Как построить логическую схему по логическому выражению. Определение сигнала на выходе логической схемы по заданным значениям сигналов на всех входах этой схемы

Лабораторная работа № 4 .

Схемотехническая реализация логических элементов. Построение логических схем.

Теоретическая часть.

В основе обработки компьютером информации лежит алгебра логики, разработанная Дж. Булем. Было доказано, что все электронные схемы ЭВМ могут быть реализованы с помощью логических элементов И, ИЛИ, НЕ.

Элемент НЕ

При подаче на вход схемы сигнала низкого уровня (0) транзистор будет заперт, т.е. ток через него проходить не будет, и на выходе будет сигнал высокого уровня (1). Если же на вход схемы подать сигнал высокого уровня (1), то транзистор “откроется”, начнет пропускать электрический ток. На выходе за счет падения напряжения установится напряжение низкого уровня. Таким образом, схема преобразует сигналы одного уровня в другой, выполняя логическую функцию.

Элемент ИЛИ

Функция “ИЛИ” - логическое сложение (дизъюнкция), ее результат равен 1, если хотя бы 1 из аргументов равен 1. Здесь транзисторы включены параллельно друг другу. Если оба закрыты, то их общее сопротивление велико и на выходе будет сигнал низкого уровня (логический “0”). Достаточно подать сигнал высокого уровня (“1”) на один из транзисторов, как схема начнет пропускать ток, и на сопротивлении нагрузки установится также сигнал высокого уровня (логическая “1”).

Элемент И

Если на входы Вх1 и Вх2 поданы сигналы низкого уровня (логические “0”), то оба транзистора закрыты, ток через них не проходит, выходное напряжение на R н близко к нулю. Пусть на один из входов подано высокое напряжение (“1”). Тогда соответствующий транзистор откроется, однако другой останется закрытым, и ток через транзисторы и сопротивление проходить не будет. Следовательно, при подаче напряжения высокого уровня лишь на один из транзисторов, схема не переключается и на выходе остается напряжение низкого уровня. И лишь при одновременной подаче на входы сигналов высокого уровня (“1”) на выходе мы также получим сигнал высокого уровня.

Таким образом, каждой базовой логической функции – «И», «ИЛИ», «НЕ» - соответствует особым образом сконструированная схема, называемая логическим элементом. Комбинируя сигналы, обозначающие логические переменные, и выходы, соответствующие логическим функциям, с помощью логических элементов, пользуясь таблицей истинности или представлением логической функции в виде КНФ и ДНФ, можно составить структурную или функциональную схему (см. примеры ниже), являющуюся основой для аппаратной реализации схемы.

Анализируя функциональную схему, можно понять, как работает логическое устройство, т.е. дать ответ на вопрос: какую функцию она выполняет. Не менее важной формой описания логических устройств является структурная формула. Покажем на примере как выписывают формулу по заданной функциональной схеме (1 схема). Ясно, что элемент “И” осуществляет логическое умножение значений и В. Над результатом в элементе “НЕ” осуществляется операция отрицания, т.е. вычисляется значение выражения: Формула и есть структурная формула логического устройства.

Итак, основные логические функции обозначаются

Инверсия

Конъюнкция

Дизъюнкция

Пример: дана логическая схема:

Она построена на основании булева выражения - Y = Ē /\ I \/ Ē /\ A \/ Ā /\ E

Практическая часть.

Задание 1. Для каждой из функциональных схем выписать соответствующую структурную формулу.

2) Для КНФ и ДНФ из лабораторной работы 5 построить функциональные схемы.

Цели урока:

Образовательные:

  • закрепить у учащихся представление об устройствах элементной базы компьютера;
  • закрепить навыки построения логических схем.

Развивающие:

  • формировать развитие алгоритмического мышления;
  • развить конструкторские умения;
  • продолжать способствовать развитию ИКТ - компетентности;

Воспитательные:

  • продолжить формирование познавательного интереса к предмету информатика;
  • воспитывать личностные качества:
  • активность,
  • самостоятельность,
  • аккуратность в работе;

Требования к знаниям и умениям:

Учащиеся должны знать:

  • основные базовые элементы логических схем;
  • правила составления логических схем.

Учащиеся должны уметь:

  • составлять логические схемы.

Тип урока: урок закрепления изученного материала

Вид урока: комбинированный

Методы организации учебной деятельности:

  • фронтальная;
  • индивидуальная;

Программно-дидактическое обеспечение:

  • ПК, SMART Board, карточки с индивидуальным домашним заданием.

