Курс основы ремонта электроники. Основы электротехники для начинающих

С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел "Старт " .

Н а страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.

Е сли Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Измерения и измерительная аппаратура

Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.

Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.

Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.

Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.

Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.

Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.

Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.

Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.

Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.

В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.

Эквивалентное последовательное сопротивление (или ЭПС) - это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.

Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме. В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.

Мастерская начинающего радиолюбителя

Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.

Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.

Самый востребованный прибор в лаборатории начинающего радиолюбителя - это регулируемый блок питания. Здесь вы узнаете, как с минимумом усилий и временных затрат собрать регулируемый блок питания 1,2...32V на базе готового модуля DC-DC преобразователя.

Когда в цепи необходимо подавить переменные токи определенного частотного спектра, но при этом эффективно пропустить токи с частотами, находящимися выше или ниже этого спектра, может пригодиться пассивный LC-фильтр на реактивных элементах - фильтр нижних частот ФНЧ (если необходимо эффективно пропустить колебания с частотой ниже заданной) или фильтр верхних частот ФВЧ (при необходимости эффективно пропустить колебания с частотой выше заданной). Принцип построения данных фильтров основывается на свойствах индуктивностей и емкостей...

В одной из предыдущих статей мы рассмотрели общий принцип работы активных корректоров коэффициента мощности (ККМ или PFC). Однако ни одна схема корректора не заработает без контроллера, задача которого - правильно организовать управление полевым транзистором в общей схеме. В качестве яркого примера универсального PFC-контроллера для реализации ККМ можно привести популярную микросхему L6561, которая выпускается в SO-8 и DIP-8 корпусах, и предназначается для построения сетевых блоков коррекции коэффициента мощности номиналом до 400 Вт...

Коэффициент мощности и фактор наличия гармоник сетевой частоты являются важными показателями качества электроэнергии, особенно для электронного оборудования, которое этой электроэнергией питается. Для поставщика переменного тока желательно, чтобы коэффициент мощности потребителей был приближен к единице, а для электронных приборов важно чтобы гармонических искажений было бы как можно меньше. В таких условиях и электронные компоненты устройств проживут дольше, и нагрузке будет более комфортно работать. В реальности же имеет место проблема, которая состоит в том...

В данной статье будет приведен порядок расчета и подбора компонентов, необходимых при проектировании силовой части понижающего импульсного преобразователя постоянного тока без гальванической развязки, топологии buck-converter. Преобразователи данной топологии хорошо подходят для понижения постоянного напряжения в пределах 50 вольт по входу и при мощностях нагрузки не более 100 Вт. Все что касается выбора контроллера и схемы драйвера, а также типа полевого транзистора, оставим за рамками данной статьи, однако подробно разберем схему и особенности рабочих режимов...

Варистором называется полупроводниковый компонент, способный нелинейно изменять свое активное сопротивление в зависимости от величины приложенного к нему напряжения. По сути это - резистор с такой вольт-амперной характеристикой, линейный участок которой ограничен узким диапазоном, к которому приходит сопротивление варистора при приложении к нему напряжения выше определенного порогового. В этот момент сопротивление элемента скачкообразно изменяется на несколько порядков - уменьшается от изначальных десятков МОм до единиц Ом...

Оптрон - оптоэлектронный прибор, главными функциональными частями которого выступают источник света и фотоприемник, гальванически не связанные друг с другом, но расположенные внутри общего герметичного корпуса. Принцип действия оптрона базируется на том, что подаваемый на него электрический сигнал вызывает свечение на передающей стороне, и уже в форме света сигнал принимается фотоприемником, инициируя электрический сигнал на приемной стороне. То есть сигнал передается и принимается посредством оптической связи...

Одной из популярнейших топологий импульсных преобразователей напряжения является двухтактный преобразователь или push-pull (в дословном переводе - тяни-толкай). В отличие от однотактного обратноходового преобразователя (flyback), энергия в сердечнике пуш-пула не запасается, потому что в данном случае это - сердечник трансформатора, а не сердечник дросселя, он служит здесь проводником для переменного магнитного потока, создаваемого по очереди двумя половинами первичной обмотки. Это именно импульсный трансформатор с фиксированным...

Андрей Голубев - автор видеоуроков по ремонту бытовой электроники, микроволновых печей, телевизоров и аудиоаппаратуры посвящает свои видеоуроки тем, кто не хочет быть рабом сервисных служб и тратить на бытовую технику в разы больше денег при поломке, чем при покупке.

