RGB, CMYK, XYZ и другие цветовые схемы изображений. Цветовая модель rgb

Доброго вам дня, дорогие читатели моего блога. Очень рад вас видеть на страницах моего блога. Сегодня я хотел бы пройтись немного по теории, а именно рассказать про цветовые модели в компьютерной графике. Не бойтесь, ничего страшного здесь нет, но знать это нужно, так как в скором времени нам это пригодится. Я не буду вам рассказывать научное определение цветовой модели, так как это слишком заумно.

Выбор цветовой модели зависит в основном от того для чего нам нужно то или иное изображение, для каких целей. Ладно, не буду вас мучать. Давайте рассмотрим несколько цветовых моделей, которые встретятся вам в различных графических редакторах.

В этом режиме нам доступно всего 2 цвета, а именно черный и белый. Ну и что мы здесь забыли? Правильно! Ничего. Поэтому сразу говорю — этим режимом мы пользоваться не будем.

Градации серого (Grayscale)

Как видно из названия, в этом режимы используются лишь оттенки серого. Всего таких оттенков серого 256. Т.е. идет постоянное увеличение яркости, начиная с черного цвета, и пока он не станет полностью белым. Конечно, если вы хотите работать с черно-белым изображением, то пожалуйста, ведь и занимать места это изображение будет гораздо меньше. Но, скажу вам по секрету, этот режим тоже мы использовать не будем. Вы рады?

RGB (Красный Зеленый Синий)

Ну вот мы и перешли к основной цветовой модели. Именно ей мы и будем в основном пользоваться в фотошопе. Эта модель используется для отображения цветов именно на экране. Все цвета и оттенки получаются при смешивании трех основных цветов, т.е. красного (R ed), зеленого (G reen) и синего (B lue). Вы спросите: «А где же желтый цвет? Ведь его невозможно получить, смешивая эти цвета». Как раз таки получается, но не на бумаге, а на экране монитора. Желтый цвет мы можем получить смешивая красный и зеленый цвета. Вот такая вот хитрость.

Цветов в этой модели целая уйма! В 8-битном представлении их аж 16 миллионов! Вы представьте сколько их будет в 16 и 32-х битах? Поэтому сразу заклинаю вас — выбирайте только 8-битное представление RGB, так как в остальных смысла нет, по крайней мере в обычной жизни. Будем считать, что договорились.

CMYK (Cyan Magenta Yellow Black)

Данная цветовая модель произошла от букв четырех цветов C yan M agenta Y ellow K ey color — Голубой, Пурпурный, Желтый, Ключевой-черный. Хотя в некоторых источниках я читал, что буква K образована не от Key color, а от черного цвета black, только ей решили не присваивать букву B , так как она уже использовалась в цветовой модели RGB как синий, поэтому и дали ей последнюю букву от слова blacK . Но сути это не меняет.

Эта модель используется как правило в полиграфии и подготовке к печати, то есть для отображения на бумаге. Опять же сразу скажу, что в наших уроках мы ей практически пользоваться не будем. Но мы ее рассмотрим. Просто хочу рассказать, почему в этой модели используется 4 цвета вместе с черным? Потому что если в модели RGB смешать все цвета, то получится черный цвет, а если все цвета смешать в модели CMY, то черного цвета не получится, максимум темнокоричневый. Кроме того, полное смешивание всех цветов может привести к деформации бумаги. Поэтому и добавили ключевой черный цвет K.

LAB

Ну и раз уж мы говорим о цветовых моделях, то я не могу не рассказать о такой мvдели как LAB. Состоит эта модель из трех параметров:

  1. L uminance — освещенность. Градация идет от светлого к тёмному.
  2. Цвет A - гамма цветов от зеленого до пурпурного
  3. Цвет B — гамма цветов от голубого к желтому.

Как видите первые буквы параметров и составляют данную аббревиатуру. То есть данная модель предполагает смешивание двух цветов с определенной степенью освещенности. Чем примечательна эта модель, что она содержит в себе как цвета RGB, так и CMYK, да еще и градации серого, о которых мы говорили выше.

И если модель RGB отображает цвета так, как мы видим его на экране, а CMYK как на бумаге, то модель LAB соответствует человеческому зрению, т.е. как это видит обычный человек.

HSB или HSV

И напоследок зацепим еще одну модель, которая может вам повстречаться. Данная модель состоит из трёх параметров: Hue (Цветовой тон), Saturation (Насыщенность) и Brightness (Яркость)/Value (значение) цвета. В основе данной модели лежит ранее рассмотрнная RGB, но в отличие от RGB (16 млн цветов), HSB может содержать всего лишь порядка 2,5 миллионов цветов.

