Что такое дискретный и аналоговый сигнал. Информационные сигналы

Сигналы могут быть: аналоговые (непрерывные) и дискретные.

Дискретный сигнал - информационный сигнал. Сигнал называется дискретным, если он может принимать лишь конечное число значений.

См. также

Дискретный сигнал - сигнал, имеющий конечное число значений. Обычно сигналы, передаваемые через дискретные каналы, имеют два или три значения. Использование сигналов с тремя значениями обеспечивает синхронизацию передачи.

Литература

  • Самофалов К.Г., Романкевич А.М., Валуйский В.Н., Каневский Ю.С., Пиневич М.М. Прикладная теория цифровых автоматов. - К. : Вища школа, 1987. - 375 с.

Wikimedia Foundation . 2010 .

  • Дискретное преобразование Фурье над конечным полем
  • Дискриминируемые группы населения в Японии

Смотреть что такое "Дискретный сигнал" в других словарях:

    Дискретный сигнал - сигнал, имеющий конечное число значений. Обычно сигналы, передаваемые через дискретные каналы, имеют два или три значения. Использование сигналов с тремя значениями обеспечивает синхронизацию передачи. По английски: Discrete signal Синонимы:… … Финансовый словарь

    дискретный сигнал

    дискретный сигнал - Cигнал, информативный параметр которого может изменяться только прерывисто и иметь только конечное число значений в заданном диапазоне в течение определенного интервала времени. [Источник] EN discretely timed signal discrete signal a signal… … Справочник технического переводчика

    Дискретный сигнал - 13. Дискретный сигнал Сигнал, имеющий конечное число значений величин Источник …

    дискретный сигнал - diskretusis signalas statusas T sritis automatika atitikmenys: angl. sampled signal vok. abgetastetes Signal, n rus. дискретный сигнал, m pranc. signal échantillonné, m; signal discret, m … Automatikos terminų žodynas

    дискретный сигнал - Сигнал, описываемый дискретной функцией времени … Политехнический терминологический толковый словарь

    дискретный сигнал времени - diskretinamojo laiko signalas statusas T sritis radioelektronika atitikmenys: angl. discrete time signal vok. diskretes Zeitsignal, n rus. дискретный сигнал времени, m pranc. signal discret de temps, m … Radioelektronikos terminų žodynas

    Сигнал (техника) - Сигнал в теории информации и связи называется материальный носитель информации, используемый для передачи сообщений по системе связи. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым… … Википедия

    Дискретный - (от лат. discretus раздельный, прерывистый). Это прилагательное может употребляться в разных контекстах: В дискретной математике дискретным называется счётное множество, эта концепция также важна в комбинаторике и теории вероятностей. В общей… … Википедия

    дискретный - 4.2.6 дискретный: Относящийся к данным, которые состоят из отдельных элементов, таких как символы, или к физическим величинам, имеющим конечное число различных распознаваемых значений, а также к процессам и функциональным блокам, использующим эти … Словарь-справочник терминов нормативно-технической документации


Сигнал информационный - физический процесс, имеющий для человека или технического устройства информационное значение. Он может быть непрерывным (аналоговым) или дискретным

Термин “ «сигнал» очень часто отождествляют с понятиями “данные” (data) и “информация” (information). Действительно, эти понятия взаимосвязаны и не существуют одно без другого, но относятся к разным категориям.

Сигнал - это информационная функция, несущая сообщение о физических свойствах, состоянии или поведении какой-либо физической системы, объекта или среды, а целью обработки сигналов можно считать извлечение определенных информационных сведений, которые отображены в этих сигналах (кратко - полезная или целевая информация) и преобразование этих сведений в форму, удобную для восприятия и дальнейшего использования.

Передается информация в виде сигналов. Сигнал есть физический процесс, несущий в себе информацию. Сигнал может быть звуковым, световым, в виде почтового отправления и др

Сигнал является материальным носителем информации, которая передается от источника к потребителю. Он может быть дискретным и непрерывным (аналоговым)

Аналоговый сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений.

Аналоговые сигналы описываются непрерывными функциями времени, поэтому аналоговый сигнал иногда называют непрерывным сигналом. Аналоговым сигналам противопоставляются дискретные (квантованные, цифровые).

Примеры непрерывных пространств и соответствующих физических величин: (прямая: электрическое напряжение; окружность: положение ротора, колеса, шестерни, стрелки аналоговых часов, или фаза несущего сигнала; отрезок: положение поршня, рычага управления, жидкостного термометра или электрический сигнал, ограниченный по амплитуде различные многомерные пространства: цвет, квадратурно-модулированный сигнал.)

Свойства аналоговых сигналов в значительной мере являются противоположностью свойств квантованных или цифровых сигналов.



Отсутствие чётко отличимых друг от друга дискретных уровней сигнала приводит к невозможности применить для его описания понятие информации в том виде, как она понимается в цифровых технологиях. Содержащееся в одном отсчёте "количество информации" будет ограничено лишь динамическим диапазоном средства измерения.

Отсутствие избыточности. Из непрерывности пространства значений следует, что любая помеха, внесенная в сигнал, неотличима от самого сигнала и, следовательно, исходная амплитуда не может быть восстановлена. В действительности фильтрация возможна, например, частотными методами, если известна какая-либо дополнительная информация о свойствах этого сигнала (в частности, полоса частот).

Применение:

Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал, снимаемый с термопары, несет информацию об изменении температуры, сигнал с микрофона - о быстрых изменениях давления в звуковой волне, и т.п.