Приходилось ли Вам когда-нибудь наблюдать, как опытные специалисты с легкостью находят неисправности и виртуозно обращаются с инструментами и измерительными приборами? Многие люди готовы постоянно восхищаться чьим-то трудом, даже не думая о том, что они могут всему этому научиться сами! Видеоуроки - это интересный способ обучения. Они представлены на доступном простом языке с хорошими разъяснениями.

В первом видео записан процесс ремонта домашнего кинотеатра "LG":

Ремонт ресивера. Начиная ремонт ресивера в первую очередь необходимо провести визуальный осмотр монтажа. Порой проблема заключается в элементарном непропае. Данное правило относится не только к ремонту ресиверов, а ко всей бытовой технике.

Ремонт DVD Philips:

Восстановление шлейфа головки DVD-плеера:

Ремонт СВЧ печи LG MS-1744:

Ремонт микроволновки LG. Всё началось с банальной замены слюдяной прокладки, а закончилось заменой трансформатора:

Ч то делать если искрит микроволновка? Нужно менять слюдяную прокладку. Замена слюды не такое сложное дело в ремонте микроволновых печей, и под силу любой домохозяйке.

Ремонтируем PDP телевизор Samsung отечественного производства. Причина неисправности - брак при производстве.

Ремонт LCD-телевизора Xoro. На данном видео показано насколько нелепы бывают неисправности современной телерадиоаппаратуры.

Ремонт DVD "LG". В данном видео рассмотрена замена оптического преобразователя на DVD karaoke центре LG.

ЖК телевизор не реагирует на пульт. Не всегда в отсутствии реакции на пульт виноват сам пульт...

Ремонт DVD Samsung. Некоторые неисправности порой кажется, что совсем не связаны между собой. Так и в этом ремонте DVD Samsung - выход из строя элемента одного узла отражается на работе другого.

Ремонт сабвуфера Sven. Принесли не ремонт сабвуфер Sven - вышла из строя микросхема усилителя UTC2030 (TDA2030). Причём микросхему порвало на части. Кроме того отгорела дорожка.

Ремонт DVD, а именно импульсного блока питания DVD плеера мало чем отличается от ремонта других импульсных блоков питания. Однако, в каждой технике есть свои нюансы.

Ремонт усилителя Microlab. Причиной неисправности стал выход из строя микросхем tda 2030

Микроволновка не греет:

В данном видео рассмотрена пара случаев ремонта DVD когда видео зависает. В первом случае все подозрения указывают на головку. Особенно головки этого типа часто начинают виснуть с "прогревом" через 10-20 минут чтения.

Ремонт ADSL-модема Интеркросс 5633:

Давайте для начала рассмотрим обычную пальчиковую батарейку. На ее этикетке вы можете прочитать, что она имеет напряжение 1,5 вольта… так ли это на самом деле? Давайте проверим!

Для того чтобы это выяснить нам понадобится цифровой мультиметр. Для начала стоит приобрести недорогую модель, обязательно с ручным выбором диапазона измерения.

  • черный провод мультиметра необходимо подключить к разъему „COM”;
  • красный провод необходимо подключить к разъему для измерения напряжения „V” (Внимание ! Подключение проводов иным образом может привести к повреждению прибора!)
  • мы ожидаем получить значение около 1,5 вольта, поэтому ручку мультиметра устанавливаем на значение «20» в области DCV или V- (буква V с тире, означает постоянный ток) и если это необходимо, включаем прибор (некоторые модели включаются при повороте ручки), при этом мультиметр должен показать 0;
  • металлическими наконечниками щупов мультиметра касаемся выводов батарейки… но какой куда? Попробуйте обе комбинации – результат должен быть один и тот же, только в одном случае будет отражаться положительное число, а в другом случае то же число, но только со знаком минус.
  • считываем значение – в нашем случае напряжение новой батарейки составляет 1,62 вольт;
  • выключаем мультиметр.

ВНИМАНИЕ! Во время проведения измерений, чтобы не повредить мультиметр, всегда выбирайте диапазон измерения большее максимально ожидаемого результата! Если мы не знаем чего ожидать, то безопаснее будет выбрать более высокий диапазон и в дальнейшем уменьшить его для получения максимально точного результата.