Часто такая модель изображается в виде цветового круга и дополнительного вертикального столбика яркости. Может вы где-то встречали? Но кроме этого в разных программах может встречаться разное представление.

В общем на этом свой обзорчик цветовых моделей я завершаю. Сразу вам скажу, что когда мы будем проходить фотошоп, то пользоваться в основном будем моделью RGB. И кстати я вам не зря дал эту информацию, так как скоро мы действительно перейдем к изучению графического редактора Adobe Photoshop. Так что не расслабляйтесь.

А на этом наше теоретическое занятие закончено. Надеюсь, что вам всё более менее было понятно. В случае чего, вы всегда можете задать вопрос в комментариях или в форме обратной связи. И не забудьте подписаться на обновления статей моего блога и тогда вы всегда будете в курсе всего интересного самые первые! Удачи вам, готовьтесь новым урокам. Пока-пока!

При выводе цветных компьютерных карт на печать тем или иным способом, неизбежно возникает проблема обеспечения точности при передаче исходных цветов оригинала. Эта проблема возникает по целому ряду причин.

Во-первых, сканеры и мониторы работают в аддитивной цветовой модели RGB , основанной на правилах сложения цветов, а печать осуществляется в субтрактивной модели CMYK , в которой действуют правила вычитания цветов.

Во-вторых , способы передачи изображения на мониторе компьютера и на бумаге различны.

В-третьих , процесс репродуцирования происходит поэтапно и осуществляется на нескольких устройствах, таких как сканер, монитор, фотонаборный автомат, что требует их настройки в целях минимизации искажений цвета на протяжении всего технологического цикла - процесс калибровки.

Модель RGB.

Цветовая модель RGB (рис. 1) (R - Red - красный, G - Green - зеленый, B - Blue - синий) используется для описания цветов, видимых в проходящем или прямом свете. Она адекватна цветовому восприятию человеческого глаза. Поэтому построение изображения на экранах мониторов, в сканерах, цифровых камерах и других оптических приборах соответствует модели RGB. В компьютерной RGB-модели каждый основной цвет может иметь 256 градаций яркости , что соответствует 8-битовому режиму .

Рис. 1. Цветовая модель RGB

Модель CMY (CMYK)

Цветовая модель CMY (рис. 2) C - Cyan - голубой, M - Magenta - пурпурный, Y - Yellow - желтый, используется для описания цветов, видимых в отраженном свете (например, для цвета краски, нанесенной на бумагу). Теоретически сумма цветов CMY максимальной интенсивности должна давать чистый черный цвет. В реальной же практике из-за несовершенства красящих пигментов краски и изначальной неустойчивости к голубому цвету при цветоделении, сумма голубой, пурпурной и желтой красок дают грязно-коричневый цвет. Поэтому в печати используется еще и четвертый краситель - черный - blacK , который дает насыщенный, однородный черный цвет. Его применяют для печати текста и оформления других важных деталей, а также для корректировки общего тонального диапазона изображений. Насыщенность цвета в модели CMYK измеряется в процентах , так что каждый цвет имеет 100 градаций яркости .

Основной задачей процесса репродуцирования - является конвертация изображения из модели RGB в модель CMYK . Данное преобразование осуществляется при помощи специальных программных фильтров с учетом всех будущих установок печати: системы триадных красок, коэффициента растискивания растровой точки, способа генерации черного цвета, баланса красок и других. Таким образом, цветоделение является сложным процессом, от которого во многом зависит качество итогового изображения. Но даже при оптимальной конвертации из RGB в CMYK неизбежно происходит потеря некоторых оттенков. Это связано с разной природой данных цветовых моделей. Следует отметить также, что модели RGB и CMYK не могут передать всего спектра цветов, видимых человеческим глазом.

Рис. 2. Цветовая модель СMY

Модель HSB.

Характеризовать цвет можно с использованием других визуальных компонентов. Так, в модели HSB базовое цветовое пространство строится по трем координатам: цветовому тону (Hue) ; насыщенности (Saturation) ; яркости (Brightness) . Эти параметры можно представить в виде трех координат, с помощью которых можно графически определять положение видимого цвета в цветовом пространстве.

Рис. 3. Цветовая модель HSB

На центральной вертикальной оси откладывается яркость (рис. 3), а на горизонтальной - насыщенность . Цветовому тону соответствует угол, под которым ось насыщенности отходит от оси яркости . В районе внешнего радиуса находятся насыщенные, яркие цветовые тона, которые по мере приближения к центру смешиваются и становятся менее насыщенными. При перемещении по вертикальной оси цвета различных тонов и насыщенности становятся либо светлее, либо темнее.

