IOPS быстрый расчет СХД для виртуальной инфраструктуры. Внутренняя поддержка файловой системы

По нашим наблюдениям, оценка производительности СХД в IOps не даёт точного представления о производительности этой СХД под нагрузкой в задачах 1С и мы настоятельно рекомендуем не использовать IOps для расчета оборудования.

Наоборот, такая оценка может сформировать ложное представление о высокой производительности дисковой подсистемы, в то время как при эксплуатации в продуктивных условиях может выясниться недостаточная мощность СХД.

К примеру, можете ли Вы сказать, что конкретно делает «операция» из метрики IOps? Какого размера данные читаются/пишутся? Корректно ли сравнивать IOps для обычных жестких дисков и SSD? Как учитывают методики подсчета IOps замедления скорости на SSD по мере «износа» или когда на SSD мало свободного места? Можете сказать чем отличаются Raw IOPS и Functional IOPS?

Примечание. Total Raw IOPS = Disk Speed IOPS * Number of disks
Functional IOPS =(((Total Raw IOPS×Write %))/(RAID Penalty))+(Total Raw IOPS×Read %)

Уверены ли Вы что разные программы измерения иопс Вам дадут одинаковые результаты?

Программы для измерения IOPS

IOmeter - тест IOPS
IOzone - тест IOPS
FIO - тест IOPS
CrystalDiskMark - тест IOPS
SQLIO - набор тестов для расчета производительности (IOPS, MB, Latency) под сервера БД
wmarow - калькулятор RAID групп по производительности IOPS

Или еще скажем точно ли методика подсчета IOps учитывает время отклика с диска и пропускную способность?

Чтобы понять почему не все просто, нужно рассмотреть простой пример и аналогию.
По дороге следует переместить из А в Б большое количество человек. Возможно два варианта: мы можем перевозить их в их личных автомобилях или же усадить в автобусы. Пропускная способность дороги конечно же будет выше в случае перевозки людей автобусами, то есть «большими блоками». Однако методы общественного транспорта обычно вступают в конфликт с индивидуальными целями и маршрутами. Хорошо если в Б у нас огромный завод, на который устремлен основной поток из А. Можно погрузить все «байты» в один большой пакет-автобус на входе, и выгрузить его на остановке у завода, куда собственно и направляются все наши «байты».
Однако если наши байты не едут на завод, а разъезжаются по индивидуальным и независимым делам-«операциям», каждый имея индивидуальный маршрут, то доставка их «автобусом»-большим пакетом приведет напротив к большим потерям времени. В этом случае транспортировка индивидуальными автомобилями будет более выгодна. Однако общий пропускной объем дороги заполненной индивидуальными «пакетами»-авомобилями везущими по нескольку байт каждый, разумеется будет ниже, чем при перевозке большим пакетом-«автобусом».
Таким образом увеличение пропускной способности в MB/s за счет укрупнения пакетов приводит к снижению IOPS, и наоборот , рост операций в секунду «доставленных к цели пассажиров» нашей дороги-интерфейса, запруженной автомобилями, приводит к снижению ее пропускной способности в MB/s. Нельзя одновременно достичь высоких показателей в IOPS и в MB/s просто по физическим свойствам существующего оборудования.
Либо большие пакеты-«автобусы» и их мало («операций в секунду»), либо маленькие индивидуальные пакеты-«автомобили», каждый осуществляющий индивидуальную «операцию» по доставке данных, но заполняющие всю дорогу, и общий human traffic в результате невелик.

На выбор нужных метрик оказывает характер обращения к данным. Линейная не многопоточное обращение к диску нельзя сравнивать с высококонурентным и неравномерным случайным обращением к диску.

Для оценки производительности мы используем наблюдения за текущей системой и уровнем загрузки оборудования, а также очередей на нём в пики загрузки.

IOPS используется для определения производительности диска или дискового массива.

IOPS означает Input/Output (operations) Per Second , количество “операций ввода/вывода в секунду” . Величина измеряет объем работы за определенный промежуток времени. По сути, IOPS это количество блоков, которое успевает считаться или записаться на носитель. Чем больше размер блока, тем меньше кусков, из которых состоит файл, и тем меньше будет IOPS , так как на чтение куска большего размера будет затрачиваться больше времени.

“Операция ввода/вывода” - это просто некая часть работы дисковой подсистемы, которая совершается в ответ на запрос хост-сервера и/или некоторых внутренних процессов. Обычно это чтение или запись с различными подкатегориями, например “чтение” (read ), “повторное чтение” (re-read ), “запись” (write ), “перезапись” (re-write ), “произвольный тип доступа” (random ), “последовательный тип доступа” (sequential ) и размер оперируемого блока данных.

Основными измеряемыми величинами являются операции линейного (последовательного) и произвольного (случайного) доступа.

Под линейными операциям чтения/записи, при которых части файлов считываются последовательно, одна за другой, подразумевается передача больших файлов (более 128 К). При произвольных операциях данные читаются случайно из разных областей носителя, обычно они ассоциируются с размером блока 4 Кбайт.

