.
  • Подсети задаются в виде пар адрес IP/маска. Например: 10.0.0.0/255.255.255.0 включает все узлы, адреса которых начинаются с 10.0.0.
  • Задание имени сетевой группы @myclients имеющей доступ к ресурсу (при использовании сервера NIS)

Общие опции экспорта иерархий каталогов

В файле exports используются следующие общие опции (сначала указаны опции применяемые по-умолчанию в большинстве систем, в скобках - не по-умолчанию):

  • auth_nlm (no_auth_nlm) или secure_locks (insecure_locks) - указывает, что сервер должен требовать аутентификацию запросов на блокировку (с помощью протокола NFS Lock Manager (диспетчер блокировок NFS)).
  • nohide (hide) - если сервер экспортирует две иерархии каталогов, при этом одна вложенна (примонтированна) в другую. Клиенту необходимо явно смонтировать вторую (дочернюю) иерархию, иначе точка монтирования дочерней иерархии будет выглядеть как пустой каталог. Опция nohide приводит к появлению второй иерархии каталогов без явного монтирования. (прим: я данную опцию так и не смог заставить работать...)
  • ro (rw) - Разрешает только запросы на чтение (запись). (в конечном счете - возможно прочитать/записать или нет определяется на основании прав файловой системы, при этом сервер не способен отличить запрос на чтение файла от запроса на исполнение, поэтому разрешает чтение, если у пользователя есть права на чтение или исполнение.)
  • secure (insecure) - требует, чтобы запросы NFS поступали с защищенных портов (< 1024), чтобы программа без прав root не могла монтировать иерархию каталогов.
  • subtree_check (no_subtree_check) - Если экспортируется подкаталог фаловой системы, но не вся файловая система, сервер проверяет, находится ли запрошенный файл в экспортированном подкаталоге. Отключение проверки уменьшает безопасность, но увеличивает скорость передачи данных.
  • sync (async) - указывает, что сервер должен отвечать на запросы только после записи на диск изменений, выполненных этими запросами. Опция async указывает серверу не ждать записи информации на диск, что повышает производительность, но понижает надежность, т.к. в случае обрыва соединения или отказа оборудования возможна потеря информации.
  • wdelay (no_wdelay) - указывает серверу задерживать выполнение запросов на запись, если ожидается последующий запрос на запись, записывая данные более большими блоками. Это повышает производительность при отправке больших очередей команд на запись. no_wdelay указывает не откладывать выполнение команды на запись, что может быть полезно, если сервер получает большое количество команд не связанных друг с другом.

Экспорт символических ссылок и файлов устройств. При экспорте иерархии каталогов, содержащих символические ссылки, необходимо, чтобы объект ссылки был доступен клиентской (удаленной) системе, то есть должно выполняться одно из следующих правил:

Файл устройства относится к интерфейсу . При экспорте файла устройства экспортируется этот интерфейс. Если клиентская система не имеет устройства такого же типа, то экспортированное устройство не будет работать. В клиентской системе, при монтировании NFS объектов можно использовать опцию nodev, чтобы файлы устройств в монтируемых каталогах не использовались.

Опции по умолчанию в разных системах могут различаться, их можно посмотреть в файле /var/lib/nfs/etab. После описания экспортированного каталога в /etc/exports и перезапуска сервера NFS все недостающие опции (читай: опции по-умолчанию) будут отражены в файле /var/lib/nfs/etab.

Опции отображения (соответствия) идентификаторов пользователей

Для большего понимания нижесказанного я бы посоветовал ознакомиться со статьей . Каждый пользователь Linux имеет свои UID и главный GID, которые описаны в файлах /etc/passwd и /etc/group . Сервер NFS считает, что операционная система удаленного узла выполнила проверку подлинности пользователей и назначила им корректные идентификаторы UID и GID. Экспортирование файлов дает пользователям системы клиента такой же доступ к этим файлам, как если бы они регистрировались напрямую на сервере. Соответственно, когда клиент NFS посылает запрос серверу, сервер использует UID и GID для идентификации пользователя в локальной системе, что может приводить к некоторым проблемам:

  • пользователь может не иметь одни и те же идентификаторы в обеих системах и, соответственно, может получить доступ к фалам другого пользователя.
  • т.к. у пользователя root идентификатор всегда 0, то данный пользователь отображается на локального пользователя в зависимости от заданных опций.