В центре, где все цветовые тона смешиваются, образуется нейтральный серый цвет.

Данная цветовая модель хорошо согласуется с восприятием человека: цветовой тон является эквивалентом длины волны света, насыщенность - интенсивности волны, а яркость характеризует количество света.

Система CIE.

Цветовое пространство можно использовать для описания диапазона тех цветов, которые воспринимаются наблюдателем или воспроизводятся устройством. Этот диапазон называется гаммой . Данный трехмерный формат также очень удобен для сравнения двух или нескольких цветов. Трехмерные цветовые модел и и трехзначные цветовые системы , такие как RGB , CMY и HSB , называются трехкоординатными колориметрическими данными .

Для любой системы измерения требуется повторяемый набор стандартных шкал. Для колориметрических измерений цветовую модель RGB в качестве стандартной использовать нельзя, потому что она неповторяема - это пространство зависит от конкретного устройства. Поэтому возникла необходимость создания универсальной цветовой системы. Такой системой является CIE. Для получения набора стандартных колориметрических шкал, в 1931 году Международная комиссия по освещению - Commission Internationale de l"Eclairage (CIE ) - утвердила несколько стандартных цветовых пространств, описывающих видимый спектр. При помощи этих систем можно сравнивать между собой цветовые пространства отдельных наблюдателей и устройств на основе повторяемых стандартов.

Цветовые системы СIЕ подобны другим трехмерным моделям, рассмотренным выше, поскольку, для того, чтобы определить положение цвета в цветовом пространстве, в них тоже используется три координаты. Однако в отличие от описанных выше пространства CIE - то есть CIE XYZ, CIE L*a*b* и CIE L*u*v* - не зависят от устройства, то есть диапазон цветов, которые можно определить в этих пространствах, не ограничивается изобразительными возможностями того или иного конкретного устройства или визуальным опытом определенного наблюдателя.

CIE XYZ.

Главное цветовое пространство CIE - это пространство CIE XYZ. Оно построено на основе зрительных возможностей так называемого стандартного наблюдателя , то есть гипотетического зрителя, возможности которого были тщательно изучены и зафиксированы в ходе проведенных комиссией CIE длительных исследований человеческого зрения. В этой системе три основных цвета (красный, зеленый и синий) стандартизированы по длине волны и имеют фиксированные координаты в координатной плоскости xy.

0.72

0.28

0.18

0.27

0.72

0.08

l, mm

700.0

564.1

435.1

По полученным в результате исследований данным была построена диаграмма цветности xyY - хроматическая диаграмма (рис. 11).

Все оттенки, видимые человеческим глазом, расположены внутри замкнутой кривой. Основные цвета модели RGB образуют вершины треугольника. В данном треугольнике заключены цвета, отображаемые на мониторе. Цвета модели CMYK, которые могут быть воспроизведены при печати, заключены в многоугольник. Третья координата Y, перпендикулярна к любой точке кривой и отображает градации яркости того или иного цвета.

Модель CIE Lab

Данная модель создана как усовершенствованная модель CIE и также является аппаратно-независимой. Идея, лежащая в основе модели Lab, состоит в том, что каждый шаг в увеличении числового значения одного канала соответствует одному и тому же визуальному восприятию, что и другие шаги.

В модели Lab:

Величина L характеризует светлоту (Lightness) (от 0 до 100%);

Индекс а определяет диапазон цвета по цветовому колесу от зеленого до красного (- 120 (зеленый) до +120 (красный));

Индекс b определяет диапазон от синего (- 120) до желтого (+120).

В центре колеса насыщенность цветов равна 0.

Цветовой охват Lab полностью включает цветовые охваты всех других цветовых моделей и человеческого глаза. Издательские программы используют модель Lab как промежуточную при конвертации RGB CMYK.

Цветовая модель RGB (от англ. Red, Green, Blue - красный, зелёный, синий) - аддитивная цветовая модель, описывающая способ синтеза цвета для цветовоспроизведения. В российской традиции иногда обозначается как КЗС.