Урок разработан с помощью программы Macromedia Flash .

Ход урока

I. Постановка целей урока.

Добрый день!

Сегодня мы продолжаем изучение темы "Построение логических схем".

Приготовьте раздаточный материал "Логические основы ЭВМ. Построение логических схем" Приложение 1

Вопрос учителя. Назовите основные логические элементы. Какой логический элемент соответствует логической операции И, ИЛИ, НЕ?

Ответ учащихся. Логический элемент компьютера - это часть электронной логической схемы, которая реализует элементарную логическую функцию. Основные логические элементы конъюнктор (соответствует логическому умножению), дизъюнктор (соответствует логическому сложению), инвертор (соответствует логическому отрицанию).

Вопрос учителя. По каким правилам логические элементы преобразуют входные сигналы. Рассмотрим элемент И. В каком случае на выходе будет ток (сигнал равный 1).

Ответ учащихся. На первом входе есть ток (1, истина), на втором есть (1, истина), на выходе ток идет (1, истина).

Вопрос учителя. На первом входе есть ток, на втором нет, однако на выходе ток идет. На входах тока нет и на выходе нет. Какую логическую операцию реализует данный элемент?

Ответ учащихся. Элемент ИЛИ - дизъюнктор.

Вопрос учителя. Рассмотрим логический элемент НЕ. В каком случае на выходе не будет тока (сигнал равный 0)?

Ответ учащихся. На входе есть ток, сигнал равен 1.

Вопрос учителя. В чем отличие логической схемы от логического элемента?

Ответ учащихся. Логические схемы состоят из логических элементов, осуществляющих логические операции.

Проанализируем схему и определим сигнал на выходе.

II. Закрепление изученного материала.

Почему необходимо уметь строить логические схемы?

Дело в том, что из вентилей составляют более сложные схемы, которые позволяют выполнять арифметические операции и хранить информацию. Причем схему, выполняющую определенные функции, можно построить из различных по сочетанию и количеству вентилей. Поэтому значение формального представления логической схемы чрезвычайно велико. Оно необходимо для того, чтобы разработчик имел возможность выбрать наиболее подходящий ему вариант построения схемы из вентилей. Процесс разработки общей логической схемы устройства (в том числе и компьютера в целом), становится иерархическим, причем на каждом следующем уровне в качестве "кирпичиков" используются логические схемы, созданные на предыдущем этапе.

Дома вам необходимо было построить логические схемы, соответствующие логическим выражениям.

Вопрос учителя. Каков алгоритм построение логических схем?

Ответ учащихся. Алгоритм построение логических схем:

Определить число логических переменных.

Определить количество базовых логических операций и их порядок.

Изобразить для каждой логической операции соответствующий ей элемент (вентиль).

Соединить вентили в порядке выполнения логических операций.

Проверка домашнего задания Приложение 1 . Домашнее задание. Часть 1

Построить логическую схему для логического выражения:

Построить логическую схему для логического выражения:

Построить логическую схему для логического выражения:

Построить логическую схему для логического выражения:

Построить логическую схему для логического выражения:

Алгебра логики дала конструкторам мощное средство разработки, анализа и совершенствования логических схем. Проще, и быстрее изучать свойства и доказывать правильность работы схемы с помощью выражающей её формулы, чем создавать реальное техническое устройство.

Таким образом, цель нашего следующего урока - изучить законы алгебры логики.

IV. Домашнее задание. Часть 2

V. Практическая работа.

Программа - тренажер "Построение логических схем"

www.Kpolyakov.narod.ru Программа "Logic",

4) Ответ: l v 0 & l = 1.

Пример 2

Постройте логическую схему, соответствующую логическому выражению

F = X & Y v (Y v X).

Вычислить значения выражения для X = 1, Y = 0.

1) Переменных две: X и Y;

2) Логических операций три: конъюнкция и две дизъюнкции: 14 3 2 X & Y v (Y v X).

3) Схему строим слева направо в соответствии с порядком логических операций:


3) Вычислим значение выражения: F = l & 0 v (0 v 1) = 0

Выполните упражнение

Постройте логическую схему, соответствующую логическому выраже­нию, и найдите значение логического выражения:

A) F = A v B & C, если А = 1, В=1, С=1.

Б) F = (A v B & C), если А=0, В=1, С=1.

B) F = A v B & C, если А=1, В=0, С=1.

Г) F = (А v В) & (С v В),еслиА=0, В=1, С=0.