Дискретный сигнал слагается из счетного множества (т.е. такого множества, элементы которого можно пересчитать) элементов (говорят – информационных элементов). Например, дискретным является сигнал “кирпич”. Он состоит из следующих двух элементов (это синтаксическая характеристика данного сигнала): красного круга и белого прямоугольника внутри круга, расположенного горизонтально по центру. Именно в виде дискретного сигнала представлена та информация, которую сейчас осваивает читатель. Можно выделить следующие ее элементы: разделы (например, “Информация”), подразделы (например, “Свойства”), абзацы, предложения, отдельные фразы, слова и отдельные знаки (буквы, цифры, знаки препинания и т.д.). Этот пример показывает, что в зависимости от прагматики сигнала можно выделять разные информационные элементы. В самом деле, для лица, изучающего информатику по данному тексту, важны более крупные информационные элементы, такие как разделы, подразделы, отдельные абзацы. Они позволяют ему легче ориентироваться в структуре материала, лучше его усваивать и готовиться к экзамену. Для того, кто готовил данный методический материал, помимо указанных информационных элементов, важны также и более мелкие, например, отдельные предложения, с помощью которых излагается та или иная мысль и которые реализуют тот или иной способ доступности материала. Набор самых “мелких” элементов дискретного сигнала называется алфавитом, а сам дискретный сигнал называют также сообщением .

Дискретизация – это преобразование непрерывного сигнала в дискретный (цифровой).

Разница между дискретным и непрерывным представлением информации хорошо видна на примере часов. В электронных часах с цифровым циферблатом информация представляется дискретно – цифрами, каждая из которых четко отличается друг от друга. В механических часах со стрелочным циферблатом информация представляется непрерывно – положениями двух стрелок, причем два разных положения стрелки не всегда четко отличимы (особенно если на циферблате нет минутных делений).

Непрерывный сигнал – отражается некоторой физической величиной, изменяющейся в заданном интервале времени, например, тембром или силой звука. В виде непрерывного сигнала представлена настоящая информация для тех студентов – потребителей, которые посещают лекции по информатике и через звуковые волны (иначе говоря, голос лектора), носящие непрерывный характер, воспринимают материал.

Как мы увидим в дальнейшем, дискретный сигнал лучше поддается преобразованиям, поэтому имеет преимущества перед непрерывным. В то же время, в технических системах и в реальных процессах преобладает непрерывный сигнал. Это вынуждает разрабатывать способы преобразования непрерывного сигнала в дискретный.\

Для преобразования непрерывного сигнала в дискретный используется процедура, которая называется квантованием .

Цифровой сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений.

Дискретный цифровой сигнал сложнее передавать на большие расстояния, чем аналоговый сигнал, поэтому его предварительно модулируют на стороне передатчика, и демодулируют на стороне приёмника информации. Использование в цифровых системах алгоритмов проверки и восстановления цифровой информации позволяет существенно увеличить надёжность передачи информации.

Замечание. Следует иметь в виду, что реальный цифровой сигнал по своей физической природе является аналоговым. Из-за шумов и изменения параметров линий передачи он имеет флуктуации по амплитуде, фазе/частоте (джиттер), поляризации. Но этот аналоговый сигнал (импульсный и дискретный) наделяется свойствами числа. В результате для его обработки становится возможным использование численных методов (компьютерная обработка).

В технических отраслях знаний термин сигнал –

1) техническое средство, для передачи обращения и использования информации.

2) физический процесс отображающих информационное сообщение (изменение какого либо параметра носителя информации)

3) смысловое содержание определённого физического состояния или процесса.

Сигнал – сведенья/ сообщения/ информация, о каких либо процессах / состояниях или физических величинах объектов материального мира, выраженных в форме удобной для передачи, обработки, хранения и использования этих сведений.

С математической точки зрения сигнал представляет собой функцию, то есть зависимость одной величины от другой.

    Цель обработки сигналов

Целью обработки сигналов считают изучение определённых информационных сведений, которые отображены в виде целевой информации и преобразования этих сведений в форму удобную для дальнейшего использования.

    Цель анализа сигналов

Под "анализом" сигналов (analysis) имеется в виду не только их чисто математические преобразования, но и получение на основе этих преобразований выводов о специфических особенностях соответствующих процессов и объектов. Целями анализа сигналов обычно являются: - Определение или оценка числовых параметров сигналов (энергия, средняя мощность, среднее квадратическое значение и пр.). - Разложение сигналов на элементарные составляющие для сравнения свойств различных сигналов. - Сравнение степени близости, "похожести", "родственности" различных сигналов, в том числе с определенными количественными оценками.

    Регистрация сигналов

С понятием сигнала неразрывно связан термин регистрации сигналов, использование которого также широко и неоднозначно, как и самого термина сигнал. В наиболее общем смысле под этим термином можно понимать операцию выделения сигнала и его преобразования в форму, удобную для дальнейшего использования, обработки и восприятия . Так, при получении информации о физических свойствах каких-либо объектов, под регистрацией сигнала понимают процесс измерения физических свойств объекта и перенос результатов измерения на материальный носитель сигнала или непосредственное энергетическое преобразование каких-либо свойств объекта в информационные параметры материального носителя сигнала (как правило - электрического). Но так же широко термин регистрации сигналов используют и для процессов выделения уже сформированных сигналов, несущих определенную информацию, из суммы других сигналов (радиосвязь, телеметрия и пр.), и для процессов фиксирования сигналов на носителях долговременной памяти, и для многих других процессов, связанных с обработкой сигналов.

    Внутренние и внешние источники шумов

Шумы, как правило, имеют стохастический (случайный) характер. К помехам относят искажения полезных сигналов при влиянии различных дестабилизирующих факторов (электрические наводки, вибрация, виды шумов и помех различают по источникам их возникновения, энергетическому спектру). По характеру воздействия на сигнал источники шумов и помех бывают внутренние и внешние.

Внутренние помехи присущи физической природе источников и детекторов сигналов, а также материальных носителей. Внешние источники помех бывают искусственного и естественного происхождения. К искусственным шумам относят индустриальные помехи и помехи от работающего оборудования.

    Что дает математическая модель сигнала

Теория анализа и обработки физических данных базируется на математических моделях соответствующих физических полей и физических процессов на основе которых создаются математические модели сигналов они дают возможность обобщённо абстрагируясь от физической природы судить о свойствах сигналов, предсказывать изменения сигналов в различных условиях, кроме того появляется возможность игнорировать большое число второстепенных признаков. Знания математических моделей даёт возможность классифицировать сигналы по различным признакам (например, сигналы делят на детерминированные и стохастические).

    Классификация сигналов

Классификация сигналов осуществляется на основании существенных признаков соответствующих математических моделей сигналов. Все сигналы разделяют на две крупных группы: детерминированные и случайные.

    Гармонические сигналы

Гармонические сигналы (синусоидальные), описываются следующими формулами:

s(t) = A×sin (2f о t+f) = A×sin ( о t+f), s(t) = A×cos( о t+), (1.1.1)

Рис. 5. Гармонический сигнал и спектр его амплитуд

где А, f o ,  o , f - постоянные величины, которые могут исполнять роль информационных параметров сигнала: А - амплитуда сигнала, f о - циклическая частота в герцах,  о = 2f о - угловая частота в радианах,  и f- начальные фазовые углы в радианах. Период одного колебания T = 1/f о = 2/ o . При j = f-p/2 синусные и косинусные функции описывают один и тот же сигнал. Частотный спектр сигнала представлен амплитудным и начальным фазовым значением частоты f о (при t = 0).

    Полигармонические сигналы

Полигармонические сигналы составляют наиболее широко распространенную группу периодических сигналов и описываются суммой гармонических колебаний:

s(t) =A n sin (2f n t+ n) ≡ A n sin (2B n f p t+ n), B n ∈ I, (1.1.2)

или непосредственно функцией s(t) = y(t ± kT p), k = 1,2,3,..., где Т р - период одного полного колебания сигнала y(t), заданного на одном периоде. Значение f p =1/T p называют фундаментальной частотой колебаний.

Рис. 6. Модель сигнала Рис. 7. Спектр сигнала

Полигармонические сигналы представляют собой сумму определенной постоянной составляющей (f о =0) и произвольного (в пределе - бесконечного) числа гармонических составляющих с произвольными значениями амплитуд A n и фаз j n , с частотами, кратными фундаментальной частоте f p . Другими словами, на периоде фундаментальной частоты f p , которая равна или кратно меньше минимальной частоты гармоник, укладывается кратное число периодов всех гармоник, что и создает периодичность повторения сигнала. Частотный спектр полигармонических сигналов дискретен, в связи с чем второе распространенное математическое представление сигналов - в виде спектров (рядов Фурье).

    Почти периодические сигнала

Почти периодические сигналы близки по своей форме к полигармоническим. Они также представляют собой сумму двух и более гармонических сигналов (в пределе – до бесконечности), но не с кратными, а с произвольными частотами, отношения которых (хотя бы двух частот минимум) не относятся к рациональным числам, вследствие чего фундаментальный период суммарных колебаний бесконечно велик рис. 9.

Рис. 9. Почти периодический сигнал и спектр его амплитуд

    Аналоговые сигналы

Аналоговый сигнал (analog signal) является непрерывной или кусочно-непрерывной функцией y=x(t) непрерывного аргумента, т.е. как сама функция, так и ее аргумент могут принимать любые значения в пределах некоторого интервала y 1 £y £ y 2 , t 1 £t £ t 2 . Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от -¥ до +¥. Множество возможных значений сигнала образует континуум - непрерывное пространство, в котором любая сигнальная точка может быть определена с точностью до бесконечности.

Источниками аналоговых сигналов являются физические процессы и явления в качестве примера аналоговых сигналов чаще всего приводят изменения напряжённости электрического, магнитного и электромагнитного поля во времени.

    Дискретные сигналы

Дискретный сигнал

Рис. 13. Дискретный сигнал

Дискретный сигнал (discrete signal) – рис. 13 по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью отсчетов (samples) y(nt), где y 1 £y £ y 2 , t - интервал между отсчетами (интервал или шаг дискретизации, sample time), n = 0, 1, 2,...,N. Величина, обратная шагу дискретизации: f = 1/t, называется частотой дискретизации (sampling frequency). Если дискретный сигнал получен дискретизацией (sampling) аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала.

    Цифровой сигнал

Цифровой сигнал (digital signal) квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией y n = Q k , где Q k - функция квантования с числом уровней квантования k, при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде дискретного ряда (discrete series) числовых данных - числового массива по последовательным значениям аргумента при t = const, но в общем случае сигнал может задаваться и в виде таблицы для произвольных значений аргумента.

Рис. 14. Цифровой сигнал

По существу, цифровой сигнал по своим значениям (отсчетам) является формализованной разновидностью дискретного сигнала при округлении отсчетов последнего до определенного количества цифр, как это показано на рис. 14. Цифровой сигнал конечен по множеству своих значений. Процесс преобразования бесконечных по значениям аналоговых отсчетов в конечное число цифровых значений называется квантованием по уровню, а возникающие при квантовании ошибки округления отсчетов (отбрасываемые значения) – шумами (noise) или ошибками (error) квантования (quantization).

    Теорема Котельникова-Шеннона

Физический смысл теоремы Котельникова-Шеннона : если максимальная частота в сигнале равна f, то достаточно на одном периоде этой гармоники иметь минимум 2 отсчета с известными значениями t 1 и t 2 , как появляется возможность записать систему из двух уравнений (y 1 =a cos 2ft 1 и y 2 =a cos 2ft 2) и решить систему относительно 2-х неизвестных – амплитуды а и частоты f этой гармоники. Следовательно, частота дискретизации должна быть в 2 раза больше максимальной частоты f в сигнале. Для более низких частот это условие будет выполнено автоматически.

На практике эта теорема широко используется например в преобразовании аудиозаписей Диапазон воспринимаемых человеком частот от 20гц – до 20 кгц поэтому для преобразования без потерь необходимо выполнять дискретизацию с частотой более 40 кгц поэтому cd dvd mp3 оцифровывают с частотой 44.1 кгц. Операция квантования (аналогово-цифровое преобразование АЦП ADC) заключается в преобразовании дискретного сигнала в цифровой кодированный в двоичной сист. счисления

    Понятие системы

Система любого назначения всегда имеет вход на который подаётся входной сигнал или входное воздействие (в общем случае многомерное) и выход с которого снимается обработанный выходной сигнал. Если устройство системы и внутренние операции преобразований принципиального значения не имеют, то система в целом может восприниматься как чёрный ящик в формализованном виде.

Формализованная система представляет собой определенный системный оператор (алгоритм) преобразования входного сигнала – воздействия s(t), в сигнал на выходе системы y(t) – отклик или выходную реакцию системы. Символическое обозначение операции преобразования (трансформации):

Для детерминированных входных сигналов соотношение между входными и выходными сигналами однозначно задаётся системным оператором.

    Системный опреатор t

Системный оператор T - это правило (набор правил, алгоритм) преобразования сигнала s(t) в сигнал y(t). Для общеизвестных операций преобразования сигналов применяются также расширенные символы операторов трансформации, где вторым символом и специальными индексами обозначается конкретный вид операции (как, например, TF - преобразование Фурье, TF -1 - обратное преобразование Фурье).

    Линейные и не линейные системы

В случае реализации на входе системы случайного входного сигнала также существует однозначное соответствие процессов на входе и выходе, однако при этом происходит изменение статистических характеристик выходного сигнала. Любые преобразования сигналов сопровождаются изменением их спектра и по характеру этих изменений их делят на 2 вида линейные и нелинейные

К нелинейным относят при котором в составе спектра сигналов появляются новые гармонические составляющие, а при линейных изменениях сигналов изменяются амплитуды составляющего спектра. Оба вида изменений могут происходить с сохранением и искажением полезной информации. Линейные системы составляют основной класс систем обработки сигналов.

Термин линейность – означает, что система преобразования сигналов должна иметь произвольную, но обязательно линейную зависимость между входным и выходным сигналами.

Система считается линейной если в пределах установленной области входных и выходных сигналов её реакция на входные сигналы аддитивна(выполняется принцип суперпозиции сигналов) и однородна (выполняется принцип пропорционального подобия).

    Принцип аддитивности

Принцип аддитивности требует, чтобы реакция на сумму двух входных сигналов была равна сумме реакций на каждый сигнал в отдельности:

T = T+T.

    Принцип однородности

Принцип однородности или пропорционального подобия требует сохранения однозначности масштаба преобразования при любой амплитуде входного сигнала:

T= c  T.

    Основные системные операции

К базовым линейным операциям, из которых могут быть сформированы любые линейные операторы преобразования, относятся операции скалярного умножения, сдвига и сложения сигналов:

y(t) = b  x(t), y(t) = x(t-t), y(t) = a(t)+b(t).

Рис. 11.1.1. Графика системных операций

Операции сложения и умножения являются линейными только для дискретных и аналоговых сигналов.

Для систем, с размерностью 2 и более существует также еще одна базовая операция, которая называется операцией пространственного маскирования , которая может рассматриваться как обобщение скалярного умножения. Так, для двумерных систем:

z(x,y) = c(x,y)u(x,y),

где u(x,y) – двумерный входной сигнал, c(x,y) – пространственная маска постоянных (весовых) коэффициентов. Пространственное маскирование представляет собой поэлементное произведение значений сигнала с коэффициентами маски.

    Дифференциальные уравнения как универсальный инструмент изучения сигналов

Дифференциальные уравнения представляют собой универсальный инструмент задания определенной связи между сигналами входа и выхода, как в одномерных, так и в многомерных системах, и могут описывать систему, как в режиме реального времени, так и апостериорно. Так, в аналоговой одномерной линейной системе такая связь обычно выражается линейным дифференциальным уравнением

a m = b n . (11.1.1)

При нормировке к а о = 1, отсюда следует

y(t) =b n –a m . (11.1.1")

По существу, правой частью этого выражения в самой общей математической форме отображается содержание операции преобразования входного сигнала, т.е. задается оператор трансформации входного сигнала в выходной. Для однозначного решения уравнений (11.1.1) кроме входного сигнала s(t) должны задаваться определенные начальные условия, например, значения решения y(0) и его производной y"(0) по времени в начальный момент времени.

Аналогичная связь в цифровой системе описывается разностными уравнениями

a m y((k-m)t) =b n s((k-n)t). (11.1.2)

y(kt) =b n s((k-n)t) –a m y((k-m)t). (11.1.2")

Последнее уравнение можно рассматривать как алгоритм последовательного вычисления значений y(kt), k = 0, 1, 2, …, по значениям входного сигнала s(kt) и предыдущих вычисленных значений y(kt) при известных значениях коэффициентов a m , b n и с учетом задания начальных условий - значений s(kt) и y(kt) при k < 0. Интервал дискретизации в цифровых последовательностях отсчетов обычно принимается равным 1, т.к. выполняет только роль масштабного множителя.

    Рекурсивные системы

На практике стремятся упростить системы взаимозависимых моделей и привести их к так называемому рекурсивному виду. Для этого сначала выбирают эндогенную переменную (внутренний показатель), зависящую только от экзогенных переменных (внешних факторов), обозначают ее у 1 . Затем выбирается внутренний показатель, который зависит только от внешних факторов и от y 1 , и т.д.; таким образом, каждый последующий показатель зависит только от внешних факторов и от внутренних предыдущих. Такие системы называются рекурсивными. Параметры первого уравнения рекурсивных систем находят методом наименьших квадратов, их подставляют во второе уравнение и опять применяется метод наименьших квадратов, и т.д.

    Сети доступа и магистральные сети

Магистральные территориальные сети (backbone wide-area networks) используются для образования одноранговых связей между крупными локальными сетями, принадлежащими большим подразделениям предприятия. Магистральные территориальные сети должны обеспечивать высокую пропускную способность, так как на магистрали объединяются потоки большого количества подсетей. Кроме того, магистральные сети должны быть постоянно доступны, то есть обеспечивать очень высокий коэффициентом готовности, так как по ним передается трафик многих критически важных для успешной работы предприятия приложений (business-critical applications). Ввиду особой важности магистральных средств им может «прощаться» высокая стоимость. Так как у предприятия обычно имеется не так уж много крупных сетей, то к магистральным сетям не предъявляются требования поддержания разветвленной инфраструктуры доступа.

Под сетями доступа понимаются территориальные сети, необходимые для связи небольших локальных сетей и отдельных удаленных компьютеров с центральной локальной сетью предприятия. Если организации магистральных связей при создании корпоративной сети всегда уделялось большое внимание, то организация удаленного доступа сотрудников предприятия перешла в разряд стратегически важных вопросов только в последнее время. Быстрый доступ к корпоративной информации из любой географической точки определяет для многих видов деятельности предприятия качество принятия решений его сотрудниками. Важность этого фактора растет с увеличением числа сотрудников, работающих на дому (telecommuters - телекоммьютеров), часто находящихся в командировках, и с ростом количества небольших филиалов предприятий, находящихся в различных городах и, может быть, разных странах.

    Мультеплексирование

Мультиплексирование – использование одного канала связи для передачи данных нескольких абонентов. Линии (канал) связи состоят из физической среды, по которой передаются информационные сигналы аппаратуры передачи данных.

    Разновидности каналов связи

    симплексный - при связи приемника с передатчиком по одному каналу, с однонаправленной передачей информации (например, в телевизионной и радиовещательной сетях);

    полудуплексный - когда два узла связи соединены одним каналом, по которому информация передается попеременно то в одном направлении, то в противоположном (в информационно-справочных и запросно-ответных системах);

    дуплексный - позволяет передавать данные одновременно в двух направлениях за счет использования четырехпроводной линии связи (два провода для передачи, два других – для приема данных), или двух полос частот.

    Характеристики линий связи

Основные характеристики канала связи – пропускная способность и достоверность передачи данных

Пропускная способность канала (количество информации, передаваемое в ед. времени) оценивается числом бит данных, передаваемых по каналу в секунду БИТ/ сек

Достоверность передачи данных оценивается по интенсивности битовых ошибок (BER) определяется вероятностью искажения передаваемого бита данных. Величина интенсивности битовых ошибок для каналов связи без дополнительной защиты от ошибок составляет 10 -4 до 10 -6

    Основные характеристики кабелей

В компьютерных сетях применяются кабели соответствующие международным стандартам ISO 11801. В этих стандартах регламентированы след основные характеристики кабелей:

– затухание (ДБ/м);

­­­­­– устойчивость кабеля к внутренним источникам помех (если в кабеле более одной пары проводов);

Импеданс (волновое сопротивление) - эффективное входное сопротивление кабеля для переменного тока;

Уровень внешнего ЭМ излучения в проводнике характеризует помехозащищённость кабеля.

Степень ослабления внешних помех от различных источников. Наиболее широкое применение находят след виды кабелей – неэкранированная витая пара / экранированная витая пара / коаксиальный кабель / оптоволокно.

Неэкранированная-

Экранированная – лучше неэкранированной

Кабель (RG8 и RG11 - толстый коаксиальный кабель имеет волновое сопротивление 8 Ом и внешний диаметр 2.5 см)

Кабели RG58 & RG59 – тонкие коаксиальные кабели с волновым сопротивлением 75 Ом

    Среды передачи данных (проводные и беспроводные)

В зависимости от физической среды передачи данных линии связи можно разделить:

    проводные линии связи без изолирующих и экранирующих оплеток;

    кабельные, где для передачи сигналов используются такие линии связи как кабели "витая пара", коаксиальные кабели или оптоволоконные кабели;

    беспроводные (радиоканалы наземной и спутниковой связи), использующие для передачи сигналов электромагнитные волны, которые распространяются по эфиру.

Лекция № 1

«Аналоговые, дискретные и цифровые сигналы.»

Двумя самыми фундаментальными понятиями в данном курсе являются понятия сигнала и системы.

Под сигналом понимается физический процесс (например, изменяющееся во времени напряжение), отображающий некоторую информацию или сообщение. Математически сигнал описывается функцией определенного типа.

Одномерные сигналы описываются вещественной или комплексной функцией , определенной на интервале вещественной оси (обычно – оси времени) . Примером одномерного сигнала может служить электрический ток в проводе микрофона, несущий информацию о воспринимаемом звуке.

Сигнал x (t ) называется ограниченным если существует положительное число A , такое, что для любого t .

Энергией сигнала x (t ) называется величина

,(1.1)

Если , то говорят, что сигнал x (t ) имеет ограниченную энергию. Сигналы с ограниченной энергией обладают свойством

Если сигнал имеет ограниченную энергию, то он ограничен.

Мощностью сигнала x (t ) называется величина

,(1.2)

Если , то говорят, что сигнал x (t ) имеет ограниченную мощность. Сигналы с ограниченной мощностьюмогут принимать ненулевые значения сколь угодно долго.

В реальной природе сигналов с неограниченной энергией и мощностью не существует. Большинство сигналов, существующих в реальной природе являются аналоговыми.

Аналоговые сигналы описываются непрерывной (или кусочно-непрерывной) функцией , причем сама функция и аргумент t могут принимать любые значения на некоторых интервалах . На рис. 1.1 а представлен пример аналогового сигнала, изменяющегося во времени по закону , где . Другой пример аналогового сигнала, показанный на рис 1.1б, изменяется во времени по закону .



Важным примером аналогового сигнала является сигнал, описываемый т.н. «единичной функцией» , которая описывается выражением

(1.3),

где.

График единичной функции представлен на рис.1.2.


Функцию 1(t ) можно рассматривать как предел семейства непрерывных функций 1(a , t ) при изменении параметра этого семейства a .

(1.4).

Семейство графиков 1(a , t ) при различных значениях a представлено на рис.1.3.


В этом случае функцию 1(t ) можно записать как

(1.5).

Обозначим производную от 1(a , t ) как d (a , t ).

(1.6).

Семейство графиков d (a , t ) представлено на рис.1.4.



Площадь под кривой d (a , t ) не зависит от a и всегда равна 1. Действительно

(1.7).

Функция

(1.8)

называется импульсной функцией Дирака или d - функцией. Значения d - функции равны нулю во всех точках, кроме t =0. При t =0 d -функция равна бесконечности, но так, что площадь под кривой d - функции равна 1. На рис.1.5 представлен график функции d (t ) и d (t - t ).


Отметим некоторые свойства d - функции:

1. (1.9).

Это следует из того, что только при t = t .

2. (1.10) .

В интеграле бесконечные пределы можно заменить конечными, но так, чтобы аргумент функции d (t - t ) обращался в нуль внутри этих пределов.

(1.11).

3. Преобразование Лапласа d -функции

(1.12).

В частности , при t =0

(1.13).

4. Преобразование Фурье d - функции. При p = j v из 1.13 получим

(1.14)

При t =0

(1.15),

т.е. спектр d - функции равен 1.

Аналоговый сигнал f (t ) называется периодическим если существует действительное число T , такое, что f (t + T )= f (t ) для любых t . При этом T называется периодом сигнала. Примером периодического сигнала может служить сигнал, представленный на рис.1.2а, причем T =1/ f . Другим примером периодического сигнала может служить последовательность d - функций, описываемая уравнением

(1.16)

график которой представлен на рис.1.6.


Дискретные сигналы отличаются от аналоговых тем, что их значения известны лишь в дискретные моменты времени.Дискретные сигналы описываются решетчатыми функциями – последовательностями – x д (nT ), где T = const – интервал (период) дискретизации, n =0,1,2,…. Сама функция x д (nT ) может в дискретные моменты принимать произвольные значения на некотором интервале. Эти значения функции называются выборками или отсчетами функции. Другим обозначением решетчатой функции x (nT ) является x (n ) или x n . На рис. 1.7а и 1.7б представлены примеры решетчатых функций и . Последовательность x (n ) может быть конечной или бесконечной, в зависимости от интервала определения функции.



Процесс преобразования аналогового сигнала в дискретный называется временная дискретизация. Математически процесс временной дискретизации можно описать как модуляцию входным аналоговым сигналом последовательности d - функций d T (t )

(1.17)

Процесс восстановления аналогового сигнала из дискретного называется временная экстраполяция.

Для дискретных последовательностей также вводятся понятия энергии и мощности. Энергией последовательности x (n ) называется величина

,(1.18)

Мощностью последовательности x (n ) называется величина

,(1.19)

Для дискретных последовательностей сохраняются те же закономерности, касающиеся ограничения мощности и энергии, что и для непрерывных сигналов.

Периодической называют последовательность x (nT ), удовлетворяющую условию x (nT )= x (nT + mNT ), где m и N – целые числа. При этом N называют периодом последовательности. Периодическую последовательность достаточно задать на интервале периода, например при .

Цифровые сигналы представляют собой дискретные сигналы, которые в дискретные моменты времени могут принимать лишь конечный ряд дискретных значений – уровней квантования. Процесс преобразования дискретного сигнала в цифровой называется квантованием по уровню. Цифровые сигналы описываются квантованными решетчатыми функциями x ц (nT ). Примеры цифровых сигналов представлены на рис. 1.8а и 1.8б.



Связь между решетчатой функцией x д (nT ) и квантованной решетчатой функцией x ц (nT ) определяется нелинейной функцией квантования x ц (nT )= F k (x д (nT )). Каждый из уровней квантования кодируется числом. Обычно для эих целей используется двоичное кодирование, так, что квантованные отсчеты x ц (nT ) кодируются двоичными числами с n разрядами. Число уровней квантования N и наименьшее число двоичных разрядов m , с помощью которых можно закодировать все эти уровни, связаны соотношением

,(1.20)

где int (x ) – наименьшее целое число, не меньшее x .

Т.о., квантование дискретных сигналов состоит в представлении отсчета сигнала x д (nT ) с помощью двоичного числа, содержащего m разрядов. В результате квантования отсчет представляется с ошибкой, которая называется ошибкой квантования

.(1.21)

Шаг квантования Q определяется весом младшего двоичного разряда результирующего числа

.(1.22)

Основными способами квантования являются усечение и округление.

Усечение до m -разрядного двоичного числа состоит в отбрасывании всех младших разрядов числа кроме n старших. При этом ошибка усечения . Для положительных чисел прилюбом способе кодирования . Для отрицательных чисел при использовании прямого кода ошибка усечения неотрицательна , а при использовании дополнительного кода эта ошибка неположительна . Таким образом, во всех случаях абсолютнок значение ошибки усечения не превосходит шага квантования:

.(1.23)

График функции усечения дополнительного кода представлен на рис.1.9, а прямого кода – на рис.1.10.




Округление отличается от усечения тем, что кроме отбрасывания младших разрядов числа модифицируется и m -й (младший неотбрасываемый ) разряд числа. Его модификация заключается в том, что он либо остается неизменным или увеличивается на единицу в зависимости от того, больше или меньше отбрасываемая часть числа величины . Округление можно практически выполнить путем прибавления единицы к (m +1) – муразряду числа с последующим усечением полученного числа до n разрядов. Ошибка округления при всех способах кодирования лежит в пределах и, следовательно,

.(1.24)

График функции округления представлен на рис. 1.11.



Рассмотрение и использование различных сигналов предполагает возможность измерения значения этих сигналов в заданные моменты времени. Естественно возникает вопрос о достоверности (или наоборот, неопределенности) измерения значения сигналов. Этими вопросами занимается теория информации , основоположником которой является К.Шеннон. Основная идея теории информации состоит в том, что с информацией можно обращаться почти также, как с такими физическими величинами как масса и энергия.

Точность измерений мы обычно характеризуем числовыми значениями полученных при измерении или предполагаемых погрешностей. При этом используются понятия абсолютной и относительной погрешностей. Если измерительное устройство имеет диапазон измерения от x 1 до x 2 , с абсолютной погрешностью ± D , не зависящей от текущего значения x измеряемой величины, то получив результат измерения в виде x n мы записываем его как x n ± D и характеризуем относительной погрешностью .

Рассмотрение этих же самых действий с позиции теории информации носит несколько иной характер, отличающийся тем, что всем перечисленным понятиям придается вероятностный, статистический смысл, а итог проведенного измерения истолковывается как сокращение области неопределенности измеряемой величины. В теории информации тот факт, что измерительный прибор имеет диапазон измерения от x 1 до x 2 означает , что при использовании этого прибора могут бытьполучены показания только в пределах от x 1 до x 2 . Другими словами, вероятность получения отсчетов, меньших x 1 или больших x 2 , равна 0. Вероятность же получения отсчетв где-то в пределах от x 1 до x 2 равна 1.

Если предположить, что все результаты измерения в пределах от x 1 до x 2 равновероятны, т.е. плотность распределения вероятности для различных значений измеряемой величины вдоль всей шкалы прибора одинакова, то с точки зрения теории информации наше знание о значении измеряемой величины до измерения может быть представлено графиком распределения плотности вероятности p (x ).

Поскольку полная вероятность получить отсчет где-то в пределах от x 1 до x 2 равна 1, то под кривой должна быть заключена площадь, равная 1, а это значит, что

(1.25).

После проведения измерения получаем показание прибора, равное x n . Однако, вследствие погрешности прибора, равной ± D , мы не можем утверждать, что измеряемая величина точно равна x n . Поэтому мы записывает результат в виде x n ± D . Это означает, что действительное значение измеряемой величины x лежит где-то в пределах от x n - D до x n + D . С точки зрения теории информации результат нашего измерения состоит лишь в том, что область неопределенности сократилась до величины 2 D и характеризуется намного большей плотностью ве5роятности

(1.26).

Получение каой-либо информации об интересующей нас величине заключается, таким образом, в уменьшении неопределенности ее значения.

В качестве характеристики неопределенности значения некоторой случайной величины К.Шеннон ввел понятие энтропии величины x , которая вычисляется как

(1.27).

Единицы измерения энтропии зависят от выбора основания логарифма в приведенных выражениях. При использовании десятичных логарифмов энтропия измеряется в т.н. десятичных единицах или дитах . В случае же использования двоичных логарифмов энтропия выражается в двоичных единицах или битах .

В большинстве случаев неопределенность знания о значении сигнала определяется действием помех или шумов. Дезинформационное действие шума при передаче сигнала определяется энтропией шума как случайной величины. Если шум в вероятностном смысле не зависит от передаваемого сигнала, то независимо от статистики сигнала шуму можно приписывать определенную величину энтропии, которая и характеризует его дезинформационное действие. При этом анализ системы можно проводить раздельно для шума и сигнала, что резко упрощает решение этой задачи.

Теорема Шеннона о количестве информации . Если на вход канала передачи информации подается сигнал с энтропией H ( x ), а шум в канале имеет энтропию H( D ) , то количество информации на выходе канала определяется как

(1.28).

Если кроме основного канала передачи сигнала имеется дополнительный канал, то для исправления ошибок, возникших от шума с энтропией H (D ), по этому каналу необходтмо передать дополнительное количество информации, не меньшее чем

(1.29).

Эти данные можно так закодировать, что будет возможно скорректировать все ошибки, вызванные шумом, за исключением произвольно малой доли этих ошибок.

В нашем случае, для равномерно распределенной случайной величины, энтропия определяется как

(1.30),

а оставшаяся или условная энтропия результата измерения после получения отсчета x n равна

(1.31).

Отсюда полученное количество информации равное разности исходной и оставшейся энтропии равно

(1.32).

При анализе систем с цифровыми сигналами ошибки квантования рассматриваются как стационарный случайный процесс с равномерным распределением вероятности по диапазону распределения ошибки квантования. На рис. 1.12а, б и в приведены плотности вероятности ошибки квантования при округлении дополнительного кода, прямого кода и усечении соответственно.



Очевидно, что квантование является нелинейной операцией. Однако, при анализе используется линейная модель квантования сигналов, представленная на рис. 1.13.

m – разрядный цифровой сигнал, e (nT ) – ошибка квантования.

Вероятностные оценки ошибок квантования делаются с помощью вычисления математического ожидания

(1.33)

и дисперсии

(1.34),

где p e – плотность вероятности ошибки. Для случаев округления и усечения будем иметь

(1.35),

(1.36).

Временная дискретизация и квантование по уровню сигналов являются неотъемлемыми особенностями всех микропроцессорных систем управления, определяемыми ограниченным быстродействием и конечной разрядностью используемых микропроцессоров.

Любая система цифровой обработки сигналов независимо от ее сложности содержит цифровое вычислительное устройство - универсальную цифровую вычислительную машину, микропроцессор или специально разработанное для решения конкретной задачи вычислительное устройство. Сигнал, поступающий на вход вычислительного устройства, должен быть преобразован к виду, пригодному для обработки на ЭЦВМ. Он должен иметь вид последовательности чисел, представленных в коде машины.

В некоторых случаях задача представления входного сигнала в цифровой форме решается сравнительно просто. Например, если нужно передать словесный текст, то каждому символу (букве) этого текста нужно поставить в соответствие некоторое число и, таким образом, представить передаваемый сигнал в виде числовой последовательности. Легкость решения задачи в этом случае объясняется тем, что словесный текст по своей природе дискретен.

Однако большинство сигналов, с которыми приходится иметь дело в радиотехнике, являются непрерывными. Это связано с тем, что сигнал является отображением некоторого физического процесса, а почти все физические процессы непрерывны по своей природе.

Рассмотрим процесс дискретизации непрерывного сигнала на конкретном примере. Допустим, на борту некоторого космического аппарата производится измерение температуры воздуха; результаты измерения должны передаваться на Землю в центр обработки данных. Температура

Рис. 1.1. Виды сигналов: а - непрерывный (континуальный) сигнал; 6 - дискретный сигнал; в - АИМ-колебание; г - цифровой сигнал

воздуха измеряется непрерывно; показания датчика температуры также являются непрерывной функцией времени (рис. 1.1, а). Но температура изменяется медленно, достаточно передавать ее значения один раз в минуту. Кроме того, нет необходимости измерять ее с точностью выше чем 0,1 градуса. Таким образом, вместо непрерывной функции можно с интервалом в 1 мин передавать последовательность числовых значений (рис. 1.1, г), а в промежутках между этими значениями можно передавать сведения о давлении, влажности воздуха и другую научную информацию.

Рассмотренный пример показывает, что процесс дискретизации непрерывных сигналов состоит из двух этапов: дискретизации по времени и дискретизации по уровню (квантования). Сигнал, дискретизированный только по времени, называют дискретным; он еще не пригоден для обработки в цифровом устройстве. Дискретный сигнал представляет собой последовательность, элементы которой в точности равны соответствующим значениям исходного непрерывного сигнала (рис. 1.1, б). Примером дискретного сигнала может быть последовательность импульсов с изменяющейся амплитудой - амплитудно-импульсно-модулированное колебание (рис. 1.1, в). Аналитически такой дискретный сигнал описывается выражением

где исходный непрерывный сигнал; единичный импульс АИМ-колебания.

Если уменьшать длительность импульса сохраняя его площадь неизменной, то в пределе функция стремится к -функции. Тогда выражение для дискретного сигнала можно представить в виде

Для преобразования аналогового сигнала в цифровой после дискретизации по времени должна следовать дискретизация по уровню (квантование). Необходимость квантования вызвана тем, что любое вычислительное устройство может оперировать только числами, имеющими конечное число разрядов. Таким образом, квантование представляет собой округление передаваемых значений с заданной точностью. Так в рассмотренном примере производится округление значений температуры до трех значащих цифр (рис. 1.1, г). В других случаях число разрядов передаваемых значений сигнала может быть иным. Сигнал, дискретизированный и по времени, и по уровню, называется цифровым.

Правильный выбор интервалов дискретизации по времени и по уровню очень важен при разработке цифровых систем обработки сигналов. Чем меньше интервал дискретизации, тем точнее дискретизированный сигнал соответствует исходному непрерывному. Однако при уменьшении интервала дискретизации по времени возрастает число отсчетов, и для сохранения общего времени обработки сигнала неизменным приходится увеличивать скорость обработки, что не всегда возможно. При уменьшении интервала квантования требуется больше разрядов для описания сигнала, вследствие чего цифровой фильтр становится более сложным и громоздким.