История
В 1861 г. английский физик Джеймс Кларк Максвелл выступил с предложением использовать способ получения цветного изображения, который известен как - аддитивное слияние цветов. Аддитивная (суммирующая) система цветопередачи означает, что цвета в этой модели добавляются к черному (Black) цвету. Аддитивное смещение цветов можно трактовать как, - процесс объединения световых потоков различных цветов до того, как они достигнут глаза.
Аддитивными моделями цвета (от англ. add - складывать) называются цветовые модели, в которых световой поток со спектральным распределением, визуально воспринимающимся как нужный цвет, создается на основе операции пропорционального смешивания света, излучаемого тремя источниками. Схемы смешивания могут быть различными, одна из них представлена на
Аддитивная модель цвета предполагает, что каждый из источников света имеет свое постоянное спектральное распределение, а его интенсивность регулируется.
Существуют две разновидности аддитивной модели цвета: аппаратно зависимая и перцептивная. В аппаратно-зависимой модели цветовое пространство зависит от характеристик устройства вывода изображения (монитора, проектора). Из-за этого одно и то же изображение, представленное на основе такой модели, при воспроизведении на различных устройствах будет восприниматься визуально немного по-разному.
Перцептивная модель построена с учетом особенностей зрения наблюдателя, а не технических характеристик устройства.
В 1931 г. Международная комиссия по освещению (CIE) стандартизовала цветовую систему, а также завершила работу, позволившую создать математическую модель человеческого зрения. Было принято цветовое пространство CIE 1931 XYZ, являющееся базовой моделью по сей день.

Механизм формирования цветов
При восприятии цвета человеком именно они непосредственно воспринимаются глазом. Остальные цвета представляют собой смешение трех базовых цветов в разных соотношениях.На представлена цветовая модель . R+G=Y (Yellow - желтый); G+B=C (Cyan - голубой); B+R=M (Magenta - пурпурный).Сумма всех трех основных цветов в равных долях дает белый (White) цвет R+G+B=W (White - белый). Например, на экране монитора с электронно-лучевой трубкой, а также аналогичного телевизора изображение строится при помощи засветки люминофора пучком электронов. При таком воздействии люминофор начинает излучать свет. В зависимости от состава люминофора, этот свет имеет ту или иную окраску.
Промежуточные оттенки получаются за счет того, что разноцветные зерна расположены близко друг к другу. При этом их изображения в глазу сливаются, а цвета образуют некоторый смешанный оттенок. Если же зерна одного цвета засветить не так, как остальные, то смешанный цвет не будет оттенком серого, а приобретет окраску. Такой способ формирования цвета напоминает освещение белого экрана в полной темноте разноцветными прожекторами. Если кодировать цвет одной точки изображения тремя битами, каждый из которых будет являться признаком присутствия (1) или отсутствия (0) соответствующей компоненты системы, RGB 1 бит на каждый компонент RGB то мы получим все восемь различных цветов . На практике же, для сохранения информации о цвете каждой точки цветного изображения в модели RGB обычно отводится 3 байта (т.е. 24 бита) по 1 байту (т.е. по 8 бит) под значение цвета каждой составляющей. Таким образом, каждая RGB-составляющая может принимать значение в диапазоне от 0 до 255 (всего 2 в 8 степени = 256 значений). Поэтому можно смешивать цвета в различных пропорциях, изменяя яркость каждой составляющей. Таким образом, можно получить 256 х 256 х 256 = 16 777 216 цветов. Изменяющиеся в диапазоне от 0 до 255 координаты RGB образуют цветовой куб. . Любой цвет расположен внутри этого куба и описывается своим набором координат, показывающем в каких долях смешаны в нем красная, зеленая и синяя составляющие. Возможность отобразить не менее 16,7 миллиона оттенков это полно цветные типы изображения которые иногда называют True Color (истинные или правдивые цвета). потому что человеческий глаз все равно не в силах различить большего разнообразия. Максимальная яркость всех трех базовых составляющих соответствует белому цвету, минимальная - черному цвету. Поэтому белый цвет имеет в десятеричном представлении код (255,255,255), а в шестнадцатеричном - FFFFFF. Черный цвет кодирует соответственно (0,0,0) или 000000. Все оттенки серого цвета образуются смешиванием трех составляющих одинаковой яркости. Например, при значениях (200,200,200) или C8C8C8 получается светло-серый цвет, а при значениях (100,100,100) или 646464 - темно-серый. Чем более темный оттенок серого нужно получить, тем меньшее число нужно вводить в каждое текстовое поле. Черный цвет образуется, когда интенсивность всех трех составляющих равна нулю, а белый - когда их интенсивность максимальна.