Д) F = (А & В & С), если А=0, В=0, С=1.

Е) F = (A & B & C) v (B & C vA), если А=1, В=1,С=0.

Ж) F = B &A v B & A, если А=0, В=0.

Законы логики

Если логическое выражение содержит большое число операций, то составлять для него таблицу истинности достаточно сложно, так как приходится перебирать большое количество вариантов. В таких случаях формулы удобно привести к нормальной форме.

Формула имеет нормальную форму, если в ней отсутствуют знаки эк­вивалентности, импликации, двойного отрицания, при этом знаки от­рицания находятся только при логических переменных.

Для приведения формулы к нормальной форме используют законы логики и правила логических преобразований.

А= А Закон тождества
А&А=0 Закон противоре­чия
Av A = l Закон исключающего третьего
А = А Закон двойного отри­цания
A&0 = 0 A v 0 = A Законы исключения констант
А&1=А A v 1 = 1 Законы исключения констант
А&А=А A v A=A Правило идемпотен­тности
AvA = l
(А→В)=А&В
A→B = A v B
А& (Av В)= А Закон поглощения
A v (А & В) = A Закон поглощения
А& (Av В) = А & В
AvA&B = A v B
(AvB) vC =Av(BvC) (A&B)&C = A&(B&C) Правило ассоциатив­ности
(A&B) v(A&C) = A&(BvC) (AvB)&(AvC) = Av(B&C) Правило дистрибутив­ности
AvB = BvA A&B = B&A Правило коммутатив­ности
AóB = A&Bv(A&B)
(AvB)= A & B Законы Моргана
(A&B)=Av B Законы Моргана

Пример

Упростите логическое выражение F = ((A v В) → (В v С)) . Это логическое выражение необходимо привести к нормальной форме, т.к. в нем присутствует импликация и отрицание логической операции.

1. Избавимся от импликации и отрицания. Воспользуемся (8). Получится: ((AvB)→(BvC))= (AvB)&(BvC).

2. Применим закон двойного отрицания (4). Получим: (AvB)&(BvC)= (AvB)&(BvC)

3. Применим правило дистрибутивности (15). Получим:

(AvB)&(BvC)= (AvB)&Bv(AvB)&C.

4. Применим закон коммутативности (17) и дистрибутивности (15). Получим: (AvB)&Bv(AvB)&C = A&BvB&BvA&CvB&C.

5. Применим (16) и получим: A&BvB&BvA&CvB&C=A&BvBvA&CvВ&С

6. Применим (15), т.е вынесем за скобки В. Получим:

A&BvBv A&Cv B&C=B&(Av1)v A&Cv В&С

7. Применим (6). Получим: В &(Avl)v A&Cv В &С= Bv A&Cv В &С.

8. Переставим местами слагаемые, сгруппируем и вынесем В за скобки. Получим:
BvA&CvB&C = B&(1vC)vA&C.

9. Применим (6) и получим ответ:

Ответ: F = ((A v В) → (В v С)) = В v A & С.

Упростите выражение:

1) F = (A & B) v(B v C).

2) F = (A→B) v (B→A).

3) F = A & C vA & C.

4) F = A vB vC v A v B v C.

5) F = (X & Y v(X & Y)).

6) F= X &(Y v X).

7) F = (X v Z) & (X vZ) & (Y v Z).

10) F= B&C& (AvA).

11) F= A&B&CvAvB

12) F= (AvB)&(BvA)& (CvB)

Упростите выражение:

1. F = A & C vA & C.

2. F= A ↔ B v A&C

3. F=A& (B↔C)

4. F = (X v Y) & (Y ↔ X).

5. F= A vB vC v A v B v C.

6. F=(AvB) → (AvC)

7. F= А ↔ (В v C)

8. F = A & B → C & D.

9. F= (X & Y v(X & Y)).

10. F = (X v Y) & (Y v X).

11. F= A ↔ B &C

12. F = (A v B) & (B v A→ B).

13. F= X &(Y v X).

14. F= A → B v A&C

15. F = X & Y v X.

16. F = ((X v Y) & (Z → X)) & (Z v Y).

17. F= (X v Z) & (X vZ) & (Y v Z).

18. F= А →(В v C)

19. F= A ↔ B v C

20. F = ((X v Y) & (Z v X)) & (Z → Y).

21. F= (B & (A→C))

22. F= A → B v A&C

23. F= А ↔ (В v C)

24. F = ((X v Y) & (Z v X)) & (Z v Y).

25. F= (A→B) v (B→A).

26. F = A & B & C & D.

27. F= А ↔(В v C)

28. F=A& (B→C).

29. F= A&(AvB)

30. F= А ↔ (В v C)

31. F= A → B v A &C

32. F = (A v B) & (B v A v B).

33. F= B&C& (AvA).

34. F= A & B v A&C

35. F = X & Y ↔ X.

36. F = ((X v Y) & (Z → X)) & (Z ↔ Y).

37. F= A&B&CvAvB

38. F = (X → Y) & (Y v X).

39. F= A → B &C

40. F = (A ↔ B) & (B v A &B).

41. F = (AvB)&(BvA)& (CvB).

42. F= A & B v A&C

43. F=A& (BvC)

44. F = (X → Y) & (Y ↔ X).

45. F= Av(A&B)

46. F = A & B ↔ C & D.

47. F= А ↔(В v C)

48. F=(X & Y) v (Y & X).

Назначение сервиса . Онлайн-калькулятор предназначен для построения таблицы истинности для логического выражения .
Таблица истинности – таблица содержащая все возможные комбинации входных переменных и соответствующее им значения на выходе.
Таблица истинности содержит 2 n строк, где n – число входных переменных, и n+m – столбцы, где m – выходные переменные.

Инструкция . При вводе с клавиатуры используйте следующие обозначения: Например, логическое выражение abc+ab~c+a~bc необходимо ввести так: a*b*c+a*b=c+a=b*c
Для ввода данных в виде логической схемы используйте этот сервис .

Правила ввода логической функции

  1. Вместо символа v (дизъюнкция, ИЛИ) используйте знак + .
  2. Перед логической функцией не надо указывать обозначение функции. Например, вместо F(x,y)=(x|y)=(x^y) необходимо ввести просто (x|y)=(x^y) .
  3. Максимальное количество переменных равно 10 .

Проектирование и анализ логических схем ЭВМ ведётся с помощью специального раздела математики - алгебры логики. В алгебре логики можно выделить три основные логические функции: "НЕ" (отрицание), "И" (конъюнкция), "ИЛИ" (дизъюнкция).
Для создания любого логического устройства необходимо определить зависимость каждой из выходных переменных от действующих входных переменных такая зависимость называется переключательной функцией или функцией алгебры логики.
Функция алгебры логики называется полностью определённой если заданы все 2 n её значения, где n – число выходных переменных.
Если определены не все значения, функция называется частично определённой.
Устройство называется логическим, если его состояние описывается с помощью функции алгебры логики.
Для представления функции алгебры логики используется следующие способы:

  • словесное описание – это форма, которая используется на начальном этапе проектирования имеет условное представление.
  • описание функции алгебры логики в виде таблицы истинности.
  • описание функции алгебры логики в виде алгебраического выражения: используется две алгебраические формы ФАЛ:
    а) ДНФ – дизъюнктивная нормальная форма – это логическая сумма элементарных логических произведений. ДНФ получается из таблицы истинности по следующему алгоритму или правилу:
    1) в таблице выбираются те строки переменных для которых функция на выходе =1 .
    2) для каждой строки переменных записывается логическое произведение; причём переменные =0 записываются с инверсией.
    3) полученное произведение логически суммируется.
    Fднф= X 1 *Х 2 *Х 3 ∨ Х 1 x 2 Х 3 ∨ Х 1 Х 2 x 3 ∨ Х 1 Х 2 Х 3
    ДНФ называется совершенной, если все переменные имеют одинаковый ранг или порядок, т.е. в каждое произведение обязательно должны включаться все переменные в прямом или инверсном виде.
    б) КНФ – конъюнктивная нормальна форма – это логическое произведение элементарных логических сумм.
    КНФ может быть получена из таблицы истинности по следующему алгоритму:
    1) выбираем наборы переменных для которых функция на выходе =0
    2) для каждого набора переменных записываем элементарную логическую сумму, причём переменные =1 записываются с инверсией.
    3) логически перемножаются полученные суммы.
    Fскнф=(X 1 V X 2 V X 3) ∧ (X 1 V X 2 V X 3) ∧ (X 1 V X 2 V X 3) ∧ (X 1 V X 2 V X 3)
    КНФ называется совершенной , если все переменные имеют одинаковый ранг.
По алгебраической форме можно построить схему логического устройства , используя логические элементы.