В зависимости от вида операции, этот размер может варьироваться от байт до килобайт и даже нескольких мегабайт. Существует множество типов ввода/вывода и многозадачная и многохостовая система почти никогда не использует какой-то один. Виртуализация только добавляет разнообразия к паттернам ввода/вывода.

Никакая система хранения не может показывать максимальные значения IOPS безотносительно к характеру операций ввода/вывода, значений latency и размеру блоков.

Latency это мера того, сколько времени занимает выполнение одного запроса ввода/вывода, с точки зрения приложения.

Значительные объемы I/O wait это признак того, что источник проблем - хранилище (существуют и другие источники задержек, CPU и сеть - это обычные примеры). Даже в случае хороших показателей latency , если вы видите большое количество I/O waits - это значит, что приложение хотело бы больше скорости от системы хранения.

Определение производительности дисковой системы - это часто игнорируемый аспект проектирования систем. Поскольку дисковая система является самой медленной средой на компьютере, она должна быть одной из ПЕРВЫХ компонентов, спецификация которых правильно определена.

Приложения которые интенсивно используют операции на запись являются хорошими кандидатами для RAID 10, тогда как приложения которые интенсивно используют операции на чтение могут быть размещены на RAID 5.

IOPS используются для определения производительности диска или дискового массива. Для примера можно считать, что максимальный IOPS для диска:

Чтобы вычислить IOPS используем уравнение:

IOPS = 1/(avgLatency + avgSeek)
IOPS = 1/(0.00416 + 0.0085) = 78,9889415

Итого, максимальный IOPS - 79.

Вычисляем максимальное значение IOPS для дискового массива

В примечании к разработке системы хранения, вычисление производительности дисковой системы имеет решающее значение для работы данной системы. Большинство систем используют RAID для обеспечения избыточности хранилища. В этом разделе описывается, как вычисляются IOPS для RAID -массивов.

Максимальное значение IOPS для чтения

IOPS чтения (maxReadIops ) для RAID -массива:

maxReadIops = numDisks * diskMaxIops

Соответственно для массива из 4 дисков максимальное значение IOPS чтения будет следующим:

maxReadIops = 4 * 79
maxReadIops = 316

Максимальное значение IOPS для записи

Вычисление максимального значения IOPS записи (maxWriteIops ) - это совсем другое в отношении RAID -массивов. RAID -массивы имеют штраф на запись, а тип RAID -массива определяет серьёзность штрафа. Этот штраф является результатом избыточности, которую предоставляет RAID , поскольку массив обязательно должен записывать данные на несколько дисков/локаций для обеспечения целостности данных.

Штраф на запись RAID-массива

Наиболее распространенные типы RAID и их штрафы на запись определяются в следующей таблице:

Итого, для нашего примера, максимальное значение IOPS на запись для массива RAID 10 - 158.

Проектирование для производительности

Простое вычисление максимального количества IOPS для чтения и записи для существующего или будущего RAID -массива недостаточно. Для обеспечения последовательной и устойчивой производительности необходимо определить требования к производительности для системы, чтобы определить лучшее решение для диска. Минимальный требуемый IOPS должен быть определен таким образом, чтобы можно было приобрести необходимое количество дисков с требуемой скоростью.

Для начала необходимо знать требования к производительности (например, чтение и запись IOPS ) для данной системы или приложения. Эта информация может быть получена из документации поставщика или программного обеспечения.

Вычисление минимально необходимого IOPS

Предположим, что у нас есть приложение, которое требует 600 Read IOPS и
300 Write IOPS . Дисковый массив собран в RAID 5.

Чтобы вычислить минимальное количество IOPS (minReqdIops ), добавьте количество требуемых IOPS чтения (reqdReadIops ) к сумме количества требуемых IOPS записи (reqdWriteIops ) и штрафа RAID (raidWritePenalty ): minReqdIops = reqdReadIops + (reqdWriteIops * raidWritePenalty)

В нашем примере:

minReqdIops = 600 + (300 * 4)
minReqdIops = 1800

Минимальное количество IOPS , необходимое для обеспечения уровня производительности для нашего примера - 1800.

ПРИМЕЧАНИЕ. Этот расчет определяет минимальное количество IOPS , необходимое для соответствия спецификации производительности. Это означает, что дисковый массив НЕ должен работать ниже этого уровня производительности.

Вычисляем минимальное количество дисков для RAID-массива

Как только минимальное количество требуемых IOPS определено, очень легко определить минимальное количество и скорость дисков, необходимых для создания RAID -массива для удовлетворения требований к производительности.

Минимальное количество дисков по скорости диска

Минимальное количество дисков, необходимых для выполнения нашего требования к производительности (minNumDiskMinPerf ), рассчитывается следующим образом: minNumDisksMinPerf = minReqdIops / maxIopsByDiskSpeed

Используя информацию из расчета минимально необходимых IOPS выше и предполагая, что мы хотим создать массив из 10 000 RPM -дисков (~125-150 IOPS ), вычисление минимального количества дисков, которое будет соответствовать нашим минимальным требованиям к производительности (minNumDisksMinPerf ) 1800 IOPS (minReqdIops ) выглядит следующим образом:

minNumDisksMinPerf = 1800 / 130
minNumDisksMinPerf = 14

Минимальное количество дисков 10 000 RPM , необходимых для удовлетворения наших требований к производительности, - 14.

Минимальное количество дисков по типу RAID

Тип RAID определяет минимальное количество дисков для удовлетворения требований типа RAID . Например, для RAID 5 всегда требуется как минимум 3 диска. Для RAID 10 всегда требуется как минимум 4 диска.

Для любых массивов, требующих большого количества дисков, используйте множитель в приведенной ниже таблице, чтобы определить правильное количество дисков для соответствия требованиям типа RAID :

После вычисления количества дисков по скорости, определяем минимальное количество дисков, требуемых по типу RAID .

В примере, когда 10K RPM-диски были выбраны для построения массива, расчет показывает, что требуется не менее 14 дисков. Если тип RAID будет 5, 14 дисков будет достаточным. Однако, если тип RAID будет равен 10, минимальное количество дисков, требуемых этим типом RAID , будет 8, поскольку множитель для RAID 10 равен 4.

Программы для измерения IOPS

IOmeter - тест IOPS
IOzone - тест IOPS
FIO - тест IOPS
CrystalDiskMark - тест IOPS
SQLIO - набор тестов для расчета производительности (IOPS , MB , Latency ) под сервера БД
wmarow - калькулятор RAID по производительности IOPS

Рынок твердотельных накопителей — это, пожалуй, один из наиболее динамичных и высококонкурентных рынков в современной IT-индустрии. Ситуация на нём развивается молниеносно и требует от игроков очень гибкой и дальновидной политики. Те же, кто не успевает за тенденциями, нередко оказываются за бортом, например, в течение последних месяцев кровопролитная ценовая война уже прикончила нескольких производителей SSD, включая и некоторых очень заметных игроков. Однако, несмотря на всю изменчивость ситуации в этой отрасли, лидеры в ней установились уже давно, и, скорее всего, они закрепились в этой роли очень надолго. Пять компаний: Samsung, Intel, SanDisk, Micron и Toshiba — владеют в сумме двумя третями всего рынка SSD. Характерно, что все они отличаются от конкурентов наличием собственного производства NAND-памяти — это позволяет им с лёгкостью диктовать остальным производителям твердотельных накопителей свои правила игры.

Однако если мы будем говорить о том, кто из этих разработчиков SSD играет самую важную роль на рынке потребительских решений, то речь, скорее всего, сведётся к двум компаниям: Samsung и Micron. Первая выступает главным новатором, занимаясь разработкой, внедрением и продвижением новых перспективных технологий, вторая же сделала своей целью неустанную борьбу за снижение стоимости потребительских SSD. И это лето стало периодом, когда и тот и другой производитель сделали очередные ходы, предложив потребителям новые твердотельные накопители, каждый из которых двигает прогресс в своём направлении. Samsung выпустила революционный высокопроизводительный накопитель 850 Pro — первый массовый SSD, построенный на флеш-памяти с трёхмерной компоновкой. Micron же продолжила гнуть свою линию и предложила, на первый взгляд, вполне ординарный твердотельный накопитель Crucial MX100, который отличается от предшественников только использованием флеш-памяти, выпущенной по обновлённому техпроцессу с уменьшенной геометрией. Первым в нашу лабораторию попал продукт компании Micron, именно о нём мы и будем вести речь в этом обзоре.

Как и всегда, искать в накопителях, предлагаемых под маркой Crucial, какие-то особенные технологические изюминки не нужно. У них совершенно иная миссия, вследствие чего знакомство с Crucial MX100 следует начинать с взгляда на ценник. И вот тут-то эта новинка сразу предстаёт в очень выгодном свете, являясь достойной продолжательницей традиций, заложенных в таких легендарных флеш-приводах, как RealSSD C300, m4 и M500. Crucial MX100 опускает стоимость одного гигабайта заметно ниже $0,5: например, рекомендованная цена модели на 256 Гбайт составляет всего $110, а 512-гигабайтная модель оценена производителем в $225. И это, между прочим, почти вдвое ниже цены Crucial M500 в момент его анонса, то есть двукратного удешевления своих SSD для покупателей Micron смогла добиться всего лишь за 14 месяцев. Впечатляет?

Таким образом, Crucial MX100 имеет все шансы стать самым популярным флеш-диском для персональных компьютеров на ближайшие несколько месяцев. Опираясь на оптимизации техпроцесса, Micron в очередной раз смогла заметно опустить ценовую планку, и её новинка становится самым выгодным решением сегодняшнего дня (если, конечно, ориентироваться на рекомендованные цены, а не на то, сколько просят за тот или иной SSD в ближайшем к вам магазине). Правда, всегда существует опасение, что столь кардинальное удешевление могло как-то сказаться на скоростных характеристиках или на надёжности. Однако в прошлых рушащих цены накопителях Crucial никаких особенных изъянов не было. Как же обстоит дело на этот раз?

⇡ Технические характеристики

Итак, Crucial MX100 — это первый массовый твердотельный накопитель, основывающийся на новой MLC NAND компании Micron, для изготовления которой применяется технологический процесс с 16-нм нормами. Пробные поставки чипов такой памяти были анонсированы производителем ровно год назад, и тогда они были охарактеризованы как самые маленькие устройства MLC NAND с 128-гигабитными ядрами. То есть «тонкий» техпроцесс наделяет эту MLC NAND наилучшим в отрасли показателем плотности хранения данных. К сожалению, Micron не предоставляет официальных данных о физических размерах полупроводниковых кристаллов, но наша оценка позволяет предположить, что площадь 128-гигабитного ядра, выпущенного по 16-нм технологии, составляет порядка 190 мм 2 . А это значит, что выполненный переход на более совершенный техпроцесс снизил себестоимость флеш-памяти по сравнению с MLC NAND, выпускаемой Micron по 20-нм технологии и используемой в Crucial M500 или M550, примерно на 6 процентов.

16-нм полупроводниковый кристалл MLC NAND компании Micron ёмкостью 128 Гбит

Впрочем, нельзя не упомянуть, что уменьшение размеров ячеек флеш-памяти далеко не всегда даёт однозначный положительный эффект. Зачастую внедрение более «тонких» полупроводниковых технологий имеет и обратную сторону — снижает ресурс. Ячейки флеш-памяти с меньшими физическими размерами изнашиваются заметно быстрее, что выражается в уменьшении количества циклов перезаписи данных, которые они могут перенести до выхода из строя. Кроме того, уплотнение полупроводниковых кристаллов влечёт за собой усиление взаимного влияния состояния ячеек памяти и ухудшение их стабильности. Всё это внушает определённое беспокойство относительно характеристик новой MLC NAND, производимой по 16-нм технологическому процессу.

Cведений относительно ресурса своей новой флеш-памяти Micron не сообщает. Однако не стоит забывать, что производственным партнёром Micron выступает компания Intel. Благодаря донорству микропроцессорного гиганта ещё при переходе на 20-нм технологию Micron смогла внедрить в полупроводниковый процесс материал с высокой диэлектрической проницаемостью. Именно этим и объясняется произошедшее в течение последних месяцев активное уменьшение геометрии ячеек MLC NAND: новый диэлектрик открыл для консорциума IMFT путь к улучшению масштабируемости технологического процесса без существенного ущерба для ресурса.

По этой причине большинство пользователей десктопов, скорее всего, останется довольным ресурсом 16-нм флеш-памяти. По крайней мере накопители серии Crucial MX100 по своей заявленной надёжности нисколько не отличаются от предыдущих флеш-дисков Crucial. Согласно спецификации, они должны спокойно переносить запись до 72 Тбайт данных, что означает возможность ежедневной записи по 40 Гбайт в течение пяти лет. Это полностью соответствует тем параметрам надёжности, которые были заявлены для Crucial M500 и M550, где применялась MLC NAND, производимая по 20-нм нормам. Иными словами, оценки Micron, по всей видимости, предполагают качественно одинаковый ресурс циклов перезаписи у новой 16-нм и более старой 20-нм памяти. Что же касается гарантии, то она для Crucial MX100 установлена в три года, что, впрочем, является вполне стандартным значением для твердотельного накопителя, нацеленного не на энтузиастов, а на массовый сегмент.

Весь наш рассказ о Crucial MX100 крутится вокруг новой 16-нм памяти неспроста. Дело в том, что эта память — единственная заметная инновация, внедрённая в рассматриваемом накопителе. Архитектурно Crucial MX100 строится на той же самой аппаратной платформе, что и предыдущий продукт, выпущенный под маркой Crucial, M550. Как и тогда, в основе MX100 лежит отлично зарекомендовавший себя флагманский контроллер Marvell 88SS9189, что делает новый SSD с точки зрения характеристик во многом похожим на M550:

Crucial M500 Crucial M550 Crucial MX100
Флеш-память 20-нм MLC, 128 Гбит 20-нм MLC, 64/128 Гбит 16/20-нм MLC, 128 Гбит
Ёмкости 120—960 Гбайт 64—1024 Гбайт 128—512 Гбайт
Контроллер Marvell 88SS9187 Marvell 88SS9189 Marvell 88SS9189
Скорость последовательного чтения 500 Мбайт/с 550 Мбайт/с 550 Мбайт/с
Скорость последовательной записи До 400 Мбайт/с До 500 Мбайт/с До 500 Мбайт/с
Скорость случайного чтения До 80000 IOPS До 95000 IOPS До 90000 IOPS
Скорость случайной записи До 80000 IOPS До 85000 IOPS До 85000 IOPS
Ресурс записи 72 Тбайт 72 Тбайт 72 Тбайт
Гарантия 3 года 3 года 3 года

Однако позиционирование у Crucial MX100 совсем иное. Новинка призвана заменить предыдущее бюджетное предложение Crucial, M500. При этом она должна предложить более высокий уровень быстродействия по более низкой цене. Однако первое время, пока запасы M500 не будут окончательно распроданы, в рознице старый накопитель может стоить даже дешевле нового, и, если цена является для вас определяющим фактором, советуем обратить внимание и на уходящую с рынка модель. Есть у «старичка» M500 и ещё одно преимущество: в ряду этих накопителей существует терабайтная модификация, в то время как линейка MX100 ограничивается максимальной ёмкостью 512 Гбайт. Потребителям, нуждающимся во вместительных SSD, Crucial отныне будет предлагать исключительно более дорогой терабайтник M550.

Ну а поскольку в линейке Crucial MX100 нет и 64-гигабайтной версии, полный модельный ряд выглядит следующим образом:

Производитель Crucial
Серия MX100
Модельный номер CT128MX100SSD1 CT256MX100SSD1 CT512MX100SSD1
Форм-фактор 2,5 дюйма
Интерфейс SATA 6 Гбит/с
Ёмкость 128 Гбайт 256 Гбайт 512 Гбайт
Конфигурация
Микросхемы памяти: тип, интерфейс, техпроцесс, производитель Micron 128 Гбит 20-нм MLC Micron 128 Гбит 16-нм MLC
Микросхемы памяти: число / количество NAND-устройств в чипе 8/1 16/1 16/2
Контроллер Marvell 88SS9189
Буфер: тип, объем LPDDR2-1066,
512 Мбайт
LPDDR2-1066,
512 Мбайт
LPDDR2-1066,
512 Мбайт
Производительность
Макс. устойчивая скорость последовательного чтения 550 Мбайт/с 550 Мбайт/с 550 Мбайт/с
Макс. устойчивая скорость последовательной записи 150 Мбайт/с 330 Мбайт/с 500 Мбайт/с
Макс. скорость произвольного чтения (блоки по 4 Кбайт) 80000 IOPS 85000 IOPS 90000 IOPS
Макс. скорость произвольной записи (блоки по 4 Кбайт) 40000 IOPS 70000 IOPS 85000 IOPS
Физические характеристики
Потребляемая мощность: бездействие/чтение-запись 0,15 Вт/2,5 Вт
Ударопрочность 1500 g
MTBF (среднее время наработки на отказ) 1,5 млн ч
AFR (annualized failure rate) НД
Ресурс записи 72 Тбайт (до 40 Гбайт ежедневно)
Габаритные размеры: ДхВхГ 99,7х69,75х7 мм
Масса 63 г
Гарантийный срок 3 года
Рекомендованная цена на момент анонса $80 $110 $225
Средняя розничная цена, руб. 2 790 4 390 8 300

Хотя мы и говорили, что в основе Crucial MX100 лежит та же аппаратная платформа, что и в M550, на самом деле между этими накопителями есть существенная разница, которая заключается не только в использовании памяти, производимой по разным техпроцессам. Дело в том, что для получения флагманского уровня производительности в модификации M550 разной ёмкости устанавливается память как с 64-гигабитными, так и с 128-гигабитными ядрами, а в MX100 ставится исключительно 128-гигабитная память с более низкой себестоимостью. Это приводит к тому, что оптимальный для контроллера Marvell 88SS9189 уровень параллелизма, предполагающий наличие в SSD как минимум 32 кристаллов MLC NAND, достигается только в MX100 ёмкостью 512 Гбайт. Младшие же модели получают более «узкий» массив флеш-памяти, что искусственно урезает их скоростные показатели.

Иными словами, совершенно неудивительно, что, согласно спецификациям, Crucial MX100 512 Гбайт похож по быстродействию на аналогичную по объёму модель M550, но версии MX100 на 128 и 256 Гбайт заметно проигрывают старшему собрату в скоростях записи. Причём величина их отставания может порой достигать даже двукратного размера.

Ещё одна интересная особенность Crucial MX100 заключается в том, что в младшей модификации объёмом 128 Гбайт используется не новая 16-нм, а более старая 20-нм память. Связано это с тем, что обеспечение для этой модели заявленного ресурса в 72 Тбайт при типичном коэффициенте усиления записи 2,5 требует от памяти примерно 1500 циклов перезаписи, но стабильно гарантировать такой показатель для сходящих с конвейера 16-нм чипов Micron пока не решается. Впрочем, с достижением производственным процессом определённой зрелости 16-нм память, скорее всего, придёт и в эту модель.

⇡ Внешний вид и внутреннее устройство

Мы получили от Crucial накопитель ёмкостью 512 Гбайт. Желание производителя показать свою продукцию в наиболее выгодном ключе вполне понятно, именно поэтому для тестов и была предоставлена самая ёмкая и самая быстрая модификация. Однако мы решили не ограничиваться тестированием лишь только одной модели и дополнительно приобрели в магазине более ходовую модификацию MX100 ёмкостью 256 Гбайт.

Оба SSD оказались совершенно одинаковыми внешне. Crucial продолжает использовать свой стандартный серебристый алюминиевый корпус, хорошо знакомый нам по M500 и M550. Впрочем, никаких претензий к этому корпусу у нас никогда не было: он легкий и жёсткий, кроме того, он позволяет рассеивать тепло, отводимое на него с контроллера, который изнутри соприкасается с ним через теплопроводящую прокладку.

Иными словами, Crucial MX100 выглядит так же, как и предшествующие накопители, единственное отличие — в наклейке, которая тем не менее сохранила синюю цветовую гамму. Кстати, обратите внимание — с лицевой стороны SSD нигде не указано его название, а на этикетке имеются лишь крупные буквы MX без соответствующего числового индекса.

Толщина корпуса флеш-привода составляет 7 мм, что делает возможным установку Crucial MX100 в тонкие ноутбуки. В комплект поставки входит и традиционная для Crucial пластиковая рамка, позволяющая нарастить толщину корпуса накопителя до 9,5 мм.

Внутренности Crucial MX100 выглядят очень знакомыми, и это — не неожиданность. Поскольку аппаратная платформа, лежащая в его основе, по сравнению с M550 не изменилась, совершенно закономерно увидеть плату, идентичную по планировке плате предшественника.

Crucial MX100 256 Гбайт

И это — на самом деле отличная новость, так как Crucial MX100 унаследовал все уникальные схемотехнические решения, присутствующие в более дорогих моделях SSD. Во-первых, MX100 наделён батареей конденсаторов, позволяющих контроллеру корректно завершать все операции в случае внезапного пропадания питания. Во-вторых, в накопителе реализован температурный мониторинг и защита от перегрева, снижающая частоту работы контроллера при выходе температуры за допустимые пределы.

Платы моделей Crucial MX100 разной ёмкости очень похожи друг на друга не только по дизайну, но и по установленным компонентам. В обоих случаях имеется один и тот же контроллер Marvell 88SS9189, а также одинаковая микросхема LPDDR2 SDRAM ёмкостью 512 Мбайт и частотой 1067 МГц. Напомним, что во флеш-дисках Crucial этот чип не является кешем данных, а используется исключительно для внутренних нужд контроллера в качестве оперативной памяти.

Crucial MX100 512 Гбайт

Обе имеющиеся у нас версии SSD снабжены 16 микросхемами MLC NAND компании Micron. Однако очевидно, что микросхемы эти разные. В Crucial MX100 256 Гбайт установлены микросхемы MT29F128G08CBCCBH6-10:C, в основе которых лежат единичные 128-гигабитные полупроводниковые кристаллы MLC NAND с интерфейсом ONFI 2.0. То есть восьмиканальный контроллер в 256-гигабайтной версии MX100 может пользоваться лишь двукратным чередованием устройств флеш-памяти в каждом канале. В Crucial MX100 512 Гбайт же использованы микросхемы MT29F256G08CECCBH6-10:C, которые содержат внутри себя уже по два аналогичных MLC NAND-ядра, что позволяет контроллеру пользоваться четырёхкратным чередованием, которое даёт заметно более высокую производительность.

Стоить отметить, что около 7 процентов полной ёмкости в Crucial MX100 зарезервировано для внутренних нужд и недоступно для пользователя. Этот объём используется не только для традиционных целей — работы технологии выравнивания износа и для фоновой сборки мусора, — но и для фирменной технологии RAIN. Напомним, современные накопители Crucial на каждые 127 байт записываемых данных сохраняют 1 байт с контрольной суммой, что позволяет им эффективно корректировать ошибки, возникающие во флеш-памяти.

Точно так же, как и предыдущие продукты Crucial, новые MX100 поддерживают шифрование по алгоритму AES с 256-битным ключом. Причём накопители полностью совместимы со стандартом Microsoft eDrive, что даёт возможность легко задействовать аппаратный криптографический движок из среды Windows, например при помощи утилиты BitLocker.

Перед тем как перейти к тестам, хочется сказать еще о том, что Crucial постепенно начинает осознавать необходимость предложения пользователям не только «голых» SSD, но и программ для работы с ними. К сожалению, до создания собственной инструментальной утилиты Crucial ещё не дозрела, но в комплекте с Crucial MX100 уже стал предлагаться ключ для программы Acronis True Image HD 2014, позволяющей клонировать дисковые разделы и переносить данные.

С , да и много про что еще.

Сегодня вот решили вспомнить про любимые многими SSD , и, хотя в общем-то, казалось бы чего там выбирать, но всё не столь просто как кажется. В рамках этого материала мы обратим внимание на общие нюансы, которые могут Вам пригодиться.

Давайте приступим.

Контроллер, скорость, IOPS , интерфейс, TRIM и другие параметры

Ну, что, давайте разбираться, так сказать, по пунктам, начиная от банальностей и заканчивая чипами, технологиями и прочим.

Традиционно, начнём с самого типового, чем так любят манипулировать маркетологи, производители и все на свете, а именно скорости SSD-накопителя при его выборе:


  • Наиболее распостранёнными сейчас (на момент написания) являются SATA 2 , SATA 3 и PCIe-E интерфейсы;
  • Логично, что разумнее всего, между SATA-2 и SATA-3 , выбирать старшую версию, т.к пропускная способность его выше;
  • SSD с интерфейсом PCI-E встречаются реже, требуют наличие свободного PCI-E порта и не всегда оправданы с точки зрения сочетания цена-объём-скорость.

Теперь про любимый многим объём SSD при выборе:

  • Тут, подозреваю, комментарии излишни, т.к каждый покупает под свой кошелек, пожелания, цели и возможности, а значит соответствующим образом выбирает объём;
  • Просто под систему, в общем-то, хватит диска 60-100 Гб (и даже меньше), при учете, что Вы не храните много тяжелых файлов в папках пользователя (мои документы, мои видео, мои фотографии и тп), т.к они обитают на системном диске, а так же не ставите тонны программ с путём по умолчанию;
  • Существует информация, что в целях увеличения скорости работы, требуется заполнять диск не более чем на 90% , соответственно, объём стоит выбирать SSD из расчета на этот фактор (хотя многие производители изначально делают резервную область в 10 % не видимой для пользователя на уровне прошивки, как раз в целях);
  • В современных дисках количество циклов перезаписи чем дальше, тем меньше играет свою роль, поэтому переживать о том, что (нормальный) SSD умрёт сильно быстро, попросту нет смысла.

Тип контроллера SSD -накопителя:

Поддержка диском технологий специальной направленности:

  • Немаловажным является поддержка S.M.A.R.T , TRIM , Garbage Collection и прочих полезных технологий. В большинстве случаев, как минимум первые две (TRIM и S.M.A.R.T ) реализованы повсеместно, но проверить их наличие в описании стоит;
  • S.M.A.R.T , - технология оценки состояния SSD -диска встроенными функциями самодиагностики и в целях расчета времени выхода его из строя;
  • TRIM , - существенно ускоряет работу накопителя, методом уведомления оного о блоках, которые уже не содержатся в фаловой системе и каковые можно очистить, так сказать, физическим путём;
  • Garbage Collection , - технология очистки памяти от "мусора", зачастую работает в связке с командой TRIM , чем, как говорилось выше, существенно ушустряет работу накопителя.

Чипы памяти , которые установлены в SSD так же играют важнейшую роль и их стоит учитывать при выборе:

  • Чипы памяти, как правило, бывают двух основных видов, а именно MLC , SLC и, с некоторых пор, еще и TLC ;
  • Разница между ними в скорости работы (чтение запись-удаление), количестве циклов перезаписи и количестве битов в ячейке;
  • Для наглядности ниже приведена примерная таблица-сравнение;
  • Тип чипа памяти напрямую влияет на стоимость, в ввиду разности в указанных выше параметрах;
  • Для сравнения, собственно,

Ну и, напоследок, упомянем про такие параметры SSD как IOPS и MTBF :

  • IOPS ,- количество операций ввода-вывода в секунду, которые способен осуществить накопитель;
  • IOPS Является важнейшим параметром, который характеризует диск и, в некотором смысле, он даже показательнее, чем скорость чтения-записи, а потому часто не указывается хитрыми маркетологами в попытках подпихнуть Вам что-нибудь дешевое и медленное, как можно дороже;
  • Чем больше параметр IOPS , - тем лучше и тем, условно говоря, большим объёмом файлов за единицу времени способен манипулировать накопитель;
  • MTBF , - время наработки на отказ, измеряется в часах. Логично, что чем больше, тем безусловно лучше. Измеряется статистически, путём испытания множества приборов, или вычисляется методами теории надёжности. Особого доверия, лично у автора, к этому параметру нет, но не упомянуть его было бы нельзя.

На сим, пожалуй, всё. Перейдём к местам покупки и послесловию.

Где выбрать и купить SSD?

  • , - для тех, кто не боится покупать за рубежом и экономить деньги. Есть много , несколько популярных марок, да и вцелом приятный магазин, где идут постоянные и прочее;
  • , - пожалуй, лучший выбор с точки зрения соотношения цена-качество SSD (и не только). Вполне внятные цены, хотя ассортимент не всегда идеален с точки зрения разнообразия. Ключевое преимущество, - гарантия, которая действительно позволяет в течении 14 дней поменять товар без всяких вопросов, а уж в случае гарантийных проблем магазин встанет на Вашу сторону и поможет решить любые проблемы. Автор сайта пользуется им уже лет 10 минимум (еще со времен, когда они были частью Ultra Electoronics ), чего и Вам советует;
  • , - один из старейших магазинов на рынке, как компания существует где-то порядка 20 лет. Приличный выбор, средние цены и один из самых удобных сайтов. В общем и целом приятно работать.

Выбор, традиционно, за Вами. Конечно, всякие там Яндекс.Маркет "ы никто не отменял, но из хороших магазинов я бы рекомендовал именно эти, а не какие-нибудь там МВидео и прочие крупные сети (которые зачастую не просто дороги, но ущербны в плане качества обслуживания, работы гарантийки и пр).

Послесловие

В двух словах, пожалуй, как-то оно вот так.

Кстати говоря, перед покупкой, немаловажно погуглить выбранную Вами модель на предмет наличия проблем с ними в интернете (особенно это касается проблем с контроллерами), а так же посмотреть наличие прошивок на сайте производителя, информации о том, что в них исправили и тп.

Как и всегда, если есть какие-то вопросы, мысли, дополнения и всё такое прочее, то добро пожаловать в комментарии к этой записи.

). В любом случае, независимо от измеряющей программы, параметр IOPS, публикуемый производителем в сопроводительной документации не гарантирует таких же показателей в реальных условиях.

IOPS измеряется такими программами как Iometer , изначально разработанной Intel , а также IOzone, FIO и CrystalDiskMark.

Главным образом, данный показатель помогает определить настройки устройства, при которых оно показывает максимальную производительность. Конкретное значение параметра от системы к системе может сильно варьироваться в зависимости от условий запуска бенчмарка , включая соотношение операций чтения и записи, набора блоков чтения при последовательном и случайном доступе, количество потоков и глубину выборки, так же как и сам размер блока. Есть и другие факторы, влияющие на результат измерения IOPS включая настройки системы, драйвер устройства, приложения, работающие в фоновом режиме и др. Кроме того, перед проведением теста необходимо ознакомится с рекомендациями по правильному проведению теста от производителя.

Характеристики производительности

Последовательный и произвольный доступ к носителю данных

Основными измеряемыми величинами являются операции линейного (последовательного) и произвольного (случайного) доступа. Под линейными операциям чтения/записи, при которых части файлов считываются последовательно, одна за другой, подразумевается передача больших файлов (более 128 К). При произвольных операциях данные читаются случайно из разных областей носителя, обычно они ассоциируются с размером блока 4 Кбайт.

Ниже приведены основные характеристики:

Для жестких дисков и других электромеханических устройств хранения данных IOPS при произвольном доступе зависит в первую очередь от времени поиска устройства, в то время как, в SSD и системах хранения, сделанных на их основе, количество IOPS в основном зависит от работы внутреннего микроконтроллера и скорости интерфейса памяти. На обоих типах устройств количество IOPS в линейных операциях (при большом размере блока) показывает максимальную пропускную способность , которой можно достичь на устройстве. Обычно линейные IOPS проще показать в Мбайт/с:

IOPS *Размер_блока_в_байтах = Байт_в_секунду (обычно преобразуется в МБайт/с)

В то время как традиционные жесткие диски имеют примерно одинаковое число IOPS на запись и чтение, большинство SSD на основе флэш-модулей NAND обладают значительно меньшим IOPS на запись, нежели на чтение вследствие невозможности записать в ячейку напрямую. Перед этим необходимо выполнить процедуру очистки (т. н. Сбора мусора).

Примеры

Приблизительные значения IOPS для жестких дисков:

Устройство Тип IOPS Интерфейс
7,200 об/мин SATA -диски HDD ~75-100 IOPS SATA 3 Гбит/с
10,000 об/мин SATA-диски HDD ~125-150 IOPS SATA 3 Гбит/с
10,000 об/мин SAS -диски HDD ~140 IOPS SAS
15,000 об/мин SAS -диски HDD ~175-210 IOPS SAS

Приблизительные значения IOPS для SSD

См. Также

Ссылки

Программы для измерения производительности
  • Iometer Project - Официальный сайт проекта Iometer.
  • CrystalDiskMark - Сайт проекта CrystalDiskMark.
Статьи
  • Что такое IOPS и что он показывает - Статья pc-hard.ru, 2011.
  • IOPS быстрый расчет СХД для виртуальной инфраструктуры - Статья, 2010.
  • О производительности: IOPS vs. MB/s - Статья blog.aboutnetapp.ru, 2007.

Wikimedia Foundation . 2010 .

Смотреть что такое "IOPS" в других словарях:

    IOPS - (del inglés Input/Output Operations Per Second, Instrucciones de Entrada/Salida Por Segundo), es una unidad de benchmark utilizada para medir el rendimiento de discos duros, unidades de estado sólido (SSD), memorias RAM y otras formas de… … Wikipedia Español

    RAM drive, RAM disk (диск в памяти), электронный диск компьютерная технология, позволяющая хранить данные в быстродействующей оперативной памяти как на блочном устройстве (диске). Может быть реализована как программно, так и аппаратно.… … Википедия

    I/O-Performance

    Input/Output-Performance - Input/Output operations Per Second, kurz IOPS, ist eine Benchmark Angabe von elektronischen Datenträgern. Sie gibt an wieviel Ein und Ausgabe Befehle pro Sekunde durchgeführt werden können. Dabei kann die Angabe genauer spezifiziert werden: Total … Deutsch Wikipedia