Ограничения
У модели цвета RGB есть три принципиальных недостатка: Первый - недостаточность цветового охвата. Независимо от размера цветового пространства модели цвета RGB, в ней невозможно воспроизвести много воспринимаемых глазом цветов (например, спектрально чистые голубой и оранжевый). У таких цветов в формуле цвета RGB имеются отрицательные значения интенсивностей базового цвета, а реализовать не сложение, а вычитание базовых цветов при технической реализации аддитивной модели очень сложно. Этот недостаток устранен в перцептивной аддитивной модели.
Второй недостаток модели цвета RGB состоит в невозможности единообразного воспроизведения цвета на различных устройствах (аппаратная зависимость) из-за того, что базовые цвета этой модели зависят от технических параметров устройств вывода изображений. Поэтому, строго говоря, единого цветового пространства RGB не существует, области воспроизводимых цветов различны для каждого устройства вывода. Более того, даже сравнивать эти пространства численно можно только с помощью других моделей цвета. Третий недостаток коррелированность цветовых каналов (при увеличении яркости одного канала другие уменьшают ее).

Достоинства
Множество компьютерного оборудования работает с использованием модели RGB, кроме того, эта модель очень проста, ее "генетическое" родство с аппаратурой (сканером и монитором), широкий цветовой охват (возможность отображать многообразие цветов, близкое к возможностям человеческого зрения) этим объясняется ее широкое распространение.
Главные достоинства модели цвета RGB состоят в ее простоте, наглядности и в том, что любой точке ее цветового пространства соответствует визуально воспринимаемый цвет.
Благодаря простоте этой модели она легко реализуется аппаратно. В частности, в мониторах управляемыми источниками света с различным спектральным распределением служат микроскопические частицы люминофора трех видов. Они хорошо заметны через увеличительное стекло, но при рассматривании монитора невооруженным глазом из-за явления визуального смыкания видно непрерывное изображение.
Интенсивность светового излучения в мониторах на основе электроннолучевых трубок регулируется с помощью трех электронных пушек, возбуждающих свечение люминофоров. Доступность многих процедур обработки изображения (фильтров) в программах растровой графики, небольшой (по сравнению с моделью CMYK) объем, занимаемый изображением в оперативной памяти компьютера и на диске.

Применение
Цветовая модель RGB повсеместно используется в компьютерной графике по той причине, что основное устройство вывода информации (монитор) работает именно в этой системе. Изображение на мониторе образуется из отдельных светящихся точек красного, зеленого и синего цветов. Посмотрев на экран работающего монитора через увеличительное стекло, можно разглядеть отдельные цветные точки - а еще проще это увидеть на экране телевизора, поскольку его точки значительно крупнее.
Широко используется при разработке электронных (мультимедийных) и полиграфических изданий.
Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Чаще для этой цели используют отсканированные иллюстрации, подготовленные художником на бумаге, или фотографии.
В последнее время для ввода растровых изображений в компьютер нашли широкое применение цифровые фото- и видеокамеры. Соответственно, большинство графических редакторов, предназначенных для работы с растровыми иллюстрациями, ориентированы не столько на создание изображений, сколько на их обработку. В Интернете применяют растровые иллюстрации в тех случаях, когда надо передать полную гамму оттенка цветного изображения.

Используемые источники
1. Домасев М. В. Цвет, управление цветом, цветовые расчеты и измерения. Санкт-Петербург: Питер 2009 г.
2. Петров М. Н. Компьютерная графика. Учебник для вузов. Санкт-Петербург: Питер 2002 г.
3. ru.wikipedia.org/wiki/Цветовая модель.
4. darkroomphoto.ru
5. bourabai.kz/graphics/0104.htm
6. litpedia.ru
7. youtube.com/watch?v=sA9s8HL-7ZM

Зачем нужны разные цветовые модели и почему один и тот же цвет может выглядеть по-разному

Предоставляя услуги дизайна как в области веб, так и в сфере полиграфии, мы нередко сталкиваемся с вопросом Клиента: почему одни и те же фирменные цвета в дизайн-макете сайта и в дизайн-макете полиграфической продукции выглядят по-разному? Ответ на этот вопрос заключается в различиях цветовых моделей: цифровой и полиграфической.

Цвет компьютерного экрана изменяется от черного (отсутствие цвета) до белого (максимальная яркость всех составляющих цвета: красного, зеленого и синего). На бумаге, напротив, отсутствию цвета соответствует белый, а смешению максимального количества красок - темно-бурый, который воспринимается как черный.

Поэтому при подготовке к печати изображение должно быть переведено из аддитивной ("складывающей") модели цветов RGB в субтрактивную ("вычитающую") модель CMYK . Модель CMYK использует противоположные исходным цвета - противоположный красному голубой, противоположный зеленому пурпурный и противоположный синему желтый.

Цифровая цветовая модель RGB

Что такое RGB?

Аббревиатура RGB означает названия трех цветов, использующихся для вывода на экран цветного изображения: Red (красный), Green (зеленый), Blue (синий).

Как формируется цвет RGB?