Рисунок1- Схема логического устройства

Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможны х логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении. Если число высказываний в логическом выражении N, то таблица истинности будет содержать 2 N строк, так как существует 2 N различных комбинаций возможных значений аргументов.

Операция НЕ - логическое отрицание (инверсия)

Логическая операция НЕ применяется к одному аргументу, в качестве которого может быть и простое, и сложное логическое выражение. Результатом операции НЕ является следующее:
  • если исходное выражение истинно, то результат его отрицания будет ложным;
  • если исходное выражение ложно, то результат его отрицания будет истинным.
Для операции отрицания НЕ приняты следующие условные обозначения:
не А, Ā, not A, ¬А, !A
Результат операции отрицания НЕ определяется следующей таблицей истинности:
A не А
0 1
1 0

Результат операции отрицания истинен, когда исходное высказывание ложно, и наоборот.

Операция ИЛИ - логическое сложение (дизъюнкция, объединение)

Логическая операция ИЛИ выполняет функцию объединения двух высказываний, в качестве которых может быть и простое, и сложное логическое выражение. Высказывания, являющиеся исходными для логической операции, называют аргументами. Результатом операции ИЛИ является выражение, которое будет истинным тогда и только тогда, когда истинно будет хотя бы одно из исходных выражений.
Применяемые обозначения: А или В, А V В, A or B, A||B.
Результат операции ИЛИ определяется следующей таблицей истинности:
Результат операции ИЛИ истинен, когда истинно А, либо истинно В, либо истинно и А и В одновременно, и ложен тогда, когда аргументы А и В - ложны.

Операция И - логическое умножение (конъюнкция)

Логическая операция И выполняет функцию пересечения двух высказываний (аргументов), в качестве которых может быть и простое, и сложное логическое выражение. Результатом операции И является выражение, которое будет истинным тогда и только тогда, когда истинны оба исходных выражения.
Применяемые обозначения: А и В, А Λ В, A & B, A and B.
Результат операции И определяется следующей таблицей истинности:
A B А и B
0 0 0
0 1 0
1 0 0
1 1 1

Результат операции И истинен тогда и только тогда, когда истинны одновременно высказывания А и В, и ложен во всех остальных случаях.

Операция «ЕСЛИ-ТО» - логическое следование (импликация)

Эта операция связывает два простых логических выражения, из которых первое является условием, а второе - следствием из этого условия.
Применяемые обозначения:
если А, то В; А влечет В; if A then В; А→ В.
Таблица истинности:
A B А → B
0 0 1
0 1 1
1 0 0
1 1 1

Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

Операция «А тогда и только тогда, когда В» (эквивалентность, равнозначность)

Применяемое обозначение: А ↔ В, А ~ В.
Таблица истинности:
A B А↔B
0 0 1
0 1 0
1 0 0
1 1 1

Операция «Сложение по модулю 2» (XOR, исключающее или, строгая дизъюнкция)

Применяемое обозначение: А XOR В, А ⊕ В.
Таблица истинности:
A B А⊕B
0 0 0
0 1 1
1 0 1
1 1 0

Результат операции эквивалентность истинен только тогда, когда А и В одновременно истинны или одновременно ложны.

Приоритет логических операций

  • Действия в скобках
  • Инверсия
  • Конъюнкция (&)
  • Дизъюнкция (V), Исключающее ИЛИ (XOR), сумма по модулю 2
  • Импликация (→)
  • Эквивалентность (↔)

Совершенная дизъюнктивная нормальная форма

Совершенная дизъюнктивная нормальная форма формулы (СДНФ) это равносильная ей формула, представляющая собой дизъюнкцию элементарных конъюнкций, обладающая свойствами:
  1. Каждое логическое слагаемое формулы содержит все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
  2. Все логические слагаемые формулы различны.
  3. Ни одно логическое слагаемое не содержит переменную и её отрицание.
  4. Ни одно логическое слагаемое формулы не содержит одну и ту же переменную дважды.
СДНФ можно получить или с помощью таблиц истинности или с помощью равносильных преобразований.
Для каждой функции СДНФ и СКНФ определены единственным образом с точностью до перестановки.

Совершенная конъюнктивная нормальная форма

Совершенная конъюнктивная нормальная форма формулы (СКНФ) это равносильная ей формула, представляющая собой конъюнкцию элементарных дизъюнкций, удовлетворяющая свойствам:
  1. Все элементарные дизъюнкции содержат все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
  2. Все элементарные дизъюнкции различны.
  3. Каждая элементарная дизъюнкция содержит переменную один раз.
  4. Ни одна элементарная дизъюнкция не содержит переменную и её отрицание.

Пример решение логических задач средствами алгебры логики

Логические схемы

Логическая схема – это схематическое изображение некоторого устройства, состоящего из переключателей и соединяющих их проводников, а также из входов и выходов, на которые подаётся и с которых снимается электрический сигнал.

Каждый переключатель имеет только два состояния: замкнутое и разомкнутое . Переключателю Х поставим в соответствие логическую переменную х, которая принимает значение 1 в том и только в том случае, когда переключатель Х замкнут и схема проводит ток; если же переключатель разомкнут, то х равен нулю.

Две схемы называются равносильными , если через одну из них проходит ток тогда и только тогда, когда он проходит через другую (при одном и том же входном сигнале).

Из двух равносильных схем более простой считается та схема, функция проводимости которой содержит меньшее число логических операций или переключателей.

При рассмотрении переключательных схем возникают две основные задачи: синтез и анализ схемы.

СИНТЕЗ СХЕМЫ по заданным условиям ее работы сводится к следующим трём этапам:

  1. составлению функции проводимости по таблице истинности, отражающей эти условия;
  2. упрощению этой функции;
  3. построению соответствующей схемы.

АНАЛИЗ СХЕМЫ сводится к:

  1. определению значений её функции проводимости при всех возможных наборах входящих в эту функцию переменных.
  2. получению упрощённой формулы.

Задача : Составить таблицу истинности для данной формулы: (x ~ z) | ((x y) ~ (y z)).

Решение : В таблицу истинности данной формулы полезно включить таблицы истинности промежуточных функций:

xyz x ~ z x y y z (x y) ~ (y z) (x~ z)|((x y) ~ (yz)

Методические указания для выполнения практического задания №2. «Алгебра логики». Построение таблиц истинности.

Цель работы : Ознакомиться с основными арифметическими операциями, базовыми логическими элементами (И, И-НЕ, ИЛИ, ИЛИ-НЕ, исключающее ИЛИ) и изучить методы построения на их основе таблиц истинности.

Задание:

1. В приложении 2 выбрать вариант задания и составить таблицу истинности .

2. Выполнить задание, используя пример решение логических задач средствами алгебры логики.

Задача :

Построить логическую схему по заданному булевому выражению:



F =`BA + B`A + C`B.

Решение:

Как правило, построение и расчет любой схемы осуществляется начиная с ее выхода.

Первый этап : выполняется логическое сложение, логическую операцию ИЛИ, считая входными переменными функции`B A, B`A и C`B:

Второй этап : к входам элемента ИЛИ подключаются логические элементы И, входными переменными которых являются уже A, B, C и их инверсии:

Третий этап : для получения инверсий`A и`B на соответствующих входах ставят инверторы:

Данное построение основано на следующей особенности, – поскольку значениями логических функций могут быть только нули и единицы, то любые логические функции могут быть представлены как аргументы других более сложных функций. Таким образом, построение логической схемы осуществляется с выхода ко входу.

Методические указания для выполнения практического задания №3. «Алгебра логики». Построение логических схем

Цель работы : Ознакомиться с основными арифметическими операциями, базовыми логическими элементами (И, И-НЕ, ИЛИ, ИЛИ-НЕ, исключающее ИЛИ) и изучить методы построения на их основе простейших логических схем.

Задание:

1. В приложении 2 выбрать вариант задания и построить логическую схему .

2. Выполнить задание, используя пример построения логических схем.

3. Оформить работу в тетради для практических работ.

4. Результат работы предъявить преподавателю.

5. Защитить выполненную работу у преподавателя.

Приложение 2. Таблица вариантов заданий

Составить таблицу истинности и логическую схему для данных операций
Вариант Операции

4. Индивидуальное задание. Модуль 1. «Построение логических схем по заданным булевым выражениям»

Задания к ИДЗ:

  1. В приложении 3 выбрать вариант индивидуального задания.
  2. Выполнить задание, пользуясь теоретическими сведениями
  3. Проверить логическую схему у тьютора.
  4. Оформить ИДЗ в формате А4, титульный лист по образцу Приложение 4.
  5. Результат работы предъявить преподавателю.
  6. Защитить выполненную работу у преподавателя.

Приложение 3. Таблица вариантов индивидуального задания

Варианты Составить таблицу истинности и логическую схему по формулам

Приложение 4. Титульный лист ИДЗ