Следующие опции задают правила отображения удаленных пользователей в локальных:

  • root_squash (no_root_squash) - При заданной опции root_squash , запросы от пользователя root отображаются на анонимного uid/gid, либо на пользователя, заданного в параметре anonuid/anongid.
  • no_all_squash (all_squash) - Не изменяет UID/GID подключающегося пользователя. Опция all_squash задает отображение ВСЕХ пользователей (не только root), как анонимных или заданных в параметре anonuid/anongid.
  • anonuid=UID и anongid=GID - Явно задает UID/GID для анонимного пользователя.
  • map_static=/etc/file_maps_users - Задает файл, в котором можно задать сопоставление удаленных UID/GID - локальным UID/GID.

Пример использования файла маппинга пользователей:

ARCHIV ~ # cat /etc/file_maps_users # Маппинг пользователей # remote local comment uid 0-50 1002 # сопоставление пользователей с удаленным UID 0-50 к локальному UID 1002 gid 0-50 1002 # сопоставление пользователей с/span удаленным GID 0-50 к локальному GID 1002

Управление сервером NFS

Управление сервером NFS осуществляется с помощью следующих утилит:

  • nfsstat
  • showmsecure (insecure)ount

nfsstat: статистика NFS и RPC

Утилита nfsstat позволяет посмотреть статистику RPC и NFS серверов. Опции команды можно посмотреть в man nfsstat .

showmount: вывод информации о состоянии NFS

Утилита showmount запрашивает демон rpc.mountd на удалённом хосте о смонтированных файловых системах. По умолчанию выдаётся отсортированный список клиентов. Ключи:

  • --all - выдаётся список клиентов и точек монтирования с указанием куда клиент примонтировал каталог. Эта информация может быть не надежной.
  • --directories - выдаётся список точек монтирования
  • --exports - выдаётся список экспортируемых файловых систем с точки зрения nfsd

При запуске showmount без аргументов, на консоль будет выведена информация о системах, которым разрешено монтировать локальные каталоги. Например, хост ARCHIV нам предоставляет список экспортированных каталогов с IP адресами хостов, которым разрешено монтировать указанные каталоги:

FILES ~ # showmount --exports archiv Export list for archiv: /archiv-big 10.0.0.2 /archiv-small 10.0.0.2

Если указать в аргументе имя хоста/IP, то будет выведена информация о данном хосте:

ARCHIV ~ # showmount files clnt_create: RPC: Program not registered # данное сообщение говорит нам, что на хосте FILES демон NFSd не запущен

exportfs: управление экспортированными каталогами

Данная команда обслуживает экспортированные каталоги, заданные в файле /etc/exports , точнее будет написать не обслуживает, а синхронизирует с файлом /var/lib/nfs/xtab и удаляет из xtab несуществующие. exportfs выполняется при запуске демона nfsd с аргументом -r. Утилита exportfs в режиме ядра 2.6 общается с демоном rpc.mountd через файлы каталога /var/lib/nfs/ и не общается с ядром напрямую. Без параметров выдаёт список текущих экспортируемых файловых систем.

Параметры exportfs:

  • [клиент:имя-каталога] - добавить или удалить указанную файловую систему для указанного клиента)
  • -v - выводить больше информации
  • -r - переэкспортировать все каталоги (синхронизировать /etc/exports и /var/lib/nfs/xtab)
  • -u - удалить из списка экспортируемых
  • -a - добавить или удалить все файловые системы
  • -o - опции через запятую (аналогичен опциям применяемым в /etc/exports; т.о. можно изменять опции уже смонтированных файловых систем)
  • -i - не использовать /etc/exports при добавлении, только параметры текущей командной строки
  • -f - сбросить список экспортируемых систем в ядре 2.6;

Клиент NFS

Прежде чем обратиться к файлу на удалённой файловой системе клиент (ОС клиента) должен смонтировать её и получить от сервера указатель на неё . Монтирование NFS может производиться с помощью или с помощью одного из расплодившихся автоматических монтировщиков (amd, autofs, automount, supermount, superpupermount). Процесс монтирования хорошо продемонстрирована выше на иллюстрации.

На клиентах NFS никаких демонов запускать не нужно, функции клиента выполняет модуль ядра kernel/fs/nfs/nfs.ko , который используется при монтировании удаленной файловой системы. Экспортированные каталоги с сервера могут монтироваться на клиенте следующими способами:

  • вручную, с помощью команды mount
  • автоматически при загрузке, при монтировании файловых систем, описанных в /etc/fstab
  • автоматически с помощью демона autofs

Третий способ с autofs в данной статье я рассматривать не буду, ввиду его объемной информации. Возможно в следующих статьях будет отдельное описание.

Монтирование файловой системы Network Files System командой mount

Пример использования команды mount представлен в посте . Тут я рассмотрю пример команды mount для монтирования файловой системы NFS:

FILES ~ # mount -t nfs archiv:/archiv-small /archivs/archiv-small FILES ~ # mount -t nfs -o ro archiv:/archiv-big /archivs/archiv-big FILES ~ # mount ....... archiv:/archiv-small on /archivs/archiv-small type nfs (rw,addr=10.0.0.6) archiv:/archiv-big on /archivs/archiv-big type nfs (ro,addr=10.0.0.6)

Первая команда монтирует экспортированный каталог /archiv-small на сервере archiv в локальную точку монтирования /archivs/archiv-small с опциями по умолчанию (то есть для чтения и записи). Хотя команда mount в последних дистрибутивах умеет понимать какой тип файловой системы используется и без указания типа, все же указывать параметр -t nfs желательно. Вторая команда монтирует экспортированный каталог /archiv-big на сервере archiv в локальный каталог /archivs/archiv-big с опцией только для чтения (ro ). Команда mount без параметров наглядно отображает нам результат монтирования. Кроме опции только чтения (ro), возможно задать другие основные опции при монтировании NFS :

  • nosuid - Данная опция запрещает исполнять программы из смонтированного каталога.
  • nodev (no device - не устройство) - Данная опция запрещает использовать в качестве устройств символьные и блочные специальные файлы.
  • lock (nolock) - Разрешает блокировку NFS (по умолчанию). nolock отключает блокировку NFS (не запускает демон lockd) и удобна при работе со старыми серверами, не поддерживающими блокировку NFS.
  • mounthost=имя - Имя хоста, на котором запущен демон монтирования NFS - mountd.
  • mountport=n - Порт, используемый демоном mountd.
  • port=n - порт, используемый для подключения к NFS серверу (по умолчанию 2049, если демон rpc.nfsd не зарегистрирован на RPC-сервере). Если n=0 (по умолчанию), то NFS посылает запрос к portmap на сервере, чтобы определить порт.
  • rsize=n (read block size - размер блока чтения) - Количество байтов, читаемых за один раз с NFS-сервера. Стандартно - 4096.
  • wsize=n (write block size - размер блока записи) - Количество байтов, записываемых за один раз на NFS-сервер. Стандартно - 4096.
  • tcp или udp - Для монтирования NFS использовать протокол TCP или UDP соответственно.
  • bg - При потери доступа к серверу, повторять попытки в фоновом режиме, чтобы не блокировать процесс загрузки системы.
  • fg - При потери доступа к серверу, повторять попытки в приоритетном режиме. Данный параметр может заблокировать процесс загрузки системы повторениями попыток монтирования. По этой причине параметр fg используется преимущественно при отладке.

Опции, влияющие на кэширование атрибутов при монтировании NFS

Атрибуты файлов , хранящиеся в (индексных дескрипторах), такие как время модификации, размер, жесткие ссылки, владелец, обычно изменяются не часто для обычных файлов и еще реже - для каталогов. Многи программы, например ls, обращаются к файлам только для чтения и не меняют атрибуты файлов или содержимое, но затрачивают ресурсы системы на дорогостоящие сетевые операции. Чтобы избежать ненужных затрат ресурсов, можно кэшировать данные атрибуты . Ядро использует время модификации файла, чтобы определить устарел ли кэш, сравнивая время модификации в кэше и время модификации самого файла. Кэш атрибутов периодически обновляется в соответствии с заданными параметрами:

  • ac (noac) (attrebute cache - кэширование атрибутов) - Разрешает кэширование атрибутов (по-умолчанию). Хотя опция noac замедляет работу сервера, она позволяет избежать устаревания атрибутов, когда несколько клиентов активно записывают информацию в общию иерархию.
  • acdirmax=n (attribute cache directory file maximum - кэширование атрибута максимум для файла каталога) - Максимальное количество секунд, которое NFS ожидает до обновления атрибутов каталога (по-умолчанию 60 сек.)
  • acdirmin=n (attribute cache directory file minimum - кэширование атрибута минимум для файла каталога) - Минимальное количество секунд, которое NFS ожидает до обновления атрибутов каталога (по-умолчанию 30 сек.)
  • acregmax=n (attribute cache regular file maximum - кэширование атрибута максимум для обычного файла) - Максимаьное количество секунд, которое NFS ожидает до обновления атрибутов обычного файла (по-умолчанию 60 сек.)
  • acregmin=n (attribute cache regular file minimum - кэширование атрибута минимум для обычного файла) - Минимальное количество секунд, которое NFS ожидает до обновления атрибутов обычного файла (по-умолчанию 3 сек.)
  • actimeo=n (attribute cache timeout - таймаут кэширования атрибутов) - Заменяет значения для всех вышуказаных опций. Если actimeo не задан, то вышеуказанные значения принимают значения по умолчанию.

Опции обработки ошибок NFS

Следующие опции управляют действиями NFS при отсутствии ответа от сервера или в случае возникновения ошибок ввода/вывода:

  • fg (bg) (foreground - передний план, background - задний план) - Производить попытки монтирования отказавшей NFS на переднем плане/в фоне.
  • hard (soft) - выводит на консоль сообщение "server not responding" при достижении таймаута и продолжает попытки монтирования. При заданной опции soft - при таймауте сообщает вызвавшей операцию программе об ошибке ввода/вывода. (опцию soft советуют не использовать)
  • nointr (intr) (no interrupt - не прерывать) - Не разрешает сигналам прерывать файловые операции в жестко смонтированной иерархии каталогов при достижении большого таймаута. intr - разрешает прерывание.
  • retrans=n (retransmission value - значение повторной передачи) - После n малых таймаутов NFS генерирует большой таймаут (по-умолчанию 3). Большой таймаут прекращает выполнение операций или выводит на консоль сообщение "server not responding", в зависимости от указания опции hard/soft.
  • retry=n (retry value - значение повторно попытки) - Количество минут повторений службы NFS операций монтирования, прежде чем сдаться (по-умолчанию 10000).
  • timeo=n (timeout value - значение таймаута) - Количество десятых долей секунды ожидания службой NFS до повторной передачи в случае RPC или малого таймаута (по-умолчанию 7). Это значение увеличивается при каждом таймауте до максимального значения 60 секунд или до наступления большого таймаута. В случае занятой сети, медленного сервера или при прохождении запроса через несколько маршрутизаторов или шлюзов увеличение этого значения может повысить производительность.

Автоматическое монтирование NFS при загрузке (описание файловых систем в /etc/fstab)

Подобрать оптимальный timeo для определенного значения передаваемого пакета (значений rsize/wsize), можно с помощью команды ping:

FILES ~ # ping -s 32768 archiv PING archiv.DOMAIN.local (10.0.0.6) 32768(32796) bytes of data. 32776 bytes from archiv.domain.local (10.0.0.6): icmp_req=1 ttl=64 time=0.931 ms 32776 bytes from archiv.domain.local (10.0.0.6): icmp_req=2 ttl=64 time=0.958 ms 32776 bytes from archiv.domain.local (10.0.0.6): icmp_req=3 ttl=64 time=1.03 ms 32776 bytes from archiv.domain.local (10.0.0.6): icmp_req=4 ttl=64 time=1.00 ms 32776 bytes from archiv.domain.local (10.0.0.6): icmp_req=5 ttl=64 time=1.08 ms ^C --- archiv.DOMAIN.local ping statistics --- 5 packets transmitted, 5 received, 0% packet loss, time 4006ms rtt min/avg/max/mdev = 0.931/1.002/1.083/0.061 ms

Как видно, при отправке пакета размером 32768 (32Kb) время его путешествия от клиента до сервера и обратно плавает в районе 1 миллисекунды. Если данное время будет зашкаливать за 200 мс, то стоит задуматься о повышении значения timeo, чтобы оно превышало значение обмена в три-четыре раза. Соответственно, данный тест желательно делать во время сильной загрузки сети

Запуск NFS и настройка Firewall

Заметка скопипсчена с блога http://bog.pp.ru/work/NFS.html, за что ему огромное спасибо!!!

Запуск сервера NFS, монтирования, блокировки, квотирования и статуса с "правильными" портами (для сетевого экрана)

  • желательно предварительно размонтировать все ресурсы на клиентах
  • остановить и запретить запуск rpcidmapd, если не планируется использование NFSv4: chkconfig --level 345 rpcidmapd off service rpcidmapd stop
  • если нужно, то разрешить запуск сервисов portmap, nfs и nfslock: chkconfig --levels 345 portmap/rpcbind on chkconfig --levels 345 nfs on chkconfig --levels 345 nfslock on
  • если нужно, то остановить сервисы nfslock и nfs, запустить portmap/rpcbind, выгрузить модули service nfslock stop service nfs stop service portmap start # service rpcbind start umount /proc/fs/nfsd service rpcidmapd stop rmmod nfsd service autofs stop # где-то потом его надо запустить rmmod nfs rmmod nfs_acl rmmod lockd
  • открыть порты в
    • для RPC: UDP/111, TCP/111
    • для NFS: UDP/2049, TCP/2049
    • для rpc.statd: UDP/4000, TCP/4000
    • для lockd: UDP/4001, TCP/4001
    • для mountd: UDP/4002, TCP/4002
    • для rpc.rquota: UDP/4003, TCP/4003
  • для сервера rpc.nfsd добавить в /etc/sysconfig/nfs строку RPCNFSDARGS="--port 2049"
  • для сервера монтирования добавить в /etc/sysconfig/nfs строку MOUNTD_PORT=4002
  • для настройки rpc.rquota для новых версий необходимо добавить в /etc/sysconfig/nfs строку RQUOTAD_PORT=4003
  • для настройки rpc.rquota необходимо для старых версий (тем не менее, надо иметь пакет quota 3.08 или свежее) добавить в /etc/services rquotad 4003/tcp rquotad 4003/udp
  • проверит адекватность /etc/exports
  • запустить сервисы rpc.nfsd, mountd и rpc.rquota (заодно запускаются rpcsvcgssd и rpc.idmapd, если не забыли их удалить) service nfsd start или в новых версиях service nfs start
  • для сервера блокировки для новых систем добавить в /etc/sysconfig/nfs строки LOCKD_TCPPORT=4001 LOCKD_UDPPORT=4001
  • для сервера блокировки для старых систем добавить непосредственно в /etc/modprobe[.conf]: options lockd nlm_udpport=4001 nlm_tcpport=4001
  • привязать сервер статуса rpc.statd к порту 4000 (для старых систем в /etc/init.d/nfslock запускать rpc.statd с ключом -p 4000) STATD_PORT=4000
  • запустить сервисы lockd и rpc.statd service nfslock start
  • убедиться, что все порты привязались нормально с помощью "lsof -i -n -P" и "netstat -a -n" (часть портов используется модулями ядра, которые lsof не видит)
  • если перед "перестройкой" сервером пользовались клиенты и их не удалось размонтировать, то придётся перезапустить на клиентах сервисы автоматического монтирования (am-utils , autofs)

Пример конфигурации NFS сервера и клиента

Конфигурация сервера

Если вы хотите сделать ваш разделённый NFS каталог открытым и с правом записи, вы можете использовать опцию all_squash в комбинации с опциями anonuid и anongid . Например, чтобы установить права для пользователя "nobody" в группе "nobody", вы можете сделать следующее:

ARCHIV ~ # cat /etc/exports # Доступ на чтение и запись для клиента на 192.168.0.100, с доступом rw для пользователя 99 с gid 99 /files 192.168.0.100(rw,sync,all_squash,anonuid=99,anongid=99)) # Доступ на чтение и запись для клиента на 192.168.0.100, с доступом rw для пользователя 99 с gid 99 /files 192.168.0.100(rw,sync,all_squash,anonuid=99,anongid=99))

Это также означает, что если вы хотите разрешить доступ к указанной директории, nobody.nobody должен быть владельцем разделённой директории:

man mount
man exports
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/nfs_perf.htm - производительность NFS от IBM.

С Уважением, Mc.Sim!