Цвет на экране монитора формируется при объединении лучей трех основных цветов - красного, зеленого и синего. Если интенсивность каждого из них достигает 100%, то получается белый цвет. Отсутствие всех трех цветов дает черный цвет.

Таким образом, любой цвет, который мы видим на экране, можно описать тремя числами, обозначающими яркость красной, зеленой и синей цветовых составляющих в цифровом диапазоне от 0 до 255. Графические программы позволяют комбинировать требуемый RGB-цвет из 256 оттенков красного, 256 оттенков зеленого и 256 оттенков синего. Итого получается 256 х 256 х 256 = 16,7 миллионов цветов.

Где используются изображения в режиме RGB?

Изображения в RGB используются для показа на экране монитора. При создании цветов, предназначенных для просмотра в браузерах, как основа используется та же цветовая модель RGB.

Полиграфическая цветовая модель CMYK

Что такое CMYK?

Система CMYK создана и используется для типографической печати. Аббревиатура CMYK означает названия основных красок, использующихся для четырехцветной печати: голубой (Сyan), пурпурный (Мagenta) и желтый (Yellow). Буквой К обозначают черную краску (BlacK), позволяющую добиться насыщенного черного цвета при печати. Используется последняя, а не первая буква слова, чтобы не путать Black и Blue.

Как формируется цвет CMYK?

Каждое из чисел, определяющее цвет в CMYK, представляет собой процент краски данного цвета, составляющей цветовую комбинацию. Например, для получения тёмно-оранжевого цвета следует смешать 30 % голубой краски, 45 % пурпурной краски, 80 % жёлтой краски и 5 % чёрной. Это можно обозначить следующим образом: (30/45/80/5).

Где используются изображения в режиме CMYK?

Область применения цветовой модели CMYK - полноцветная печать. Именно с этой моделью работает большинство устройств печати. Из-за несоответствия цветовых моделей часто возникает ситуация, когда цвет, который нужно напечатать, не может быть воспроизведен с помощью модели CMYK (например, золотой или серебряный).

В этом случае применяются краски Pantone (готовые смешанные краски множества цветов и оттенков), их также называют плашечными (поскольку эти краски не смешиваются при печати, а являются кроющими).

Все файлы, предназначенные для вывода в типографии, должны быть конвертированы в CMYK. Этот процесс называется цветоделением. RGB охватывает больший цветовой диапазон, чем CMYK, и это необходимо учитывать при создании изображений, которые впоследствии планируется печатать на принтере или в типографии.

При просмотре CMYK-изображения на экране монитора одни и те же цвета могут восприниматься немного иначе, чем при просмотре RGB-изображения. В модели CMYK невозможно отобразить очень яркие цвета модели RGB, модель RGB, в свою очередь, не способна передать темные густые оттенки модели CMYK, поскольку природа цвета разная.

Отображение цвета на экране монитора часто меняется и зависит от особенностей освещения, температуры монитора и цвета окружающих предметов. Кроме того, многие цвета, видимые в реальной жизни, не могут быть выведены при печати, не все цвета, отображаемые на экране, могут быть напечатаны, а некоторые цвета печати не видны на экране монитора.

Так, подготавливая логотип компании для публикации на сайте, мы используем RGB-модель. Подготавливая тот же логотип для печати в типографии (например, на визитках или фирменных бланках), мы используем CMYK-модель, и цвета этой модели на экране визуально могут немного отличаться от тех, которые мы видим в RGB. Не стоит этого опасаться: ведь на бумаге цвета логотипа будут максимально соответствовать тем цветам, которые мы видим на экране.

Я по образованию программист, но по работе мне пришлось столкнуться с обработкой изображений. И тут для меня открылся удивительный и неизведанный мир цветовых пространств. Не думаю, что дизайнеры и фотографы узнают для себя что-то новое, но, возможно, кому-нибудь это знание окажется, как минимум полезно, а в лучшем случае интересно.

Основная задача цветовых моделей – сделать возможным задание цветов унифицированным образом. По сути цветовые модели задают определённые системы координат, которые позволяют однозначно определить цвет.

Наиболее популярными на сегодняшний день являются следующие цветовые модели: RGB (используется в основном в мониторах и камерах), CMY(K) (используется в полиграфии), HSI (широко используется в машинном зрении и дизайне). Существует множество других моделей. Например, CIE XYZ (стандартные модели), YCbCr и др. Далее дан краткий обзор этих цветовых моделей.

Цветовой куб RGB

Из закона Грассмана возникает идея аддитивной (т.е. основанной на смешении цветов от непосредственно излучающих объектов) модели цветовоспроизведения. Впервые подобная модель была предложена Джеймсом Максвеллом в 1861 году, но наибольшее распространение она получила значительно позже.

