Структурные элементы реляционной базы данных. Реляционная база данных — основные понятия

Функции СУБД.

Функции СУБД бывают высокого и низкого уровня.

Функции высокого уровня:

1. Определение данных – с помощью этой функции определяется какая информация будет храниться в БД (тип, свойства данных и как они между собой будут связаны).

2. Обработка данных. Информация может обрабатываться разными способами: выборка, фильтрация, сортировка, объединение одной информации с другой, вычисление итоговых значений.

3. Управление данными . С помощью этой функции указывается, кому разрешено знакомиться с данными, корректировать их или добавлять новую информацию, а также определять правила коллективного доступа.

Функции низкого уровня:

1. Управление данными во внешней памяти;

2. Управление буферами оперативной памяти;

3. Управление транзакциями;

4. Введение журнала изменений в БД;

5. Обеспечение целостности и безопасности БД.

Транзакцией называется неделимая последовательность операций, которая отслеживается СУБД от начала и до завершения, и в которой при невыполнении одной операции отменяется вся последовательность.

Журнал СУБД – особая БД или часть основной БД, недоступная пользователю и используемая для записи информации обо всех изменениях базы данных.

Введение журнала СУБД предназначено для обеспечения надёжности хранения в базе данных при наличии аппаратных сбоев и отказов, а так же ошибок в программном обеспечении.

Целостность базы данных – это свойство БД, означающее, что в ней содержится полная, непротиворечивая и адекватно отражающая предметную область информация.

Классификация СУБД.

СУБД можно классифицировать:

1. По видам программ:

a. Серверы БД (например, MS SQL Server, InterBase (Borland)) – предназначены для организации центров обработки данных в сетях ЭВМ и реализуют функции управления базами данных, запрашиваемые клиентскими программами с помощью операторов SQL (т.е. программы, которые отвечают на запросы);

b. Клиенты БД – программы, которые запрашивают данные. В качестве клиентских программ могут использоваться ПФСУБД, электронные таблицы, текстовые процессоры, программы электронной почты;

c. Полнофункциональные БД (MS Access, MS Fox Pro) – программа, имеющая развитый интерфейс, позволяющий создавать и модифицировать таблицы, вводить данные, создавать и форматировать запросы, разрабатывать отчёты и выводить их на печать.

2. По модели данных СУБД (как и БД):

a. Иерархические – основаны на древовидной структуре хранения информации и напоминают файловую систему компьютера; основной недостаток - невозможность реализовать отношение многие - ко – многим;

b. Сетевые – которые пришли на смену иерархическим и просуществовали недолго т. к. основной недостаток – сложность разработки серьёзных приложений. Основное отличие сетевой от иерархической в том, что в иерархической структура «запись – потомок» имеет только одного предка, а в сетевой потомок может иметь любое количество предков;

c. Реляционные – данные которых размещены в таблицах, между которыми существуют определённые связи;

d. Объектно – ориентированные – в них данные хранятся в виде объектов и основное преимущество при работе с ними в том, что к ним можно применить объектно – ориентированный подход;

e. Гибридные, т. е. объектно – реляционные – совмещают в себе возможности реляционных и объектно – ориентированных баз данных. Примером такой базы данных является Oracle (ранее она была реляционной).

3. В зависимости от расположения отдельных частей СУБД различают:

a. локальные – все части которой располагаются на одном компьютере;

b. сетевые.

К сетевым относятся:

- с организацией файл – сервер ;

При такой организации все данные находятся на одном компьютере, который называется файл – сервер, и который подключён к сети. При отыскании нужной информации передаётся весь файл, содержащий в том числе и много избыточной информации. И лишь при создании локальной копии отыскивается нужная запись.

- с организацией клиент – сервер;

Сервер БД принимает запрос от клиента, отыскивает в данных нужную запись и передаёт её клиенту. Запрос к серверу формируется на языке структурированных запросов SQL, поэтому серверы БД называют SQL – серверами.

- распределённые СУБД содержат несколько десятков и сотен серверов, размещённых на значительной территории.

Основные положения реляционной модели БД.

Реляционной базой данных называется такая база данных, в которой все данные организованы в виде таблиц, а все операции над этими данными сводятся к операциям над таблицами.

Особенности реляционных баз данных:

1. Данные хранятся в таблицах, состоящих из столбцов и строк;

2. На пересечении каждого столбца и строки находится одно значение;

3. У каждого столбца - поля есть своё имя, которое служит его названием - атрибут, и все значения в одном столбце, имеют один тип;

4. Столбцы располагаются в определённом порядке, который задаётся при создании таблицы, в отличие от строк, которые располагаются в произвольном порядке. В таблице может не быть ни одной строчки, но обязательно должен быть хотя бы один столбец.

Терминология реляционной базы данных:

Элемент реляционной БД Форма представления
1. База данных Набор таблиц
2. Схема базы данных Набор заголовков таблиц
3. Отношение Таблица
4. Схема отношения Строка заголовков столбцов таблицы
5. Сущность Описание свойств объекта
6. Атрибут Заголовок столбца
7. Домен Множество допустимых значений атрибута
8. Первичный ключ Уникальный идентификатор, однозначно определяющий каждую запись в таблице
9. Тип данных Тип значений элементов в таблице
10. Кортеж Строка (запись)
11. Кардинальность Количество строк в таблице
12. Степень отношения Количество полей
13. Тело отношения Множество кортежей отношения

При проектировании реляционной БД данные размещают в нескольких таблицах. Между таблицами устанавливают связи с помощью ключей. При связывании таблиц выделяют основную и дополнительную (подчинённую) таблицу.

Существуют следующие виды связей между таблицами:

1. Связь вида 1:1 (один к одному) означает, что каждой записи в основной таблице соответствует одна запись в дополнительной таблице и, наоборот, каждой записи в дополнительной таблице соответствует одна запись в основной таблице.

2. Связь вида 1:М (один ко многим) означает, что каждой записи в основной таблице соответствует несколько записей в дополнительной таблице и, наоборот, каждой записи в дополнительной таблице соответствует только одна запись в основной таблице.

3. Связь вида М:1 (многим к одному) означает, что одной или нескольким записям в основной таблице соответствует только одна запись в дополнительной таблице.

4. Связь вида М:М (многим ко многим) – это, когда нескольким записям основной таблицы соответствует несколько записей дополнительной и наоборот.

5. Основные компоненты MS Access.

Основными компонентами (объектами) MS Access являются:

1. Таблицы;

3. Формы;

4. Отчёты;

5. Макросы:

Модули.

Таблица – это объект, предназначенный для хранения данных в виде записей (строк) и полей (столбцов). Каждое поле содержит отдельную часть записи, а каждая таблица используется для хранения сведений по одному конкретному вопросу.

Запрос – вопрос о данных, хранящихся в таблицах, или инструкция на отбор записей, подлежащих изменению.

Форма – это объект, в котором можно разместить элементы управления, предназначенные для ввода, изображения и изменения данных в полях таблицах.

Отчёт – это объект, который позволяет представить определённую пользователем информацию в определённом виде, просматривать и распечатывать её.

Макрос – одна или несколько макрокоманд, которые можно использовать для автоматизации конкретной задачи. Макрокоманда – основной строительный блок макроса; самостоятельная инструкция, которая может быть объединена с другими макрокомандами, чтобы автоматизировать выполнение задачи.

Модуль – набор описаний, инструкций и процедур, сохранённых под одним именем. В MS Access имеется три вида модулей:модуль формы, отчёта и общий модуль. Модули формы и отчётов содержат локальную программу для форм и отчётов.

6. Таблицы в MS Access.

В MS Access существуют следующие методы создания таблиц:

1. Режим таблицы;

2. Конструктор;

3. Мастер таблиц;

4. Импорт таблиц;

5. Связь с таблицами.

В режиме таблицы данные вводятся в пустую таблицу. Для ввода данных предоставляется таблица с 30 полями. После её сохранения MS Access сам решает, какой тип данных присвоить каждому полю.

Конструктор предоставляет возможность самостоятельно создавать поля, выбирать типы данных для полей, размеры полей и устанавливать свойства полей.

Для определения поля в режиме Конструктор задаются:

1. Имя поля , которое в каждой таблице должно иметь уникальное имя, являющееся комбинацией букв, цифр, пробелов и специальных символов, за исключением «.!” “ ». Максимальная длина имени 64 символа.

2. Тип данных определяет вид и диапазон допустимых значений, а также объём памяти, выделенный для этого поля.

Типы данных MS Access

Тип данных Описание
Текстовый Текст и числа, например, имена и адреса, номера телефонов, почтовые индексы (до 255 символов).
Поле Memo Длинный текст и числа, например комментарии и пояснения (до 64000 символов).
Числовой Общий тип данных для числовых данных, допускающих проведение математических расчётов, за исключением денежных расчётов.
Дата / время Значения даты и времени. Пользователь может выбирать стандартные формы или создавать специальный формат.
Денежный Денежные значения. Для денежных расчётов не рекомендуется использовать числовые типы данных, т.к. они могут округляться при расчётах. Значения типа «денежный» всегда выводятся с указанным числом десятичных знаков после запятой.
Счётчик Автоматически выставляющиеся последовательные номера. Нумерация начинается с 1. Поле счётчика удобно для создания ключа. Это поле является совместимым с полем числового типа, для которого в свойстве Размер указано значение «Длинное целое».
Логический Значения «Да / Нет», «Истинно / Ложь», «Вкл / Выкл», одно из двух возможных значений.
Поле объекта OLE Объекты, созданные в других программах, поддерживающие протокол OLE.

3. Наиболее важные свойства полей:

- Размер поля задаёт максимальный размер данных, сохраняемых в поле.

- Формат поля является форматом отображения заданного типа данных и задаёт правила представления данных при выводе их на экран или печать.

- Подпись поля задаёт текст, который выводится в таблицах, формах, отчётах.

- Условие на значение позволяет осуществлять контроль ввода, задаёт ограничения на вводимые значения, при нарушении условий запрещает ввод и выводит текст, заданный свойством Сообщение об ошибке;

- Сообщение об ошибке задаёт текст сообщения, выводимый на экран при нарушении ограничений, заданных Условием на значение.