Поскольку мы научились измерять напряжение мультиметром, то давайте померим и другие батарейки/аккумуляторы! Мы для тестирования выбрали:

  • заряженный аккумулятор 1,2 вольта, размер АА — мультиметр показал 1,34 вольт.
  • частично разряженный аккумулятор Ni-Mh (используемый в камере) — мультиметр наш показал 1,25 вольт.

Далее нам понадобятся 4 батарейки формата ААА, кассета для 4 батареек и макетная плата (что такое макетная плата и как ею пользоваться можно узнать ). Установим наши 4 батарейки в кассету. Затем концы проводов кассеты вставим в отверстия макетной платы так, как это показано на следующих фото:

Следующим шагом будет подготовка соединительных проводов (перемычек), их еще называют джамперами. Это такие провода, которые будут объединять отдельные радиодетали между собой на макетной плате.

Конечно же, какое-то количество джамперов входит в комплект вместе с макетной платой. Но если их у вас нет, то не беда, их можно сделать самим.

Для этого нам понадобится: компьютерный кабель, так называемая витая пара, ножницы или острый нож.

Для начала необходимо снять изоляцию с кабеля. Внутри кабеля мы видим скрученные между собой тонкие провода. Следующим шагом будет нарезка проводов необходимой длинны. И последнее что необходимо – это зачистить с обоих концов изоляцию примерно на 1 см.

Теперь мы на макетной плате соберем нашу первую схему. Возьмем резистор 22кОм с цветными полосками (красный-красный-оранжевый-золотой). А какое реальное сопротивление данного резистора? Давайте проверим это мультиметром!

  • красный провод подключите к разъему » Ω «
  • мы ожидаем получить значение около 22кОм, поэтому установите регулятор на значение 200к в секции Ω и, если это необходимо, включите прибор (некоторые модели включаются при повороте диска), который до измерения должен показать 0;
  • металлическими наконечниками щупов мультиметра коснитесь ножек резистора;
  • смотрим значение – у нас сопротивление составляет 22,1кОм;
  • выключаем мультиметр.

Как и в случае с батарейкой, значение, измеренное мультиметром, отличается от номинального значения тестируемого элемента (резистора). Напомним, что золотая полоска на резисторе (значение цветных полосок смотрите в этой ) означает допуск 5%, то есть 22кОм x 5% = 1,1кОм

Поэтому диапазон отклонения сопротивления для нашего резистора может быть в пределах от 20,9кОм до 23,1кОм.

Теперь соединим на макетной плате кассету с батарейками и резистор так, как показано на картинке ниже:

В электронике чтобы изобразить связи между отдельными элементами используют принципиальные схемы. В нашем случае схема будет выглядеть следующим образом:

Символ обозначенный как B1 — это наши батарейки, обеспечивающие общее напряжение: 4 х 1,5В = 6В. наш резистор на 22кОм обозначен символом R1.
В соответствии с :

I = U / R
I = 6В / 22кОм
I = 6В / 22000 Ом
I = 0,000273 А
I = 273мкА

Теоретически, ток в схеме должен составлять 273мкА. Вспомним, что сопротивление резистора может отличаться в пределах 5% (у нас это 22,1кОм). Напряжение, поступающее от батареек, также может отличаться от номинальных 6 вольт, и оно будет зависеть от степени разряда этих батареек.

Давайте посмотрим, какое реальное напряжения идет от 4 батареек по 1,5 В.

  • черный провод подключите к разъему „COM”;
  • красный провод подключите к разъему „V”
  • мы ожидаем получить значение около 6В, поэтому установите регулятор на значение «20» в секции DCV или V-, если это необходимо, включите прибор, который должен изначально показать 0;
  • металлическими наконечниками щупов мультиметра прикоснитесь проводов выходящих из кассеты батареек;
  • смотрим результат – у нас напряжение составляет 6,5 В;
  • выключаем мультиметр.

Подставим полученные значения в формулу, вытекающую из закона Ома:

I = U / R
I = 6,5 В / 22,1кОм
I = 6,5 В / 22100 Ом
I = 0,000294 А
I = 294мкА

Для подтверждения достоверности наших расчетов, нам не остается ничего другого, кроме как измерить фактический ток мультиметром.

  • черный провод подсоедините к разъему „COM”;
  • красный провод подключите к разъему „mA”;
  • мы ожидаем получить значение 294 мкА, поэтому устанавливаем регулятор на значение 2000µ в секции A-, если это необходимо, включите прибор, который должен изначально показать 0;
  • для измерения тока, необходимо мультиметр подключить в разрыв цепи. Металлическими наконечниками щупов мультиметра касаемся, ножки джемпера соединяющий положительный полюс батареи и ножки резистора;
  • считываем значение – у нас сила тока составляет 294 мкA;
  • выключаем мультиметр.

И под конец данного урока приведем схему, отражающую различия подключения мультиметра при измерении напряжения и силы тока:

Добрый день, уважаемое сообщество.

Меня все время удивляли люди, которые понимают в радиоэлектронике. Я всегда их считал своего рода шаманами: как можно разобраться в этом обилии элементов, дорожек и документации? Как можно только взглянуть на плату, пару раз «тыкнуть» осциллографом в только одному ему понятные места и со словами «а, понятно» взять паяльник в руки и воскресить, вроде как почившую любимую игрушку. Иначе как волшебством это не назовёшь.

Расцвет радиоэлектроники в нашей стране пришёлся на 80-е годы, когда ничего не было и все приходилось делать своими руками. С той поры прошло много лет. Сейчас у меня складывается впечатление, что вместе с поколением 70-х уходят и знания с умением. Мне не повезло: половину эпохи расцвета меня планировали родители, а вторую половину я провёл играя в кубики и прочие машинки. Когда в 12 лет я пошёл в кружок «Юный техник» - это были не самые благополучные времена, и ввиду обстоятельств через полгода пришлось с кружком «завязать», но мечта осталась.

По текущей деятельности я программист. Я осознаю, что найти ошибку в большом коде ровно тоже самое, что найти «плохой» конденсатор на плате. Сказано - сделано. Так как по натуре я люблю учиться самостоятельно - пошёл искать литературу. Попыток начать было несколько, но каждый раз при начале чтения книг я упирался в то, что не мог разобраться в базовых вещах, например, «что есть напряжение и сила тока». Запросы к великому и ужасному Гуглу также давали шаблонные ответы, скопированные из учебников. Попробовал найти место в Москве, где можно поучиться этому мастерству - поиски не закончились результатом.

Итак, добро пожаловать в кружок начинающего радиолюбителя.

Я люблю учиться и узнавать что-то новое, но просто знания мне мало. В школе мне привили навык «теорему нельзя выучить - её можно только понять» и теперь я несу это правило по жизни. Окружающие, конечно, смотрят с недоумением, когда вместо того, чтобы взять готовые решения и сложить по-быстрому их воедино я начинаю изобретать свои велосипеды. Второй довод для написания статьи - это мысль «если ты понимаешь предмет - ты можешь его с лёгкостью объяснить другому». Ну что ж, попробую сам понять и другим объяснить.

Первая моя цель, прямо как по книгам - аналоговый радиоприёмник, а там пойдем и в цифру.

Сразу хочу предупредить - статья написана дилетантом в радиоэлектронике и физике и является скорее рассуждением. Все поправки буду рад выслушать в комментариях.

Итак, чем что такое напряжение, ток и прочее сопротивление? В большинстве случаев для понимания электрических процессов приводят аналогию с водой. Мы не будем отходить от этого правила, правда с небольшими отклонениями.
Представим трубу. Для контроля некоторых показателей мы включим в неё несколько счётчиков расхода воды, манометров для измерения давления, и элементы, которые мешают току воды.

В электрическом эквиваленте схема будет выглядеть примерно так:

Напряжение

Курс физики нам говорит, что напряжение - это разность потенциалов между двумя точками. Если перекладывать определение на нашу трубу с водой, то потенциал - это давление, т. е. напряжение - это разница давлений между двумя точках. Этим и объясняется принцип его измерения вольтметром. Получается, что если попытаться измерить напряжение в двух соседних точках трубы, где нет никаких сопротивлений движению воды (отсутствуют краны и сужения, внутренним трением воды о стенки трубы мы пока пренебрежём) и давление не меняется - то разница давлений в этих двух точках будет равна нулю. Если же сопротивление присутствует, происходит снижение давления (в электрическом эквиваленте падение напряжения), то мы получим величину напряжения. Сумма напряжений на всех элементах равна напряжению на источнике. Т.е. если сложить показания всех вольтметров на нашей схеме, мы получим напряжение батареи.

Например, будем считать, что наша батарея даёт напряжение 5 вольт и резисторы имеют сопротивление 100 и 150 Ом. Тогда по закону Ома U=IR, или I=U/R, получаем, что по цепи течёт ток с силой I=5/250=20мА. Так как сила тока во всей цепи одинакова (пояснения чуть дальше), из того же закона Ома следует, что первый вольтметр покажет U=0,02*100=2В, а второй U=0,02*150=3В.

Сила тока

Из того же курса физики известно, что это количество заряда за единицу времени. В водяном эквиваленте - это сама вода, а её измеритель, амперметр - есть счётчик воды. Опять таки становится понятно, почему амперметр подключается в разрыв цепи. Если его подключить на место, например, вольтметра V1, то образуется новая цепь, из которой будет исключено сопротивление R1, а значит как минимум мы получим некорректные значения (что будет «как максимум»станет понятно чуть позже). Вернёмся к нашей водичке - подключение амперметра параллельно любому из элементов означает, что часть воды пойдёт по основной трубе, а другая часть пойдёт через счётчик - и как раз этот счётчик будет врать.

Ах, да, о цепи. В большинстве литературы что мне попадалось фраза о том, что батарейки являются лишь источником напряжения, и только сопротивления являются источником тока. Как же так? Как сопротивление может являться источником чего-то ещё, кроме как источником сопротивления (тепло пока не в счёт)? Все верно, если опираться на закон Ома I=U/R, однако сколько не прикладывай сопротивление, ток не появится, пока не будет источника напряжения и замкнутой цепи (ровно как если заткнуть справа нашу трубу пробкой что не делай - счётчики воды будут молчать)!

Сопротивление в цепи просто должно присутствовать, ведь если оно равно нулю - сила тока устремится в бесконечность. Такую ситуацию мы видим при «замыкании» - искры это и есть очень большая сила тока, а если точнее теплота, равная Q=(I^2)Rt (формула действительна при постоянной силе тока и сопротивления).

Ещё одно важное замечание - при рассмотрении расчёта напряжения и силы тока я не нашёл уточнений, что в замкнутой цепи на всех участках сила тока будет одинаковой. Т.е. все счётчики будут крутиться с одной скоростью и показывать одни и те же значения. По сути, количество тока, который прошёл по цепи аналогичен количеству «воды», вышедшей из трубы.

Сопротивление

Пожалуй, самое простое явление для объяснения. Вернувшись к нашей трубе, сопротивление - это есть все возможные сужения и краны. Согласно тому, что мы разобрали выше - при повышении сопротивления уменьшается ток во всей цепи и понижает напряжение на концах сопротивления. Или снова в водяных реалиях - закрытие нашего крана на пол оборота вызовет уменьшение расхода воды на всех счётчиках и пропорциональное (в зависимости от сопротивления) снижение давления на манометрах.

Так куда же все падает и уменьшается? Вот здесь аналогия с водой неоднозначна, так как в случае с электричеством «излишки» превращаются в тепло и рассеиваются. Количество теплоты, которое при этом выделяется, снова можно рассчитать формулой Q=(ΔI^2)Rt (снова при постоянном сопротивлении). Если поделить количество теплоты на время, получим мощность, которую нужно применить при выборе самого резистора P=Q/t=(ΔI^2)R.

Курить не круто!

Когда я ходил в кружок Юный техник более старшие товарищи проводили «эксперименты» с прикуриванием от электричества. Для этого они брали блок питания, подключали к нему резисторы малой мощности и повышали напряжение. Повышали до тех пор, пока он не раскалялся до красна, как автомобильный прикуриватель. После этого, практически через мгновение резистор «перегорал» и отправлялся в мусорное ведро.

С постоянным током все понятно, а переменный?

Переменный ток, как таковой в радиоэлектронике используется редко. Его как минимум делают постоянным и в большинстве случаев снижают. Видимо по этому в попадавшейся мне литературе про него практически не говорится.

В чем же его отличие? C обывательской точки зрения, в малом - направление тока в нем меняется. Здесь аналогия с трубой не совсем уместна, первое что приходит в голову - шейкер для коктейлей (жидкость при смешивании в нем гуляет туда-сюда). Нам в радиоэлектронике нужно знать, как идёт ток в нашей цепи, чтобы получить от него то, что мы хотим.

Следующее, с чем я пошёл разбираться - полупроводники. Дырки? Электроны? Ключевой режим? Каскады? Полевой транзистор, то тот, который нашли в поле? Пока ничего не понятно…

Теги: Добавить метки