В модели RGB (от англ. red – красный, green – зелёный, blue – голубой) все цвета получаются путём смешения трёх базовых (красного, зелёного и синего) цветов в различных пропорциях. Доля каждого базового цвета в итоговом может восприниматься, как координата в соответствующем трёхмерном пространстве, поэтому данную модель часто называют цветовым кубом. На Рис. 1 представлена модель цветового куба.

Чаще всего модель строится так, чтобы куб был единичным. Точки, соответствующие базовым цветам, расположены в вершинах куба, лежащих на осях: красный – (1;0;0), зелёный – (0;1;0), синий – (0;0;1). При этом вторичные цвета (полученные смешением двух базовых) расположены в других вершинах куба: голубой - (0;1;1), пурпурный - (1;0;1) и жёлтый – (1;1;0). Чёрный и белые цвета расположены в начале координат (0;0;0) и наиболее удалённой от начала координат точке (1;1;1). Рис. показывает только вершины куба.

Цветные изображения в модели RGB строятся из трёх отдельных изображений-каналов. В Табл. показано разложение исходного изображения на цветовые каналы.

В модели RGB для каждой составляющей цвета отводится определённое количество бит, например, если для кодирования каждой составляющей отводить 1 байт, то с помощью этой модели можно закодировать 2^(3*8)≈16 млн. цветов. На практике такое кодирование избыточно, т.к. большинство людей не способно различить такое количество цветов. Часто ограничиваются т.н. режимом «High Color» в котором на кодирование каждой компоненты отводится 5 бит. В некоторых приложениях используют 16-битный режим в котором на кодирование R и B составляющих отводится по 5 бит, а на кодирование G составляющей 6 бит. Этот режим, во-первых, учитывает более высокую чувствительность человека к зелёному цвету, а во-вторых, позволяет более эффективно использовать особенности архитектуры ЭВМ. Количество бит, отводимых на кодирование одного пиксела называется глубиной цвета. В Табл. приведены примеры кодирования одного и того же изображения с разной глубиной цвета.

Субтрактивные модели CMY и CMYK

Субтрактивная модель CMY (от англ. cyan - голубой, magenta - пурпурный, yellow - жёлтый) используется для получения твёрдых копий (печати) изображений, и в некотором роде является антиподом цветового RGB-куба. Если в RGB модели базовые цвета – это цвета источников света, то модель CMY – это модель поглощения цветов.

Например, бумага, покрытая жёлтым красителем не отражает синий свет, т.е. можно сказать, что жёлтый краситель вычитает из отражённого белого света синий. Аналогично голубой краситель вычитает из отражённого света красный, а пурпурный краситель вычитает зелёный. Именно поэтому данную модель принято называть субтрактивной. Алгоритм перевода из модели RGB в модель CMY очень прост:

При этом предполагается, что цвета RGB находятся в интервале . Легко заметить, что для получения чёрного цвета в модели CMY необходимо смешать голубой, пурпурный и жёлтый в равных пропорциях. Этот метод имеет два серьёзных недостатка: во-первых, полученный в результате смешения чёрный цвет будет выглядеть светлее «настоящего» чёрного, во-вторых, это приводит к существенным затратам красителя. Поэтому на практике модель СMY расширяют до модели CMYK, добавляя к трём цветам чёрный (англ. black).

Цветовое пространство тон, насыщенность, интенсивность (HSI)

Рассмотренные ранее цветовые модели RGB и CMY(K) весьма просты в плане аппаратной реализации, но у них есть один существенный недостаток. Человеку очень тяжело оперировать цветами, заданными в этих моделях, т.к. человек, описывая цвета, пользуется не содержанием в описываемом цвете базовых составляющих, а несколько иными категориями.

Чаще всего люди оперируют следующими понятиями: цветовой тон, насыщенность и светлота. При этом, говоря о цветовом тоне, обычно имеют в виду именно цвет. Насыщенность показывает насколько описываемый цвет разбавлен белым (розовый, например, это смесь красного и белого). Понятие светлоты наиболее сложно для описания, и с некоторыми допущениями под светлотой можно понимать интенсивность света.

Если рассмотреть проекцию RGB-куба в направлении диагонали белый-чёрный, то получится шестиугольник:

Все серые цвета (лежащие на диагонали куба) при этом проецируются в центральную точку. Чтобы с помощью этой модели можно было закодировать все цвета, доступные в RGB-модели, необходимо добавить вертикальную ось светлоты (или интенсивности) (I). В итоге получается шестигранный конус:

При этом тон (H) задаётся углом относительно оси красного цвета, насыщенность (S) характеризует чистоту цвета (1 означает совершенно чистый цвет, а 0 соответствует оттенку серого). Важно понимать, что тон и насыщенность не определены при нулевой интенсивности.