Тип элемента управления – свойство, которое задаётся на закладке Подстановка в окне конструктора таблиц. Это свойство определяет, будет ли отображаться поле в таблице и в какой форме – в виде поля или поля со списком.

Уникальный (первичный) ключ таблицы может быть простым или составным, включающим несколько полей.

Для определения ключа выделяются поля, составляющие ключ, и на панели инструментов нажимается кнопка ключевое поле или выполняется команда Правка / ключевое поле .


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16

Уровень 1: Уровень внешних моделей – это самый верхний уровень где каждая модель имеет свое видение данных. Этот уровень определяет точку зрения базы данных отдельных приложений.

Концептуальный уровень: Центральное управляющее звено, где здесь БД представлена в наиболее общем виде, который объединяет данные используемые всеми приложениями. Фактически концептуальный уровень отражает обобщённую модель предметной область.

Физический уровень (База данных): Это сами данные расположенные в файлах или в страничных структурах, расположенных навнешних носителях информации.


Модели данных

Выделяют следующие модели данных:

1. Инфологические

2. Дата логические

3. Физические

Процесс проектирования баз данных начинается с проектирования инфологической модели. Инфологическая модель данных это обобщённое неформальное описание создаваемой БД, выполненное с использованием естественного языка, математических формул, таблиц, графиков и др. средств понятных всем людям работающим над проектированием БД.

Кортеж доменов

Инфологическая модель отображает реальный мир в некоторой понятной человеку концепции, полностью независимой от среды хранения данных. Поэтому Инфологическая модель не должна изменяться до тех пор, пока какие то изменения в реальном мире не потребуют изменения вне определения, чтобы эта модель продолжала отображать предметную область.

Существует множество подходов к построению этой модели: графовые модели, семантические сети, сущность – связь и другие.

Даталогическая модель

Инфологическая модель должна быть отображена в даталогической модели, понятной СУБД. Даталогическая модель это формальное описание инфологической модели на языке СУБД.

Иерархическая модель

Эта модель представляет собой совокупность связанных элементов, образующих иерархическую структуру. К основным понятиям иерархии относятся уровень, узел и связь.

связь уровень


Узлом называется совокупность атрибутов данных описывающих некоторый объект. Каждый узел связан с одним узлом более высокого уровня и с любым количеством узлов нижнего уровня. Исключением является узел самого высокого уровня. Количество деревьев в базе данных определяется количеством корней деревьев. К каждой записи базы данных существует единственный путь от корневой записи. Простым примером может служить система доменных имен в интернете\ адрес. На первом уровне (корень дерева) лежит наша планета земля, на втором Страна, на третьем- Регион, на четвёртом – населённый пункт, улица, дом,квартира. Типичным представителем является СУБД от IBM - IMS.

Все экземпляры данного типа потомка с общим экземпляром типа предка называется близнецами. Для базы данных определён полный порядок обхода. Сверху вниз и с права на лево.

Физическая модель

На основе даталогической модели строится физическая модель. Физическая организация данных оказывает основное влияние на эксплуатационные характеристики базы данных. Разработчики СУБД пытаются создать наиболее производительные физические модели данных, предлагая пользователям тот или иной инструментарий, для под настройки модели для конкретной БД.

Пример: В частности для реляционной БД она уже учитывает:

1. Физические аспекты хранения таблиц в определённых файлах.

2. Создание индексов оптимизирующих скорости операций над данными с помощью приложения.

3. Выполнения различных действий над данными при определённых событиях, определяемых пользователям с помощь триггеров и хранимых процедур.

Инфологические модели Х

Физические модели


Для всех уровней и для любого метода представления предметной области, лежит кодирование понятий отношений между понятиями. Ключевым этапом при разработке любой информационной системы является проведение системного анализа:

Формализация предметной области и представление системы как совокупности компонентов.

Композиция как основа системного анализа может быть функциональной (построение иерархия).

Однако в большинстве систем, если говорить о базах данных, типы данных являются более статичным элементом чем способы их обработки. Поэтому получили интенсивное развитие такие методы системного анализа как диаграмма потоков data flown diagram. Развитие реляционных БД. Стимулировала развитие построения методик развития данных в частности ER диаграмм ER. Реляционная модель данных в качестве отображения непосредственно использует понятие отношения. Она ближе всего находится к концептуальной модели представления данных. И часто лежит в основе её.

В отличие от теоретика графовых моделей, в реляционной модели связи между отношениями реализуются не явным способом для чего используют ключи отношений. Например, отношения иерархического типа реализуется механизмом первичных и внешних ключей, когда в подчинённом отношении должен присутствовать факт атрибутов.

Такой атрибут отношений в основном отношений будет называться первичным ключом, а в подчинённом вторичным.

Прогресс в области разработки языков программирования связанных в первую очередь с типизацией данных и появлением объектно-ориентированных языков позволило подойти к анализу сложных систем с точки зрения иерархических представлений то есть с помощью классов объектов со свойствами полиморфизма, наследование, инкапсуляция.

ОТНОШЕНИЕ ЭТО ТАБЛИЦА.

Редактирование таблиц, записей…

Удаление то что создали и

Редактирование.


Реляционная модель базы данных

Реляционные модели данных в настоящее время приобрели наибольшую популярность именно за такое представление данных.

Реляционную модель можно представить как особый метод представления данных, содержащий собственные данные (в виде таблиц), и способы работы и манипуляции с ними (в виде связей). Реляционная модель предполагает три концептуальных элемента: Структура, Целостность и Обработка данных. В этих элементах есть свои обязательные понятия которые для дальнейшего изложения необходимо пояснить.

Таблица рассматривается как непосредственное хранилище данных. Традиционно в реляционных системах таблицу называют отношением. Строку таблицы называют кортежем , а столбец атрибутом . При этом атрибуты имеют уникальные имена (в пределах отношения).

Количество кортежей в таблице называют кардинальным числом . Количество атрибутов степенью. Для отношения устанавливают уникальный идентификатор, то есть один или несколько атрибутов, значения которых в одно и то же время не бывают одинаковыми – идентификатор называют первичным ключом.Домен это множество допустимых однородных значений для того или иного атрибута. Таким образом домен можно рассмотреть как именованное множество данных причём составные части этого множества являются логически не делимыми единицами (в качестве домена могут выступать например перечень фамилий сотрудников учреждения однако не все фамилии могут присутствовать в таблице).

SUMM Киреева 25.50 Мотылёва 17.05 … …. …

Отношение

атрибуты

Поля KOD, NAME, SUMM это атрибуты таблицы содержащиеся в заголовке.

Пары KOD 5216, NAME Киреева, SUMM 25.50 являются элементами тела отношения.

В Реляционных базах данных в отличие от других моделей пользователь указывает какие данные для него необходимы а не то как это делать. По этой причине процесс перемещения и навигации по базе данных в реляционных системах является автоматическим, а эту задачу в СУБД выполняет оптимизатор. Его работа заключается в том чтобы наиболее эффективным способом произвести выборку данных из базы данных по запросу. Таким образом, оптимизатор по крайней мере должен суметь определить из каких таблиц выбираются данные насколько много информации в этих таблицах и каков физический порядок записи в таблицах и как они сгруппированы.

Кроме того реляционная БД выполняет и функции каталога. В каталоге хранится описание всех объектов из которых состоит база данных: таблиц, индексов, триггеров и т.п. Очевидно, что жизненно необходимо для правильной работы всей системы, такой компонент как оптимизатор. Оптимизатор использует информацию хранящуюся в каталоге. Интересен тот факт что каталог сам является набором таблиц, поэтому СУБД может манипулировать им традиционными способами, не прибегая к каким либо особым приёмам и методам.

Домены и отношения

Основные определения: Домены, виды отношений, предикаты.

Отношения имеет ряд основных свойств:

1. В самом общем случае в отношениях не бывает общих кортежей – это следует из самого определения отношений. Однако для некоторых СУБД в ряде случаев допускается отступление от этого свойства. По сколько в отношений имеет место первичный ключ, одинаковые кортежи – исключены.

2. Кортежи не упорядочены сверху вниз – в отношении просто отсутствует понятие позиционного номера. В отношений без потери информации можно с успехом расположить кортежи в любом порядке.

3. Атрибуты не упорядочены слева на право. Атрибуты в заголовке отношений можно располагаетесь в любом порядке, при этом целостность данных не нарушается. Поэтому понятие позиционного номера в отношении атрибута тоже не существует.

4. Значение атрибутов состоят из логически не делимых единиц – это следует из того, что значения берутся из доменов иначе можно сказать, что отношения не содержат групп повторений. То есть являются нормализованными.

В реляционных системах поддерживается несколько видов отношений:

1. Именованные представляют собой переменные отношения определяемые в СУБД путём операторов создания и как правило необходимые для более удобного представления информации для пользователя.

2. Базовые отношения являются непосредственно важной частью БД, поэтому при проектировании им дают собственное название.

3. Производное отношение это то которое было определено через другие, как правило базовые, отношения путём использования средств СУБД.

4. Представление это фактически является именованным производным отношением, при этом представление выражается исключительно через операторы СУБД, применённые к именованным отношениям, поэтому их физически в БД не существует.

5. Результат запросов это не именованное производное отношение содержащее данные(результат конкретного запроса). Результат в БД не хранится а существует до тех пор пока он необходим пользователю.

6. Хранимое отношение это то которое физически поддерживаются в памяти отношений, к хранимым отношениям чаше всего относятся база отношений. Исходя из вышесказанного, можно определить реляционную базу данных как набор отношений, связанных между собой.


Связь в данном случае это ассоциирование двух или более отношений.

KOD ADRES
1 1 Связь один ко многим состоит в том что в каждый момент времени каждому элементу (кортежу А) соответствует несколько элементов кортежей Б
∞ Бинарная связь
Студенты
Преподы
Расписание занятий

Студенты

Тернарные связи


Целостность данных

В реляционных моделях вопросу целостности данных отводят особое место. Напомним, что ключ или потенциальный ключ это минимальный набор атрибутов, по значениям которых можно однозначно найти требуемый кортеж, минимальность означает что исключение из набора любого атрибута не позволяет идентифицировать кортеж по оставшимся атрибутам.

Каждое отношение обладает хотя бы одним возможным ключом. Один из них принимается за первичный ключ.

При выборе первичного ключа следует отдавать предпочтение не составным ключам или ключам, составленных из минимального набора атрибутов. Нежелательно также использовать ключи с длинными текстовыми значениями (Предпочтительней использовать в качестве ключей целочисленные атрибуты) . Так для идентификации работника можно использовать либо уникальный табельный номер, или номер паспорта, либо набор из фамилий имени отчества и номера отдела. Не допускается что бы первичный ключ отношения, то есть любой атрибут участвующий в первичном ключе принимал неопределённые значения. В этом случае возникнет противоречивая ситуация (коллизия ): Появится не обладающий уникальностью элемент первичного ключа. Поэтому при проектировании базы данных за этим следует тщательно следить.

О внешних ключах. Стоит отметить ввиду что отношение С связывает отношения B и А, то оно должно включать внешние ключи, соответствующий первичным ключам отношениям А и В.

Внешний ключ таблицы формируется с помощью нескольких первичных ключей других таблиц.

Таким образом при рассмотрении проблемы выбора способа связи отношения в базе данных возникает вопрос о том каковы же должны быть внешние ключи. При этом для каждого внешнего ключа необходимо решить проблему связанную с возможностью (или невозможностью) появления во внешних ключах неопределённых значений(NULL – значений- значение атрибута для отсутствующей информации). Другими словами может ли существовать некоторый кортеж в отношений, для которого не известен кортеж в связанных с ним отношении?

С другой стороны необходимо заранее обдумать вопрос о том что произойдёт при удаления кортежей из отношения на который ссылается внешний ключ. При этом существуют следующие вероятные возможности:

· Операция каскадируется – то есть удаление кортежей в отношениях приводит к удалению кортежей связанных отношением. Например удаление информации о фамилии имени и т.п. сотрудника в одном отношении приводит к удалению о его заработной плате в другом отношении;

· Операция ограничивается - то есть удаляются лишь те кортежи для которых связанной информации в другом отношении нет. Не вся информация удаляется (не во всех отношениях) так как она может быть использована в другом отношении, удаление информации в котором ведёт к нарушению целостности данных. Если такова информация имеется то удаление осуществить нельзя, например, удаление информации о имени, фамилии и т.п. сотрудника возможно лишь в том случае если информация в связанном отношении о его заработной плате отсутствует.

Нужно предусмотреть технологию того что будет происходить при попытке обновления первичного ключа отношения, на которые ссылается некоторый внешний ключ. Здесь имеются те же возможности как и при удалении:

· Операция каскадируется то есть при обновлении первичного ключа происходит обновление внешнего ключа в связанном отношении. Например обновление первичного ключа в отношении, где хранится информация о сотруднике приводит к обновлению внешнего ключа в отношении с информацией о заработной плате.

· Операция ограничивается то есть обновляются лишь те первичные ключи для которых связанной информации в другом отношении нет. Если таковая информация имеется то обновление сделать нельзя. Например обновление первичного ключа в отношении, где хранится информация о сотруднике, возможна лишь в том случае, если информация о его заработной плате в связанном отношении отсутсвует.1


Реляционная алгебра

Формальной основой базы реляционной модели БД является реляционная алгебра, основанное на теории множеств и рассматривающая специальный оператор над отношениями, и реляционное исчисление базирующиеся на математической логике.

Произведение

А А А Б В В Г Г Д
Г Д
А
А Б В Г Г Д Ж Ж З

Надо отметить что реляционная алгебра обладает большой мощностью - сложные запросы к базе данных могут быть выражены с помощью одного выражения. Именно по этой причине эти механизмы включены в реляционную модель данных. Любой запрос выражаемый с помощью одного выражения реляционной алгебры, или одной формулой реляционного исчисления, может быть выражен с помощью одного оператора этого языка.

Реляционная алгебра обладает важным свойством - она замкнута относительно понятия отношения. Это означает что выражение реляционной алгебры выполняется над отношениями реляционных баз данных и результаты их вычисления также представляют собой отношения.

Основная идея реляционной алгебры состоит в том что средства манипулирования отношениями, рассматриваемыми как множество основаны на традиционных множественных операциях дополненных некоторыми специфическими операциями для БД.

Опишем вариант алгебры который был предложен КОДДОМ. Операция состоит из 8 основных операторов:

· Выборка отношения (унарная операция)

· Проекция отношения (унарная операция)

· Объединения отношений

· Пересечение отношений(бинарная операция)

· Вычитание отношений

· Произведение отношений

· Соединение отношений

· Деление отношений

Эти операции можно объяснить следующим образом:

· Результатом выборки отношения по некоторому условию является отношение который включает только те кортежи первоначального отношения которые удовлетворяют этому условию.

· При осуществлении проекции отношения на заданный набор его атрибутов будет получено отношение кортежи которого взяты из соответствующих кортежей первого отношения.

· При выполнении операции объединения двух отношений будет получено отношение включающее все кортежи входящие в хотя бы одно из участвующих в операции отношений.

· При выполнении операции пересечения двух отношений будет получено отношение включающее все кортежи входящие в оба первоначальных отношения.

· При выполнении операции вычитания двух отношений будет получено отношение включающее все кортежи входящие в первое отношение, кроме тех которые также входят и во второе отношение.

· При выполнении прямого произведения двух отношений получается отношение кортежи которого являются сочетанием кортежей первого и второго отношения.

· При соединении двух отношений по некоторому условию образуется результирующее отношение кортежей которого является сочетанием кортежей первого и второго отношений, удовлетворяющим этому условию.

· Операция реляционного деления имеет два операнда – бинарная то есть (состоящее из двух атрибутов) и унарная (состоящая из одного атрибута) отношения. Результат операции является отношение состоящее из кортежей включающие отношение первого атрибута кортежей первого отношения, причем таких что множество значений второго атрибута совпадает со множеством значений второго отношения.

Помимо выше перечисленных есть ряд особых операций характерных для работы с базами данных:

· В результате операции переименования получается отношение набор кортежей, которого совпадает с телом первоначального отношения, но имена атрибутов изменены.

Отсюда следует что результатом реляционной операции является некоторое отношение то имеется возможность образовывать реляционные выражения в которых вместо первоначального отношения (операнда), будет использоваться вложенное реляционное выражение. Это происходит благодаря тому факту что операция реляционной алгебры действительно замкнуты относительно понятия отношения. Начнём с операции объединения отношений , однако это в равной мере относится и к операциям пересечения и сочетания, то есть в реляционной алгебры результатом операции объединения является отношение. Если допустить в реляционной алгебре возможность объединения произвольных двух отношений с разными наборами атрибутов, то результатом такой операции будет множество, однако множество разнотипных кортежей, то есть вообще говоря не отношение. Если исходить из требования замкнутости реляционной алгебры относительно понятия отношения то такая операция объединения является бессмысленной. Это приводит к появлению понятия совместимости отношений по объединению : два отношения совместимы только в том случае, когда обладают одинаковыми заголовками, то есть имеет тот же набор имён атрибутов, и одноимённые атрибуты определены в том же домене.

При условии что два отношения совместимы по объединению, при обычном выполнении над ними операции объединения пересечения вычитания результатом операции является отношение с корректно определённым заголовком совпадающим с заголовком каждого из отношений – операндов. Если же два отношения не полностью совместимы по объединению, то есть совместимы во всем кроме имён атрибутов, то до выполнения операции типа соединения, эти отношения можно сделать полностью совместимыми по объединению путём применения операции переименования.

Операция прямого произведения двух отношений вызывает новые проблемы. В Теории множеств прямое произведение может быть получено для любых множеств. Элементы результирующего множества будут являться пары, составленные из элементов первого и второго множества. Поскольку отношения являются множествами то для любых двух отношений возможно получение прямого произведения. Однако результат не будет отношением. Элементами результата будут являться не кортежи, а пары кортежей. Поэтому в реляционной алгебре используется специальная форма операции взятия прямого произведения - расширенное прямое произведение отношений. При взятии расширенного прямого произведения двух отношений элементом результирующего отношения является кортеж, формирующийся при слиянии одного кортежа первого отношения, и одного кортежа второго отношения. Тут же возникает вторая проблема, связанная с получением корректно сформированного заголовка результирующего отношения, это приводит к необходимости ввода понятия совместимости отношений, по взятию расширенного прямого произведения.

Два отношения совместимы по взятию прямого произведения только в том случае, если множество имен атрибутов этих отношений не пересекаются. Любые два отношения могут быть преобразованы к совместимому виду по взятию прямого произведения путём применения операции переименования к одному из этих отношений.

Операция выборки требует наличия двух отношений: первоначального отношения – операнда, и простого условия ограничения. В результате выполнения операции выборки производится отношение заголовок которого совпадает с заголовком отношения операнда, а в тело входят те кортежи отношения операнда, которые удовлетворяют значениям условия ограничения.

Введём ряд операторов.

Пусть union означает операцию объединения, intersect – операция пересечение, minus – операция вычитания. Для обозначения операции выборки будем использовать конструкцию A where B , где А – отношение операнд, а В простое условие сравнения. Пусть С1 и С2 два простых условия выборки

A where C1 AND C2 идентично (A where C1) intersect (A where C2)

A where C1 OR C2 идентично (A where C1) union (A where C2)

A where C1 not C2 идентично (A where C1) minus (A where C2)

С использованием этих определений можно реализовать операции выборки, в которых условием выборки является произвольное логическое выражение составленное из простых условий с использованием логических связей (and, or, not) . Операция взятия проекций отношение А оп списку атрибутов а1, а2,…,an будет отношение заголовком которого является множество атрибутов, а1,а2,…,an. Тело результата будет состоять из кортежей для которых в отношении А имеется кортеж, атрибут а1 имеет значение b1, атрибут а2 значение b2< и так далее атрибут an – bn. По сути при выполнении операции проекции определяется «Вертикальная» вырезка отношения - операнда с удалением возникающих кортежей –дубликатов.

Операция соединения, называемая иногда соединением по условию требует наличия двух операндов – соединяемых отношений, и третьего операнда – простое условие. Пусть соединяется отношение А и В. Как и в случае операции выборки, условие соединения С имеет вид, (а comp –op b) либо (а comp –op const) где А и В имена атрибутов отношений А и В, const- литерально заданная константа. Comp-op – допустимая в данном контексте операция сравнения. Тогда по определению результатом операции соединения является отношение, получаемое путём, выполнения операции ограничения, по условию С прямого произведения отношения А и В.

Имеется важный частный случай соединения, естественное соединение. Операция соединения называется операцией естественного соединения, если условия соединения имеет вид (а=в) где а и в атрибуты разных операндов соединения. Этот случай важен потому что он особо часто встречается на практике и для него существуют эффективные алгоритмы реализации в СУБД. Операция естественного соединения применяется к паре отношений А и В, обладающих общим атрибутом Р, то есть атрибутом с одним и тем же именем и определённым на одном и том же домене. Пусть ав обозначает объединение заголовков отношений А и В. Тогда естественное соединение это спроецированный на ав результат соединения А и В. Операции естественного соединения не включается прямо в состав набора операций реляционной алгебры, но она имеет очень важное практическое значение.

Операция деления отношений нуждается в более подробном объяснении поскольку трудна для понимания. Пусть заданы два отношение А {a1,a2,..,an,b1,b2,…,bm}

B {b1,b2,…,bn} Будем полагать что атрибут b1 отношения A и атрибут b1 отношения B определены на одном и том же домене. Назавём множество атрибутов {aj} составным атрибутом а, множество {bj} cсоставным атрибутом b. После этого будем говорить о реляционном делении бинарного отношения А (а,b) на унарное отношение B (b).

Результатом деления А на В является унарное отношение С (а), состоящее из таких кортежей v что в отношении А имеются кортежи которые во множестве значений {w} включают множество значений b в отношении B.

Поскольку деление наиболее трудная операция поясним её примером. Пусть в БД студентов имеется два отношения: СТУДЕНТЫ (ФИО, НОМЕР) и ИМЕНА (ФИО), причем унарное отношение ИМЕНА содержит все фамилии которыми обладают студенты института. Тогда после выполнения операции реляционного деления отношения СТУДЕНТЫ на отношения ИМЕНА, будет получено унарное отношение содержащее номера студенческих билетов принадлежащих студентам со всеми возможными в этом институте фамилиями.


Реляционное счисление

Допустим имеется база данных обладающая структурой СТУДЕНТЫ (номер, имя, стипендия, код группы), и отношение ГРУППЫ(гр_ном, гр_кол, гр стар) Предположим что необходимо узнать имена и номера студ. билетов у студентов являющимися старостами групп с количеством человек больше 25. В реляционной алгебре нужно предпринять следующие действия для такого запроса:

1. Выполнить соединение отношений СТУДЕНТЫ и ГРУППЫ, по условию «студ_ номер =гр_стар»;

2. Ограничить полученное отношение по условию гр_кол>25.

3. Cпроецировать результат предыдущей операции на атрибут студ_имя, студ_номер.

Здесь пошагово сформулирована последовательность выполнения запроса в базе данных, каждый из которых соответствует одной реляционной операции. если же сформулировать тот же запрос с использование реляционного исчисления То мы получили бы формулу которую можно прочитать: Выдать СТУД_ИМЯ и СТУД_НОМЕР для таких студентов чтобы сосуществовала такая группа ГР_СТАР и значением ГР_КОЛ>25. Во второй формулировке мы указали лишь характеристики результирующего отношения но ничего не сказали о способе его формирования. В этом случае СУБД должна сама решить что за операции и в каком порядке нужно выполнить над отношениями СТУДЕНТЫ и ГРУППЫ. Оба рассмотренных в примере способа на самом деле эквиваленты и существует не очень сложные преобразования из одного в другой.

Базисными понятиями реляционного счисления являются понятия переменной с определённой область её значения, и понятия правильно построенной формулы, опирающиеся на переменные и спец. Функции. Что является областью определения переменной различаются исчисление кортежей, и исчисления доменов то есть вдоль или поперёк. В исчислении кортежей областями определения переменных является отношение баз данных, то есть допустимым значением каждой переменной является кортеж некоторого отношения. В исчислении доменов областями определения переменных являются домены на которых определены атрибуты отношений баз данных то есть допустимым значением каждой переменной является значение каждой переменной.

Byte Integer String Char
M
N
K

Для определения кортежи используется команда RANGE. Например чтобы определить переменную СТУДЕНТ областью определения которой является СТУДЕНТЫ нужно употребить конструкцию RANGE СТУДЕНТ IS СТУДЕНТЫ. Из этого определения следует что в любой момент времени переменная студент представляет некоторый кортеж отношения СТУДЕНТЫ. При использовании кортежных переменных в формулах можно ссылать на значения атрибута переменных. Например для того чтобы сослаться на значение атрибута СТУД_ИМЯ переменной СТУДЕНТ нужно употребить конструкцию СТУДЕНТ.СТУД_ИМЯ.

Правильно построенные формулы служат для выражения условий, накладываемых на кортежные переменные. В основе таких формул лежат простые сравнения, представляющие собой, операции сравнения значений атрибутов переменных и литерально заданных констант. Например конструкция СТУДЕНТ.СТУД_НОМ=123456. Является простым сравнением. Более сложным вариантом составных формул является с помощью логических связей AND, OR, NOT, IF…THEN. Наконец допускается построение правильно построенных формул с помощью кванторов. Если F это правильно построенная формула в которой участвует переменная var то конструкция EXIST (квантор существования) var (F) и FORALL(для всех кортежей) var (F) являются правильными.

Переменные, входящие в правильно построенные формулы могут быть свободными или связанными. Все переменные входящие в их состав при построение которых не использовались кванторы являются свободными. Это означает что если для какого то набора значений свободных кортежных переменных при вычислении формул получено значение «истина», то эти значения могут входить в результирующие отношение. Если же при построении формул используется квантор то переменные являются связанными. При вычислении значения такой правильно построенной формулы используется ни одно значение связанной переменной а вся её область определения.

1)EXISTS СТУД2 (CТУД.1СТУД_СТИП> СТУД2.СТУД_СТИП)

2)FORALL СТУД2 (CТУД.1СТУД_СТИП> СТУД2.СТУД_СТИП)

Пусть СТУД1 и СТУД2 две кортежные переменные определённые на отношение студенты, тогда формула, для текущего кортежа переменной СТУД1 принимает значение истина только в том случае если во всём отношении студенты найдётся такой кортеж связанный с переменной СТУД2 что значение его атрибута СТУД_СТИП удовлетворяет внутреннему условию сравнения. Правильно построенная формула №2 для построенного кортежа СТУД 1 принимает значение истина если для всех кортежей отношение СТУДЕНТЫ связанных с переменной СТУД 2 значение атрибута СТУД.СТИП удовлетворяет внутреннему условию.

Таким образом правильно построенные формулы обеспечивают средства выражения условия выборки из отношения баз данных. Чтобы можно было использовать реляционное исчисление для реальной работы с БД, требуется ещё один компонент который определяет набор и имена столбцов результирующего отношения. Этот компонент называется целевым списком.

Целевой список имеет вид:

· Var.attr –имя свободной переменной, атр имя атрибута отношения на котором определена переменная var.

· Var что эквивалентно отношению от списка, Var.attr1, Var.attr1… Var.attr№ включает имена всех атрибутов определяющего отношения.

· New_name = var.attr; новое имя соответствующего атрибута результирующего отношения.

Последний вариант требуется в тех случаях кода в формуле используется несколько свободных переменных с одинаковой областью определения. В исчислении доменов областью определения доменов являются не отношения а домены. Применительно к бд СТУДЕНТЫ ГРУППЫ можно говорить о доменных переменных ИМЯ (Значения домена – допустимые имена или НОМ СТУД). (Значения домена допустимые номера студентов).

Основным отличием исчисления доменов от исчисления кортежей является наличие дополнительного набора предикатов, позволяющих выражать так называемые условия членства. Если R это n- арное отношение с атрибутами (a1, a2, … an) то условие членства имеет вид R(ai1:Vi1,ai2:Vi2,…aim:Vim) где (m<=n). Где в Vij это либо литерально заданная константа либо имя кортежной переменной. Условие членства принимает значение истина, только в том случае если в отношении R существует кортеж, содержащий следующие значения указанных атрибутов. Если от Vij константа то на атрибут aij накладывается жёсткое условие независящее от текущих доменных переменных. Если же Vij имя доменной переменной то условие членства может принимать различные значения при разных значениях этой переменной.

Предикатом называют логическую функцию, которая для некоторого аргумента возвращает значение истина или ложь. Отношение может быть рассмотрено как предикат с аргументами, являющимися атрибутами рассматриваемого отношения. Если заданный конкретный набор кортежей присутствует в отношении, то предикат выдаст истинный результат в противном случае – ложный.

Вов всех остальных отношениях формулы и выражения исчисление доменов выглядит похожими на формулы и выражения исчисления кортежей. Реляционное счисление доменов положено в основу большинства языковых запросов, основанных на использовании форм.


Похожая информация.


Модель данных - совокупность структур данных и операций по их обработке. С помощью модели данных можно наглядно представить структуру объектов и установленные меж­ду ними связи. Для терминологии моделей данных характерны понятия «эле­мент данных» и «правила связывания». Элемент данных описывает любой на­бор данных, а правила связывания определяют алгоритмы взаимосвязи элементов данных. К настоящему времени разработано множество различных моделей дан­ных, но на практике используется три основных. Выделяют иерархическую, сетевую и реляционную модели данных. Соответственно говорят об иерархичес­ких, сетевых и реляционных СУБД.

О Иерархическая модель данных. Иерархически организованные данные встре­чаются в повседневной жизни очень часто. Например, структура высшего учеб­ного заведения - это многоуровневая иерархическая структура. Иерархичес­кая (древовидная) БД состоит из упорядоченного набора элементов. В этой модели исходные элементы порождают другие элементы, причем эти элементы в свою очередь порождают следующие элементы. Каждый порожденный эле­мент имеет только один порождающий элемент.

Организационные структуры, списки материалов, оглавление в книгах, пла­ны проектов и многие другие совокупности данных могут быть представле­ны в иерархическом виде. Автоматически поддерживается целостность ссы­лок между предками и потомками. Основное правило: никакой потомок не может существовать без своего родителя.

Основным недостатком данной модели является необходимость использова­ния той иерархии, которая была заложена в основу БД при проектировании. Потребность в постоянной реорганизации данных (а часто невозможность этой реорганизации) привели к созданию более общей модели - сетевой.

О Сетевая модель данных. Сетевой подход к организации данных является рас­ширением иерархического подхода. Данная модель отличается от иерахической тем, что каждый порожденный элемент может иметь более одного по­рождающего элемента. ■

Поскольку сетевая БД может представлять непосредственно все виды связей, присущих данным соответствующей организации, по этим данным можно переме­щаться, исследовать и запрашивать их всевозможными способами, то есть сете­вая модель не связана всего лишь одной иерархией. Однако для того чтобы со­ставить запрос к сетевой БД, необходимо достаточно глубоко вникнуть в ее структуру (иметь под рукой схему этой БД) и выработать механизм навигации по базе данных, что является существенным недостатком этой модели БД.

О Реляционная модель данных. Основная идея реляционной модели данных за­ключается в том, чтобы представить любой набор данных в виде двумерной таблицы. В простейшем случае реляционная модель описывает единственную двумерную таблицу, но чаще всего эта модель описывает структуру и взаи­моотношения между несколькими различными таблицами.

Реляционная модель данных

Итак, целью информационной системы является обработка данных об объектах реального мира, с учетом связей между объектами. В теории БД данные часто называют атрибутами, а объекты - сущностями. Объект, атрибут и связь - фундаментальные понятия И.С.

Объект (или сущность) - это нечто существующее и различимое, то есть объектом можно назвать то «нечто», для которого существуют название и спо­соб отличать один подобный объект от другого. Например, каждая школа - это объект. Объектами являются также человек, класс в школе, фирма, сплав, хи­мическое соединение и т. д. Объектами могут быть не только материальные пред­меты, но и более абстрактные понятия, отражающие реальный мир. Например, события, регионы, произведения искусства; книги (не как полиграфическая про­дукция, а как произведения), театральные постановки, кинофильмы; правовые нормы, философские теории и проч.

Атрибут (или данное) - это некоторый показатель, который характеризует некий объект и принимает для конкретного экземпляра объекта некоторое чис­ловое, текстовое или иное значение. Информационная система оперирует на­борами объектов, спроектированными применительно к данной предметной области, используя при этом конкретные значения атрибутов (данных) тех или иных объектах. Например, возьмем в качестве набора объектов классы в школе. Число учеников в классе - это данное, которое принимает числовое значение (у одного класса 28, у другого- 32). Название класса - это данное, принимающее текстовое значение (у одного - 10А, у другого - 9Б и т. д.).

Развитие реляционных баз данных началось в конце 60-х годов, когда по­явились первые работы, в которых обсуждались; возможности использования при проектировании баз данных привычных и естественных способов представле­ния данных - так называемых табличных даталогических моделей.

Основоположником теории реляционных баз данных считается сотрудник фирмы IBM доктор Э. Кодд, опубликовавший 6 (июня 1970 г. статью A Relational Model of Data for Large-Shared Data Banks (Реляционная модель данных для больших коллективных банков данных). В этой статье впервые был использован термин «реляционная модель данных. Теория реляционных баз данных, разработанная в 70-х годах в США докто­ром Э. Коддом, имеет под собой мощную математическую основу, описывающую правила эффективной организации данных. Разработанная Э. Коддом теорети­ческая база стала основой для разработки теории проектирования баз данных.

Э. Кодд, будучи математиком по образованию, предложил использовать для обработки данных аппарат теории множеств (объединение, пересечение, раз­ность, декартово произведение). Он доказал, что любой набор данных можно представить в виде двумерных таблиц особого вида, известных в математике как «отношения».

Реляционной считается такая база данных, в которой все данные представле­ны для пользователя в виде прямоугольных таблиц значений данных, и все операции над базой данных сводятся к манипуляциям с таблицами.

Таблица состоит из столбцов (полей) и строк (записей); имеет имя, уникаль­ное внутри базы данных. Таблица отражает тип объекта реального мира (сущ­ность), а каждая ее строка- конкретный объект. Каждый столбец таблицы - это совокупность значений конк­ретного атрибута объекта. Значения выбираются из множества всех возможных значений атрибута объек­та, которое называется доменом (domain) .

В самом общем виде домен определяется заданием некоторого базового типа данных, к которому относятся элементы домена, и произвольного логического выражения, применяемого к элементам данных. Если при вычислении логическо­го условия относительно элемента данных в результате получено значение «исти­на», то этот элемент принадлежит домену. В простейшем случае домен определяется как допустимое потенциальное множество значений одного типа. Например, со­вокупность дат рождения всех сотрудников составляет «домен дат рождения», а имена всех сотрудников составляют «домен имен сотрудников». Домен дат рож­дения имеет тип данных, позволяющий хранить информацию о моментах време­ни, а домен имен сотрудников должен иметь символьный тип данных.

Если два значения берутся из одного и того же домена, то можно выполнять сравнение этих двух значений. Например, если два значения взяты из домена дат рождения, то можно сравнить их и определить, кто из сотрудников старше. Если же значения берутся из разных доменов, то их сравнение не допускается, так как, по всей вероятности, оно не имеет смысла. Например, из сравнения имени и даты рождения сотрудника ничего определенного не выйдет.

Каждый столбец (поле) имеет имя, которое обычно записывается в верхней части таблицы. При проектировании таблиц в рамках конкретной СУБД имеет­ся возможность выбрать для каждого поля его тип, то есть определить набор правил по его отображению, а также определить те операции, которые можно выполнять над данными, хранящимися в этом поле. Наборы типов могут разли­чаться у разных СУБД.

Имя поля должно быть уникальным в таблице, однако различные таблицы могут иметь поля с одинаковыми именами. Любая таблица должна иметь, по крайней мере, одно поле; поля расположены в таблице в соответствии с порядком следования их имен при ее создании. В отличие от полей, строки не имеют имен; порядок их следования в таблице не определен, а количество логически не ограничено.

Так как строки в таблице не упорядочены, невозможно выбрать строку по ее позиции - среди них не существует «первой», «второй», «последней». Любая таблица имеет один или несколько столбцов, значения в которых однозначно идентифицируют каждую ее строку. Такой столбец (или комбинация столбцов) называется первичным ключом (primary key) . Часто вводят искусственное поле, предназначенное для нумерации за­писей в таблице. Таким полем, например, может быть его порядковый, который сможет обеспечить уникальность каж­дой записи в таблице. Ключ должен обладать следующими свойствами.

Уникальностью. В каждый момент времени никакие два различных кортежа отношения не имеют одинакового значения для комбинации входящих в ключ атрибутов. То есть в таблице не может быть двух строк, имеющих одинако­вый идентификационный номер или номер паспорта.

Минимальностью. Ни один из входящих в ключ атрибутов не может быть ис­ключен из ключа без нарушения уникальности. Это означает, что не стоит со­здавать ключ, включающий и номер паспорта, и идентификационный номер. Достаточно использовать любой из этих атрибутов, чтобы однозначно иденти­фицировать кортеж. Не стоит также включать в ключ неуникальный атрибут, то есть запрещается использование в качестве ключа комбинации идентифи­кационного номера и имени служащего. При исключении имени служащего из ключа все равно можно уникально идентифицировать каждую строку.

Каждое отношение имеет, по крайней мере, один возможный ключ, посколь­ку совокупность всех его атрибутов удовлетворяет условию уникальности - это следует из самого определения отношения.

Один из возможных ключей произвольно выбирается в качестве первичного ключа. Остальные возможные ключи, если они есть, принимаются за альтерна­тивные ключи. Например, если в качестве первичного ключа выбрать иденти­фикационный номер, то номер паспорта будет альтернативным ключом.

Взаимосвязь таблиц является важнейшим элементом реляционной модели данных. Она поддерживается внешними ключами (foreign key).

При описании модели реляционной базы данных для одного и того же поня­тия часто употребляют различные термины, что зависит от уровня описания (теория или практика) и системы (Access, SQL Server, dBase). В табл. 2.3 приве­дена сводная информация об используемых терминах.

Таблица 2.3. Терминология баз данных

Теория БД____________ Реляционные БД_________ SQL Server __________

Отношение (Relation) Таблица (Table) Таблица (Table)

Кортеж (Tuple) Запись (Record) Строка (Row)

Атрибут (Attribute)Поле (Field)_______________ Столбец или колонка (Column)

Реляционные базы данных

Реляционная база данных - это совокупность отношений, содержащих всю ин­формацию, которая должна храниться в базе данных. То есть база данных пред­ставляет набор таблиц, необходимых для хранения всех данных. Таблицы реля­ционной базы данных логически связаны между собой.Требования к проектированию реляционной базы данных в общем виде можно свести к нескольким правилам.

О Каждая таблица имеет уникальное в базе данных имя и состоит из однотипных строк.

О Каждая таблица состоит из фиксированного числа столбцов и значений. В одном столбце строки не может быть сохранено более одного значения. Например, если есть таблица с информацией об авторе, дате издания, тираже и т. д., то в столбце с именем автора не может храниться более одной фамилии. Если книга написана двумя и более авторами, придется использовать дополнительные таблицы.

О Ни в какой момент времени в таблице не найдется двух строк, дублирующих друг друга. Строки должны отличаться хотя бы одним значением, чтобы была возможность однозначно идентифицировать любую строку таблицы.

О Каждому столбцу присваивается уникальное в пределах таблицы имя; для него устанавливается конкретный тип данных, чтобы в этом столбце размещались однородные значения (даты, фамилии, телефоны, денежные суммы и т. д.).

О Полное информационное содержание базы данных представляется в виде яв­ных значений самих данных, и такой метод представления является единствен­ным. Например, связь между таблицами осуществляется на основе хранимых в соответствующих столбцах данных, а не на основе каких-либо указателей, искусственно определяющих связи.

О При обработке данных можно свободно обращаться к любой строке или лю­бому столбцу таблицы. Значения, хранимые в таблице, не накладывают ни­каких ограничений на очередность обращения к данным. Описание столбцов,

Реляционная модель

Реляционная модель базы данных была предложена в 1969 г. математиком и научным сотрудником фирмы IBM Э.Ф. Коддом (E.F. Codd). Некоторые начальные сведения о реляционных базах данных содержатся в обзорной статье “БД и СУБД ” 2. Поскольку в настоящее время именно реляционные базы данных являются доминирующими, в этой статье (а также в статьях “Описание данных ”, “Обработка данных ” и “Проектирование БД ” 2) подробно рассматриваются наиболее существенные понятия реляционной модели.

Сразу отметим, что теория реляционных баз данных изначально была сформулирована на строгом математическом языке, и именно строгие, формально определенные математические понятия наилучшим образом описывают суть вещей. Вместе с тем в большинстве случаев можно без особого ущерба пожертвовать строгостью терминологии в пользу прозрачности изложения, что мы и будем стараться делать.

Основная идея реляционной модели заключается в следующем. База данных состоит из ряда неупорядоченных таблиц (в простейшем случае - из одной таблицы). Таблицами можно манипулировать посредством непроцедурных (декларативных) операций - запросов , результатами которых также являются таблицы.

Нередко слово “реляционная” (relational ) в термине “реляционная модель” трактуют, основываясь на том, что в реляционной базе данных устанавливаются связи (relate ) между таблицами. Такое объяснение удобно, но оно не является точным. В оригинальной системе терминов Кодда термины связи (relations ), атрибуты (attributes ) и кортежи (tuples ) употреблялись там, где большинство из нас пользуется более привычными терминами таблицы, столбцы (поля) и строки (записи).

При построении инфологической модели предметной области (см. “БД и СУБД ”, “Проектирование БД ” 2) выделяются сущности (объекты), описываются их свойств а (характеристики, атрибуты), существенные для целей моделирования, и устанавливаются связи между сущностями. На этапе перехода от инфологической к даталогической реляционной модели как раз и появляются таблицы. Как правило, каждая сущность представляется одной таблицей. Каждая строка таблицы (одна запись) соответствует одному экземпляру сущности, а каждое поле описывает некоторое свойство (атрибут) .

Например, если нам требуется хранить информацию о людях, включающую фамилию каждого, имя, отчество, ИНН, страну проживания и дату рождения, то сущностью является именно человек, а указанные данные - атрибутами. Сама сущность естественным образом становится названием таблицы.

Таблица “Человек”

Реляционная модель требует, чтобы каждая строка таблицы была уникальной, т.е. чтобы любые две строки различались значением хотя бы одного атрибута.

Традиционная табличная форма удобна, когда требуется представить сами данные. Если же, как в приведенном выше примере, интересует лишь структура - имена полей, то с точки зрения наглядности, удобства использования в схемах и экономии места удобнее изображать ее следующим образом:

Ключи

Ключом таблицы называется поле или группа полей, содержащие уникальные в рамках данной таблицы значения . Ключ однозначно определяет соответствующую строку таблицы. Если ключ состоит из одного поля, его часто называют простым , если из нескольких - составным . В приведенном выше примере ключом является поле ИНН (мы считаем известным тот факт, что ИНН в пределах страны являются уникальными).

Рассмотрим пример таблицы с составным ключом. На сайтах прогнозов погоды нередко представляют информацию следующим образом: для каждой даты указывают прогнозируемую температуру ночью, утром, днем и вечером. Для хранения указанной информации можно использовать таблицу следующего вида:

В этой таблице ни поле Дата, ни Время суток, ни Температура не являются ключами - в каждом из этих полей значения могут повторяться. Зато комбинация полей Дата+Время суток является уникальной и однозначно определяет строку таблицы. Это и есть составной ключ.

Нередко встречается ситуация, в которой выбор ключа не является однозначным. Вернемся к первому примеру. Допустим, в дополнение к фамилии, имени, отчеству, ИНН, дате рождения требуется хранить серию и номер общегражданского паспорта и серию и номер заграничного паспорта. Таблица будет иметь следующий вид.

В этой таблице можно выбрать целых три ключа. Один из них - простой (ИНН), два другие - составные (Серия+Номер общегражданского паспорта и Серия+Номер заграничного паспорта). В такой ситуации разработчик выбирает наиболее удобный с точки зрения организации БД ключ (в общем случае - ключ, на поиск значения которого требуется наименьшее время). Выбранный ключ в этом случае часто называют главным, или первичным , ключом, а другие комбинации столбцов, из которых можно сделать ключ, - возможными , или альтернативными, ключами. Отметим, что хотя бы один возможный ключ в таблице имеется всегда, так как строки не могут повторяться и, следовательно, комбинация всех столбцов гарантированно является возможным ключом.

При изображении таблиц первичные ключи таблиц принято выделять. Например, соответствующие поля часто подчеркивают. А Microsoft Access выделяет ключевые поля полужирным шрифтом.

Еще чаще, чем с неоднозначностью выбора ключа, разработчики сталкиваются с отсутствием ключа среди данных, которые требуется хранить. Подобный факт может быть установлен в процессе анализа предметной области. Например, если требуется хранить простой список людей - имена, фамилии, отчества и даты рождения, то ключа в этом наборе атрибутов нет вовсе - мыслимой является ситуация, когда у двух различных людей указанные данные совпадают полностью. В таком случае приходится искусственно вводить дополнительное поле, например, уникальный номер человека. Такой ключ в литературе иногда называют суррогатным . Нередко суррогатный ключ вводят и из соображений эффективности. Если, например, в таблице имеется длинный составной ключ, то разработчики часто вводят дополнительный короткий числовой суррогатный ключ и именно его делают первичным. Нередко так поступают даже при наличии простого ключа, имеющего “неудобный” (неэффективный для поиска) тип данных, например, строковый. Подобные операции уже не имеют отношения к теории, но сплошь и рядом встречаются на практике.

Внимательный читатель, возможно, обратит внимание на то, что ключ практически всегда можно расширить (если только в него не входят все поля таблицы) за счет включения избыточных полей. Формально такой ключ останется ключом, но с практической точки зрения это лишь игра понятиями. Такие ключи и за возможные-то не считают, поскольку всегда необходимо стремиться к минимизации длины (сложности) ключа.

Нормальные формы, нормализация

Не всякая таблица, которую мы можем нарисовать на бумаге или в Word’е, может быть таблицей реляционной базы данных. И не всякая таблица, которая может использоваться в реляционной базе данных, является правильной с точки зрения требования реляционной модели.

Во-первых, требуется, чтобы все данные в пределах одного столбца имели один и тот же тип (о типах см. Описание данных ” 2). С этой точки зрения приведенный ниже пример не имеет смысла даже обсуждать:

Во-вторых, требуется, чтобы в таблице был назначен первичный ключ .

Указанные требования являются необходимыми, но недостаточными. В теории реляционных баз данных вводятся понятия так называемых “нормальных форм” - требований к организации данных в таблицах. Нормальные формы нумеруются последовательно, по мере ужесточения требований. В правильно спроектированной БД таблицы находятся как минимум в третьей нормальной форме. Соответственно, мы рассмотрим первые три нормальные формы. Напомним, что мы имеем дело с таблицами, удовлетворяющими двум сформулированным выше основным требованиям.

Первая нормальная форма (1НФ)

Первая нормальная форма предписывает, что все данные, содержащиеся в таблице, должны быть атомарными (неделимыми ). Перечень соответствующих атомарных типов данных определяется СУБД. Требование 1НФ совершенно естественное. Оно означает, что в каждом поле каждой записи должна находиться только одна величина, но не массив и не какая-либо другая структура данных. Приведем осмысленный пример таблицы, которая не находится в 1НФ. Пусть у нас имеются списки оценок учеников по некоторому предмету.

Так как значение поля Оценки не является атомарным, таблица не соответствует требованиям 1НФ.

О возможном способе представления списка оценок написано в методических рекомендациях к статье “Проектирование БД” 2.

Вторая нормальная форма (2НФ)

Говорят, что таблица находится во второй нормальной форме, если она находится в 1НФ и каждый не ключевой столбец полностью зависит от первичного ключа. Другими словами, значение каждого поля должно полностью определяться значением первичного ключа. Важно отметить, что зависимость от первичного ключа понимается именно как зависимость от ключа целиком, а не от отдельной его составляющей (в случае составного ключа). Приведем пример таблицы, которая не находится во 2НФ. Для этого вернемся к примеру прогноза погоды и дополним таблицу еще одним столбцом - временем восхода солнца (это вполне правдоподобный пример, такого рода информация часто приводится на сайтах прогноза погоды).

Как мы помним, данная таблица имеет составной ключ Дата+Время суток. Поле Температура полностью зависит от первичного ключа - с ним проблем нет. А вот поле Восход зависит лишь от поля Дата, Время суток на время восхода естественным образом не влияет.

Здесь уместно задаться вопросом: а в чем практический смысл 2НФ? Какая польза от этих ограничений? Оказывается - большая. Допустим, что в приведенном выше примере разработчик проигнорирует требования 2НФ. Во-первых, скорее всего возникнет так называемая избыточность - хранение лишних данных. Ведь если для одной записи с данной датой уже хранится время восхода, то для всех других записей с данной датой оно должно быть таким же и хранить его, вообще говоря, незачем.

Обратим внимание на слова “должно быть”. А если не будет? Ведь на уровне БД это никак не контролируется - ключ в таблице составной, одинаковые даты могут быть (и по смыслу скорее всего будут). И никакие формальные ограничения (а наше понимание, что “такого не может быть”, к таковым не относится) не запрещают указать разное время восхода для одной и той же даты.

Третья нормальная форма (3НФ)

Говорят, что таблица находится в 3НФ, если она соответствует 2НФ и все не ключевые столбцы взаимно независимы.

Взаимную зависимость столбцов удобно понимать следующим образом: столбцы являются взаимно зависимыми, если нельзя изменить один из них, не изменяя другой.

Приведем пример таблицы, которая не находится в 3НФ. Рассмотрим пример простой записной книжки для хранения домашних телефонов людей, проживающих, возможно, в различных регионах страны.

В этой таблице присутствует зависимость между не ключевыми столбцами Город и Код города, следовательно, таблица не находится в 3НФ.

Отметим, что наличие указанной выше зависимости разработчик определяет, анализируя предметную область, - никакими формальными методами подобную коллизию увидеть нельзя. При изменении свойств предметной области зависимость между столбцами может и исчезнуть. Например, если в пределах одного города вводятся различные коды (как 495 и 499 в Москве), соответствующие столбцы перестают быть связанными с точки зрения нарушения требований 3НФ.

В теории реляционных баз данных рассматриваются и формы высших порядков - нормальная форма Бойса - Кодда, 4НФ, 5НФ и даже выше. Большого практического значения эти формы не имеют, и разработчики, как правило, всегда останавливаются на 3НФ.

Нормализация БД

Нормализация представляет собой процесс приведения таблиц базы данных к выбранной нормальной форме. Нормализация до 2НФ, как правило, сводится к декомпозиции - разбиению одной таблицы на несколько. Нормализация до 3НФ обычно может быть выполнена удалением зависимых (вычисляемых) столбцов. В некоторых случаях при нормализации до 3НФ приходится также производить декомпозицию.

Многотабличные БД, связи между таблицами, внешние ключи

На практике однотабличные базы данных встречаются достаточно редко, поскольку с точки зрения моделирования базой данных предметной области наличие одной таблицы означает наличие одной сущности. В свою очередь, наличие нескольких сущностей обычно означает наличие связей между ними.

Не ставя целью полное проектирование БД, рассмотрим пример, позволяющий продемонстрировать связи в многотабличных БД.

Пусть мы имеем дело со школой, в которой есть ученики, сгруппированные по классам, и учителя, преподающие некоторые предметы. У нас сразу выделяются четыре сущности: ученики, учителя, классы и предметы. Эти сущности уже дают нам четыре таблицы.

Далее нам требуется решить вопрос об атрибутах сущностей - какую именно информацию мы будем хранить. Поскольку наш пример носит исключительно демонстрационный характер, постараемся минимизировать объем хранимой информации. Договоримся для каждого ученика хранить фамилию и имя, для класса - номер параллели и букву, идентифицирующую класс внутри параллели, для учителя - фамилию, имя и отчество, для предмета - только его название.

Теперь нам следует решить вопрос с первичными ключами. Таблицы учеников и учителей в принципе не имеют ключа, поэтому мы введем в них суррогатный числовой ключ - номер. Таблицы классов и предметов, вообще говоря, имеют ключи. В таблице классов ключ составной, его образуют атрибуты Номер параллели+Буква, а в таблице предметов простой ключ состоит из единственного поля - названия предмета. Вспомним, что, говоря о ключах, мы упоминали о том, что суррогатные ключи часто добавляют из соображений эффективности, стремясь избавиться от составных ключей или ключевых полей неудобных типов, например, строковых. Так мы и поступим. Добавим в каждую из таблиц суррогатный числовой ключ.

В результате мы получим следующий набор таблиц, соответствующих описываемым сущностям.

Понимая, с какой предметной областью имеем дело, мы знаем, что наши сущности существуют не сами по себе - они связаны некоторыми отношениями, которые мы обозначили выше. Но как их связать технически? Тут не обойтись без введения дополнительных полей и даже дополнительных таблиц. Разберемся с отношениями между сущностями по порядку.

Чтобы отнести ученика к некоторому классу, заведем в таблице “Ученик” дополнительное поле Номер класса. (Понятно, что его тип должен полностью совпадать с типом поля Номер класса в таблице “Класс”.) Теперь мы можем связать таблицы “Ученик” и “Класс” по совпадающим значениям полей Номер класса (мы не случайно назвали эти поля одинаково, на практике так часто поступают, чтобы легко ориентироваться в связывающих полях). Заметим, что одной записи в таблице “Класс” может соответствовать много записей в таблице “Ученик” (и на практике скорее всего соответствует - трудно представить себе класс из одного ученика). О таких таблицах говорят, что они связаны отношением “один ко многим ”. А поле Номер класса в таблице “Ученик” называют внешним ключом . Как видим, назначение внешних ключей - связывание таблиц. Отметим, что внешний ключ всегда ссылается на первичный ключ связанной таблицы (т.е. внешний ключ находится на стороне “многих”). Связанный с внешним первичный ключ называют родительским , хотя этот термин используется реже.

Проиллюстрируем сказанное схемой в стиле Microsoft Access (подробнее о “Схеме данных” Access написано в статье “Описание данных” 2).

Теперь вспомним об учителях и предметах. Анализируя предметную область (только так - ведь истинное положение вещей из самой формальной модели извлечь невозможно), мы замечаем, что тип связи между сущностями “учитель” и “предмет” иной, нежели рассмотренный выше. Ведь не только один предмет могут вести много учителей, но и один учитель может вести много предметов. Таким образом, между этими сущностями имеется связь “многие ко многим ”. Тут уже не обойтись введением дополнительных полей (попробуйте!). Связи “многие ко многим” всегда разрешаются посредством введения дополнительной таблицы. А именно, организуем таблицу “Учитель-Предмет”, имеющую следующую структуру:

Таблица “Учитель-Предмет”

Эта таблица имеет составной ключ, образованный из двух ее полей. И таблица “Учитель”, и таблица “Предмет” связаны с данной таблицей отношением “один ко многим” (разумеется, в обоих случаях “многие” находятся на стороне “Учитель-Предмет”). Соответственно, в таблице “Учитель-Предмет” имеются два внешних ключа (оба - части составного первичного ключа, что не воспрещается), служащие для связи с соответствующими таблицами.

На практике, помимо рассмотренных отношений “один ко многим” и “многие ко многим”, встречается и отношение “один к одному ”. С точки зрения теории такое отношение интереса не представляет, так как две таблицы, связанные отношением “один к одному”, всегда можно просто объединить в одну. Тем не менее в реальных базах данных отношение “один к одному” применяется для оптимизации обработки данных. Проиллюстрируем сказанное примером.

Допустим, мы храним очень много разнообразной информации о людях - данные их всевозможных документов, телефоны, адреса и пр. Скорее всего боRльшая часть этих данных будет использоваться очень редко. А часто нам потребуются лишь фамилия, имя, отчество и телефон. Тогда имеет смысл организовать две таблицы и связать их отношением “один к одному”. В одной (небольшой) таблице хранить часто используемую информацию, в другой - остальную. Естественно, что таблицы, связанные отношением “один к одному”, имеют один и тот же первичный ключ.

Правила целостности

Реляционная модель определяет два общих правила целостности базы данных: целостность объектов и ссылочная целостность.

Правило целостности объектов очень простое. Оно требует, чтобы первичные ключи таблиц не содержали неопределенных (пустых) значений .

Правило ссылочной целостности требует, чтобы внешние ключи не содержали несогласованных с родительскими ключами значений . Возвращаясь к рассмотренному выше примеру, мы должны потребовать, например, чтобы ученики относились лишь к классу, номер которого указан в таблице “Классы”.

Большинство СУБД умеют следить за целостностью данных (разумеется, это требует соответствующих усилий и от разработчика на этапе описания структур данных). В частности, для поддержания ссылочной целостности используются механизмы каскадирования операций. Каскадирование подразумевает, в частности, то, что при удалении записи из “родительской” таблицы, связанной с другой таблицей отношением “один ко многим”, из таблицы “многих” автоматически (самой СУБД, без участия пользователя) удаляются все связанные записи. И это естественно, ведь такие записи “повисают в воздухе”, они более ни с чем не связаны.

Индексация

Индексация - крайне важная с точки зрения практического применения, но факультативная с позиции чистой теории вещь. Основное назначение индексации - оптимизация (убыстрение) поиска (и, соответственно, некоторых других операций с базой данных). Индексация в любом случае требует дополнительных ресурсов (на физическом уровне чаще всего создаются специальные индексные файлы). Операции, связанные с модификацией данных, индексация может даже замедлять, поэтому индексируют обычно редко изменяемые таблицы, в которых часто производится поиск.

Индексный файл очень похож на индекс обычной книги. Для каждого значения индекса хранится список строк таблицы, в которых содержится данное значение. Соответственно, для поиска не надо просматривать всю таблицу - достаточно заглянуть в индекс. Зато при модификации записей может потребоваться перестроить индекс. И на это уходит дополнительное время.

Разумеется, и речи не идет о том, чтобы излагать теорию реляционных баз данных в рамках базового курса информатики! Тем не менее эта статья очень важна для нашей энциклопедии, поскольку в данном случае мы имеем дело с материалом, который не может быть в полном объеме изложен на уроках, но учитель владеть им должен. Почему?

Во-первых, потому что ряд понятий изучаются как раз в рамках базового курса. Это и табличное представление данных, и ключи таблиц. А все мы знаем, что очень трудно грамотно и точно изложить лишь некоторые понятия, не представляя общей картины.

Во-вторых, выполняя с детьми простые запросы к базам данных (соответствующий материал изложен в статье “Обработка данных” 2), необходимо иметь дело с правильными с точки зрения реляционной теории таблицами. Не требуется объяснять ученикам, что эти таблицы правильные, а “вот если бы…, то таблица была бы неправильной”, но недопустимо использовать плохие примеры.

В профильном курсе информатики ситуация может быть принципиально иной. Важнейшая и крайне продуктивная форма работы в профильных классах - проектная. В рамках учебных проектов можно и нужно разрабатывать несложные базы данных, и здесь не обойтись без основ изложенной теории. Необходимо, однако, учитывать следующее:

Моделируемые предметные области должны быть не слишком большими;

Они должны быть очень хорошо знакомы учащимся (в этом смысле изрядно поднадоевший всем проект “Школа” - не худший выбор!);

Наивно ожидать, что, прослушав основы теории, ученики смогут что-то спроектировать сами. Каждый шаг необходимо проходить вместе с ними, подробно аргументируя свои действия.

Системы управления базами данных и экспертные системы. Основные понятия реляционных БД. Работа с запросами. Формы. Отчеты. Создание базы данных.

Системы управления базами данных и их функции

В современной технологии баз данных для создания баз данных, их поддержки и обслуживания используется специализированное программное обеспечение - системы управления базами данных. СУБД - это комплекс программных и языковых средств, необходимых для создания и эксплуатации баз данных.

На этапе разработки баз данных СУБД служит для описания структуры базы данных: определения таблиц; определения количества полей; типа данных, отображающихся в них; размеров полей; определения связей между таблицами. Помимо таблиц большинство СУБД предусматривает создание специальных средств для работы с данными - форм, запросов.

Во время эксплуатации баз данных СУБД обеспечивает редактирование структуры базы данных, заполнение ее данными, поиск, сортировку, отбор данных по заданным критериям, формирование отчетов.

В информационных системах, которые работают на IBM-совместимых персональных компьютерах, большое распространение получили так называемые dBASE-подобные системы управления базами данных, например, dBASE, FoxPro и Clipper. Для пользователей существенным является то, что, отличаясь между собой командными языками и форматом индексных файлов, все эти СУБД используют одни и те же файлы баз данных с расширением.DBF, формат которых стал на некоторое время своеобразным стандартом баз данных.

В dBASE-подобных БД фактически использован реляционный подход к организации данных, т.е. каждый файл.DBF представляет собой двумерную таблицу, которая состоит из фиксированного числа столбцов и переменного числа строк (записей). В терминах, принятых в технической документации, каждому столбцу соответствует поле одного из пяти типов (N - числовое, С - символьное, D - дата, L -логическое, М - примечание), а каждой строке - запись фиксированной длины, состоящая из фиксированного числа полей. С помощью командных языков этих СУБД создаются и исправляются макеты файлов.DBF (описания таблиц), создаются индексные файлы, описываются процедуры работы с базами данных (чтение, поиск, модификация данных, составление отчетов и многое другое). Характерной особенностью файла.DBF является простота и наглядность: физическое представление данных на диске в точности соответствует представлению таблицы на бумаге. Однако в целом системы, построенные на основе файлов.DBF, следует считать устаревшими.



Большую популярность имеют и другие СУБД (с другим форматом файлов) - Paradox, Clarion и т.п. Следует подчеркнуть, что перечисленные системы ведут родословную от MS-DOS, однако ныне почти все они усовершенствованы и имеют версии для Windows.

Среди современных реляционных систем наиболее популярна СУБД для Windows - Access фирмы Microsoft, Approach фирмы Lotus, Paradox фирмы Borland. Многие из этих систем поддерживают технологию OLE и могут манипулировать не только числовой и текстовой информацией, но и графическими образами (рисунками, фотографиями) и даже звуковыми фрагментами и видеоклипами.

Перечисленные СУБД часто называют настольными, имея в виду сравнительно небольшой объем данных, обслуживаемых этими системами. Однако с ними часто работают не только индивидуальные пользователи, но и целые коллективы (особенно в локальных вычислительных сетях).

Вместе с тем в центр современной информационной технологии постепенно перемещаются более мощные реляционные СУБД с так называемым SQL-доступом. В основе этих СУБД лежит технология «клиент-сервер». Среди ведущих производителей таких систем - фирмы Oracle, Centura (Gupta), Sybase, Informix, Microsoft и другие.

Типы данных в базах данных

Информационные системы работают со следующими основными типами данных.

Текстовые данные . Значение каждого текстового (символьного) данного представлено совокупностью произвольных алфавитно-цифровых символов, длина которой чаще всего не превышает 255 (например, 5, 10, 140). Текстовыми данными представляют в ИС фамилии и должности людей, названия фирм, продуктов, приборов и т.д. В частном случае значение текстового данного может быть именем какого-то файла, который содержит неструктурированную информацию произвольной длины (например, биографию или фотографию объекта). Фактически это структурированная ссылка, позволяющая резко расширить информативность вашей таблицы.

Числовые данные . Данные этого типа обычно используются для представления атрибутов, со значениями которых нужно проводить арифметические операции (весов, цен, коэффициентов и т.п.). Числовое данное, как правило, имеет дополнительные характеристики, например: целое число длиной 2 байта, число с плавающей точкой (4 байта) в фиксированном формате и др. Разделителем целой и дробной части обычно служит точка.

Данные типа даты и (или) времени . Данные типа даты задаются в каком-то известном машине формате, например, - ДД.ММ.ГГ (день, месяц, год). С первого взгляда - это частный случай текстового данного. Однако использование в ИС особого типа для даты имеет следующие преимущества. Во-первых, система получает возможность вести жесткий контроль (например, значение месяца может быть только дискретным в диапазоне 01-12). Во-вторых, появляется возможность автоматизированного представления формата даты в зависимости от традиций той или иной страны (например, в США принят формат ММ-ДД-ГТ). В-третьих, при программировании значительно упрощаются арифметические операции с датами (попробуйте, например, вручную вычислить дату спустя 57 дней после заданного числа). Те же преимущества имеет использование данного типа времени.

Логические данные . Данное этого типа (иногда его называют булевым) может принимать только одно из двух взаимоисключающих значений - True или False (условно: 1 или 0). Фактически это переключатель, значение которого можно интерпретировать как «Да» и «Нет» или как «Истина» и «Ложь». Логический тип удобно использовать для тех атрибутов, которые могут принимать одно из двух взаимоисключающих значений, например, наличие водительских прав (да -нет), военнообязанный (да-нет) и т.п.

Поля объекта OLE . Значением таких данных может быть любой объект OLE, который имеется на компьютере (графика, звук, видео). В частности, в список учащихся можно включить не только статическую фотографию учащегося, но и его голос.

Пользовательские типы . Во многих системах пользователям предоставляется возможность создавать собственные типы данных, например: «День недели» (понедельник, вторник и т.д.), «Адрес» (почтовый индекс - город - ...) и др.

В частном случае значение текстового данного может быть совокупностью пробелов, а значение числового данного - нулем. Если же в таблицу вообще не введена информация, значение будет пустым (Null). He следует путать Null (отсутствие данных) с нулем или пробелами. Во многих системах пользователю важно зафиксировать отсутствие данных для каких-то экземпляров объекта (например, отсутствие адреса, «Адрес is Null»). Если случайно ввести в такую строку таблицы пробел, система сочтет, что адрес задан, и данный экземпляр не попадет в список объектов с отсутствующими адресами.

Реляционные базы данных

Наиболее удобным и для пользователя, и для компьютера является представление данных в виде двумерной таблицы - большинство современных информационных систем работает именно с такими таблицами. Базы данных, которые состоят из двумерных таблиц, называются реляционными , (по-английски «relation» - отношение). Основная идея реляционного подхода состоит в том, чтобы представить произвольную структуру данных в виде простой двумерной таблицы.

Примером реализации реляционной модели данных может быть таблица с информацией об учащихся.

Как видно из приведенного примера, реляционная таблица обладает следующими свойствами:

· каждая строка таблицы - один элемент данных (сведения об одном учащемся);

· все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип и длину (например, в столбце Имя отображаются имена учащихся символьного типа длиной не более 17 символов);

· каждый столбец имеет уникальное имя (например, в таблице нет двух столбцов Имя);

· одинаковые строки в таблице не допускаются (запись о каждом учащемся делается только один раз);

· порядок следования строк и столбцов в таблице может быть произвольным (запись об учащемся в таблицу делается при поступлении в школу, при этом порядок следования столбцов не имеет значения).

Структурные элементы реляционной базы данных

На примере реляционной таблицы рассмотрим основные структурные элементы базы данных.

1. В реляционных базах данных любые совокупности данных представляются в виде двумерных таблиц (отношений), подобных описанному выше списку учащихся. При этом каждая таблица состоит из фиксированного числа столбцов и некоторого (переменного) количества строк. Описание столбцов принято называть макетом таблицы.

2. Каждый столбец таблицы представляет поле – элементарную единицу логической организации данных, которая соответствует неделимой единице информации - реквизиту объекта данных (например, фамилия учащегося, адрес).

Для описания поля используются характеристики:

· имя поля (например, № личного дела, Фамилия);

· тип поля (например, символьный, дата);

· дополнительные характеристики (длина поля, формат, точность).

Например, поле Дата рождения может иметь тип «дата» и длину 8 (6 цифр и 2 точки, разделяющих в записи даты день, месяц и год).

3. Каждая строка таблицы называется записью. Запись логически объединяет все поля, описывающие один объект данных, например, все поля в первой строке вышеприведенной таблицы описывают данные об учащемся Петрове Иване Васильевиче 12.03.89 рождения, проживающем по адресу ул. Горького, 12-34, обучающемся в 4А классе, номер личного дела - П-69. Система нумерует записи по порядку: 1,2, ..., n, где n - общее число записей (строк) в таблице на данный момент. В отличие от количества полей (столбцов) в таблице количество записей в процессе эксплуатации БД может как угодно меняться (от нуля до миллионов). Количество полей, их имена и типы тоже можно изменить, но это уже особая операция, которая называется изменением макета таблицы .

4. В структуре записи файла указываются поля, значения которых являются простым ключом, которые идентифицируют экземпляр записи. Примером такого простого ключа в таблице Учащиеся является поле № личного дела, значение которого однозначно определяет один объект таблицы - одного учащегося, так как в таблице нет двух учащихся с одинаковым номером личного дела.

5. Каждое поле может входить в несколько таблиц (например, поле Фамилия может входить в таблицу Список занимающихся в театральном кружке).