Алгоритм перевода из RGB в HSI можно выполнить, воспользовавшись следующими формулами:

Цветовая модель HSI очень популярна среди дизайнеров и художников, т.к. в этой системе обеспечивается непосредственный контроль тона, насыщенности и яркости. Эти же свойства делают эту модель очень популярной в системах машинного зрения. В Табл. показано изменение изображения при увеличении и уменьшении интенсивности, тона (выполняется поворот на ±50°) и насыщенности.

Модель CIE XYZ

С целью унификации была разработана международная стандартная цветовая модель. В результате серии экспериментов международная комиссия по освещению (CIE) определила кривые сложения основных (красного, зелёного и синего) цветов. В этой системе каждому видимому цвету соответствует определённое соотношение основных цветов. При этом, для того, чтобы разработанная модель могла отражать все видимые человеком цвета пришлось ввести отрицательное количество базовых цветов. Чтобы уйти от отрицательных значений CIE, ввела т.н. нереальные или мнимые основные цвета: X (мнимый красный), Y (мнимый зелёный), Z (мнимый синий).

При описании цвета значения X,Y,Z называют стандартными основными возбуждениями, а полученные на их основе координаты – стандартными цветовыми координатами. Стандартные кривые сложения X(λ),Y(λ),Z(λ) (см. Рис.) описывают чувствительность среднестатистического наблюдателя к стандартным возбуждениям:

Помимо стандартных цветовых координат часто используют понятие относительных цветовых координат, которые можно вычислить по следующим формулам:

Легко заметить, что x+y+z=1, а это значит, что для однозначного задания относительных координат достаточно любой пары значений, а соответствующее цветовое пространство может быть представлено в виде двумерного графика:

Множество цветов, задаваемое таким способом, называют треугольником CIE.
Легко заметить, что треугольник CIE описывает только цветовой тон, но никак не описывает яркость. Для описания яркости вводят дополнительную ось, проходящую через точку с координатами (1/3;1/3) (т.н. точку белого). В результате получают цветовое тело CIE (см. Рис.):

Это тело содержит все цвета, видимые среднестатистическим наблюдателем. Основным недостатком этой системы является то, что используя её, мы можем констатировать только совпадение или различие двух цветов, но расстояние между двумя точками этого цветового пространства не соответствует зрительному восприятию различия цветов.

Модель CIELAB

Основной целью при разработке CIELAB было устранение нелинейности системы CIE XYZ с точки зрения человеческого восприятия. Под аббревиатурой LAB обычно понимается цветовое пространство CIE L*a*b*, которое на данный момент является международным стандартом.

В системе CIE L*a*b координата L означает светлоту (в диапазоне от 0 до 100), а координаты a,b – означают позицию между зелёным-пурпурным, и синим-жёлтым цветами. Формулы для перевода координат из CIE XYZ в CIE L*a*b* приведены ниже:


где (Xn,Yn,Zn) – координаты точки белого в пространстве CIE XYZ, а


На Рис. представлены срезы цветового тела CIE L*a*b* для двух значений светлоты:

По сравнению с системой CIE XYZ Евклидово расстояние (√((L1-L2)^2+(a1^*-a2^*)^2+(b1^*-b2^*)^2)) в системе CIE L*a*b* значительно лучше соответствует цветовому различию, воспринимаемому человеком, тем не менее, стандартной формулой цветового различия является чрезвычайно сложная CIEDE2000.

Телевизионные цветоразностные цветовые системы

В цветовых системах YIQ и YUV информация о цвете представляется в виде сигнала яркости (Y) и двух цветоразностных сигналов (IQ и UV соответственно).

Популярность этих цветовых систем обусловлена в первую очередь появлением цветного телевидения. Т.к. компонента Y по сути содержит исходное изображение в градациях серого, сигнал в системе YIQ мог быть принят и корректно отображён как на старых чёрно-белых телевизорах, так и на новых цветных.

Вторым, возможно более важным плюсом, этих пространств является разделение информации о цвете и яркости изображения. Дело в том, что человеческий глаз весьма чувствителен к изменению яркости, и значительно менее чувствителен к изменению цветности. Это позволяет передавать и хранить информацию о цветности с пониженной глубиной. Именно на этой особенности человеческого глаза построены самые популярные на сегодняшний день алгоритмы сжатия изображений (в т.ч. jpeg). Для перевода из пространства RGB в YIQ можно воспользоваться следующими формулами: