Общие свойства сетей с коммутацией каналов. Несущая «0», временной интервал «0»

Глобальные связи на основе сетей с коммутацией каналов

Выделенные линии представляют собой наиболее надежное средство соединения локальных сетей через глобальные каналы связи, так как вся пропускная способность такой линии всегда находится в распоряжении взаимодействующих сетей. Однако это и наиболее дорогой вид глобальных связей - при наличии N удаленных локальных сетей, которые интенсивно обмениваются данными друг с другом, нужно иметь Nx(N-l)/2 выделенных линий. Для снижения стоимости глобального транспорта применяют динамически коммутируемые каналы, стоимость которых разделяется между многими абонентами этих каналов.

Наиболее дешевыми оказываются услуги телефонных сетей, так как их коммутаторы оплачиваются большим количеством абонентов, пользующихся телефонными услугами, а не только абонентами, которые объединяют свои локальные сети.

Телефонные сети делятся на аналоговые и цифровые в зависимости от способа мультиплексирования абонентских и магистральных каналов. Более точно, цифровыми называются сети, в которых на абонентских окончаниях информация представлена в, цифровом виде и в которых используются цифровые методы мультиплексирования и коммутации, а аналоговыми - сети, которые принимают данные от абонентов аналоговой формы, то есть от классических аналоговых телефонных аппаратов, а мультиплексирование и коммутацию осуществляют как аналоговыми методами, так и цифровыми. В последние годы происходил достаточно интенсивный процесс замены коммутаторов телефонных сетей на цифровые коммутаторы, которые работают на основе технологии TDM. Однако такая сеть по-прежнему останется аналоговой телефонной сетью, даже если все коммутаторы будут работать по технологии TDM, обрабатывая данные в цифровой форме, если абонентские окончания у нее останутся аналоговыми, а аналого-цифровое преобразование выполняется на ближней к абоненту АТС сети. Новая технология модемов V.90 смогла использовать факт существования большого количества сетей, в которых основная часть коммутаторов являются цифровыми.

К телефонным сетям с цифровыми абонентскими окончаниями относятся так называемые службы Switched 56 (коммутируемые каналы 56 Кбит/с) и цифровые сети с интегральными услугами ISDN (Intergrated Services Digital Network). Службы Switched 56 появились в ряде западных стран в результате предоставления конечным абонентам цифрового окончания, совместимого со стандартами линий Т1. Эта технология не стала международным стандартом, и сегодня она вытеснена технологией ISDN, которая такой статус имеет.

Сети ISDN рассчитаны не только на передачу голоса, но и компьютерных данных, в том числе и с помощью коммутации пакетов, за счет чего они получили название сетей с интегральными услугами. Однако основным режимом работы сетей ISDN остается режим коммутации каналов, а служба коммутации пакетов обладает слишком низкой по современным меркам скоростью - обычно до 9600 бит/с. Поэтому технология ISDN будет рассмотрена в данном разделе, посвященном сетям с коммутацией каналов. Новое поколение сетей с интеграцией услуг, названное B-ISDN (от broadband - широкополосные), основано уже целиком на технике коммутации пакетов (точнее, ячеек технологии АТМ), поэтому эта технология будет рассмотрена в разделе, посвященном сетям с коммутацией пакетов.

Классификация сетей.

По территориальной распространенности

PAN (Personal Area Network) - персональная сеть, предназначенная для взаимодействия различных устройств, принадлежащих одному владельцу.

LAN (Local Area Network) - локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин «LAN» может описывать и маленькую офисную сеть, и сеть уровня большого завода, занимающего несколько сотен гектаров. Зарубежные источники дают даже близкую оценку - около шести миль (10 км) в радиусе. Локальные сети являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью.

CAN (Campus Area Network - кампусная сеть) - объединяет локальные сети близко расположенных зданий.

MAN (Metropolitan Area Network) - городские сети между учреждениями в пределах одного или нескольких городов, связывающие много локальных вычислительных сетей.

WAN (Wide Area Network) - глобальная сеть, покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства. Пример WAN - сети с коммутацией пакетов (Frame relay), через которую могут «разговаривать» между собой различные компьютерные сети. Глобальные сети являются открытыми и ориентированы на обслуживание любых пользователей.

Термин «корпоративная сеть» также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

По типу функционального взаимодействия

Клиент-сервер,Смешанная сеть,Одноранговая сеть,Многоранговые сети

По типу сетевой топологии

Шина, Кольцо, Двойное кольцо, Звезда, Ячеистая, Решётка, Дерево, Fat Tree

По типу среды передачи

Проводные (телефонный провод, коаксиальный кабель, витая пара, волоконно-оптический кабель)

Беспроводные (передачей информации по радиоволнам в определенном частотном диапазоне)

По функциональному назначению

Сети хранения данных, Серверные фермы, Сети управления процессом, Сети SOHO, домовые сети

По скорости передач

низкоскоростные (до 10 Мбит/с), среднескоростные (до 100 Мбит/с), высокоскоростные (свыше 100 Мбит/с);

По необходимости поддержания постоянного соединения

Пакетная сеть, например Фидонет и UUCP, Онлайновая сеть, например Интернет и GSM

Сети с коммутацией каналов

Одним из важнейших вопросов в компьютерных сетях является вопрос о коммутации. В понятие коммутация входит:

1. механизм распределения маршрута при передаче данных

2. синхронное использование канала связи

Об одном из способов решения задачи коммутации мы и поговорим, а именно о сетях с коммутацией каналов. Но нужно заметить, что это не единственный способ решения стоящей задачи в компьютерных сетях. Но перейдем ближе к сути вопроса. Сети с коммутацией каналов образуют между конечными узлами общий и неразрывный физический участок (канал) связи, через который проходят данных с одинаковой скоростью. Надо заметить, что одинаковая скорость достигается из-за отсутствия "остановки" на отдельных участках, так как маршрут заранее известен.

Установка связи в сетях с коммутацией каналов всегда начинается первой, ведь нельзя проложить маршрут к нужной цели, не подключившись. А после установки соединения можно смело передавать нужные данные. Давайте взглянем на преимущества сетей с коммутацией каналов:

1. скорость при передаче данных всегда одна и таже

2. нет задержки на узлах при передачи данных, что важно при различных On-line событиях (конференции, общение, видео-трансляции)

Ну а теперь и о недостатках надо сказать пару слов:

1. не всегда можно установить соединение, т.е. иной раз сеть может быть занята

2. мы не может сразу передавать данные без предварительной установки связи, т.е. теряется время

3. не очень эффективное использование физических каналов связи

Про последний минус поясню: при создании физического канала связи мы полностью занимаем все линию, не оставляя возможности другим подключиться к ней.

В свою очередь сети с коммутацией каналов разделяются на 2 типа, использующих разных технологических подход:

1. коммутация каналов на основе частотного мультиплексирования (FDM)

Схема работы такова:

1. на входы коммутатора каждый пользователь передает сигнал

2. все сигналы с с помощью коммутатора заполняют полосы ΔF методом частотной модуляции сигнала

2. коммутация каналов на основе временного мультиплексирования (TDM)

Принцип коммутации каналов на основе временно мультиплексирования достаточно просто. Он основан на временном разделении, т.е. поочередно происходит обслуживание каждого из каналов связи, причем отрезок времени, для отправки сигнала абоненту, строго определен.

3.Коммутация пакетов
Эта техника коммутации была специально разработана для эффективной передачи компьютерного трафика. Первые шаги на пути создания компьютерных сетей на основе техники коммутации каналов показали, что этот вид коммутации не позволяет достичь высокой общей пропускной способности сети. Типичные сетевые приложения генерируют трафик очень неравномерно, с высоким уровнем пульсации скорости передачи данных. Например, при обращении к удаленному файловому серверу пользователь сначала просматривает содержимое каталога этого сервера, что порождает передачу небольшого объема данных. Затем он открывает требуемый файл в текстовом редакторе, и эта операция может создать достаточно интенсивный обмен данными, особенно если файл содержит объемные графические включения. После отображения нескольких страниц файла пользователь некоторое время работает с ними локально, что вообще не требует передачи данных по сети, а затем возвращает модифицированные копии страниц на сервер - и это снова порождает интенсивную передачу данных по сети.

Коэффициент пульсации трафика отдельного пользователя сети, равный отношению средней интенсивности обмена данными к максимально возможной, может достигать 1:50 или даже 1:100. Если для описанной сессии организовать коммутацию канала между компьютером пользователя и сервером, то большую часть времени канал будет простаивать. В то же время коммутационные возможности сети будут закреплены за данной парой абонентов и будут недоступны другим пользователям сети.

При коммутации пакетов все передаваемые пользователем сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Напомним, что сообщением называется логически завершенная порция данных - запрос на передачу файла, ответ на этот запрос, содержащий весь файл и т.д. Сообщения могут иметь произвольную длину, от нескольких байт до многих мегабайт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт. Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета на узел назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения (рис. 3). Пакеты транспортируются по сети как независимые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге - узлу назначения.

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета (рис. 3). В этом случае пакет находится некоторое время в очереди пакетов в буферной памяти выходного порта, а когда до него дойдет очередь, он передается следующему коммутатору. Такая схема передачи данных позволяет сглаживать пульсацию трафика на магистральных связях между коммутаторами и тем самым наиболее эффективно использовать их для повышения пропускной способности сети в целом.

Действительно, для пары абонентов наиболее эффективным было бы предоставление им в единоличное пользование скоммутированного канала связи, как это делается в сетях с коммутацией каналов. В таком случае время взаимодействия этой пары абонентов было бы минимальным, так как данные без задержек передавались бы от одного абонента другому. Простои канала во время пауз передачи абонентов не интересуют, для них важно быстрее решить свою задачу. Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов, так как их пакеты могут ожидать в коммутаторах, пока по магистральным связям передаются другие пакеты, пришедшие в коммутатор ранее.

Тем не менее, общий объем передаваемых сетью компьютерных данных в единицу времени при технике коммутации пакетов будет выше, чем при технике коммутации каналов. Это происходит потому, что пульсации отдельных абонентов в соответствии с законом больших чисел распределяются во времени так, что их пики не совпадают. Поэтому коммутаторы постоянно и достаточно равномерно загружены работой, если число обслуживаемых ими абонентов действительно велико. На рис. 4 показано, что трафик, поступающий от конечных узлов на коммутаторы, распределен во времени очень неравномерно. Однако коммутаторы более высокого уровня иерархии, которые обслуживают соединения между коммутаторами нижнего уровня, загружены более равномерно, и поток пакетов в магистральных каналах, соединяющих коммутаторы верхнего уровня, имеет почти максимальный коэффициент использования. Буферизация сглаживает пульсации, поэтому коэффициент пульсации на магистральных каналах гораздо ниже, чем на каналах абонентского доступа - он может быть равным 1:10 или даже 1:2.

Более высокая эффективность сетей с коммутацией пакетов по сравнению с сетями с коммутацией каналов (при равной пропускной способности каналов связи) была доказана в 60-е годы как экспериментально, так и с помощью имитационного моделирования. Здесь уместна аналогия с мультипрограммными операционными системами. Каждая отдельная программа в такой системе выполняется дольше, чем в однопрограммной системе, когда программе выделяется все процессорное время, пока ее выполнение не завершится. Однако общее число программ, выполняемых за единицу времени, в мультипрограммной системе больше, чем в однопрограммной.
Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов, но повышает пропускную способность сети в целом.

Задержки в источнике передачи:

· время на передачу заголовков;

· задержки, вызванные интервалами между передачей каждого следующего пакета.

Задержки в каждом коммутаторе:

· время буферизации пакета;

· время коммутации, которое складывается из:

o времени ожидания пакета в очереди (переменная величина);

o времени перемещения пакета в выходной порт.

Достоинства коммутации пакетов

1. Высокая общая пропускная способность сети при передаче пульсирующего трафика.

2. Возможность динамически перераспределять пропускную способность физических каналов связи между абонентами в соответствии с реальными потребностями их трафика.

Недостатки коммутации пакетов

1. Неопределенность скорости передачи данных между абонентами сети, обусловленная тем, что задержки в очередях буферов коммутаторов сети зависят от общей загрузки сети.

2. Переменная величина задержки пакетов данных, которая может быть достаточно продолжительной в моменты мгновенных перегрузок сети.

3. Возможные потери данных из-за переполнения буферов.
В настоящее время активно разрабатываются и внедряются методы, позволяющие преодолеть указанные недостатки, которые особенно остро проявляются для чувствительного к задержкам трафика, требующего при этом постоянной скорости передачи. Такие методы называются методами обеспечения качества обслуживания (Quality of Service, QoS).

Сети с коммутацией пакетов, в которых реализованы методы обеспечения качества обслуживания, позволяют одновременно передавать различные виды трафика, в том числе такие важные как телефонный и компьютерный. Поэтому методы коммутации пакетов сегодня считаются наиболее перспективными для построения конвергентной сети, которая обеспечит комплексные качественные услуги для абонентов любого типа. Тем не менее, нельзя сбрасывать со счетов и методы коммутации каналов. Сегодня они не только с успехом работают в традиционных телефонных сетях, но и широко применяются для образования высокоскоростных постоянных соединений в так называемых первичных (опорных) сетях технологий SDH и DWDM, которые используются для создания магистральных физических каналов между коммутаторами телефонных или компьютерных сетей. В будущем вполне возможно появление новых технологий коммутации, в том или ином виде комбинирующих принципы коммутации пакетов и каналов.

4.VPN (англ. Virtual Private Network - виртуальная частная сеть ) - обобщённое название технологий, позволяющих обеспечить одно или несколько сетевых соединений (логическую сеть) поверх другой сети (например, Интернет). Несмотря на то, что коммуникации осуществляются по сетям с меньшим неизвестным уровнем доверия (например, по публичным сетям), уровень доверия к построенной логической сети не зависит от уровня доверия к базовым сетям благодаря использованию средств криптографии (шифрования, аутентификации, инфраструктуры открытых ключей, средств для защиты от повторов и изменений передаваемых по логической сети сообщений).

В зависимости от применяемых протоколов и назначения, VPN может обеспечивать соединения трёх видов: узел-узел ,узел-сеть и сеть-сеть . Обычно VPN развёртывают на уровнях не выше сетевого, так как применение криптографии на этих уровнях позволяет использовать в неизменном виде транспортные протоколы (такие какTCP, UDP).

Пользователи Microsoft Windows обозначают термином VPN одну из реализаций виртуальной сети - PPTP, причём используемую зачастую не для создания частных сетей.

Чаще всего для создания виртуальной сети используется инкапсуляция протокола PPP в какой-нибудь другой протокол - IP (такой способ использует реализация PPTP - Point-to-Point Tunneling Protocol) или Ethernet (PPPoE) (хотя и они имеют различия). Технология VPN в последнее время используется не только для создания собственно частных сетей, но и некоторымипровайдерами «последней мили» на постсоветском пространстве для предоставления выхода в Интернет.

При должном уровне реализации и использовании специального программного обеспечения сеть VPN может обеспечить высокий уровень шифрования передаваемой информации. При правильной настройке всех компонентов технология VPN обеспечивает анонимность в Сети.

VPN состоит из двух частей: «внутренняя» (подконтрольная) сеть, которых может быть несколько, и «внешняя» сеть, по которой проходит инкапсулированное соединение (обычно используется Интернет). Возможно также подключение к виртуальной сети отдельного компьютера. Подключение удалённого пользователя к VPN производится посредством сервера доступа, который подключён как к внутренней, так и к внешней (общедоступной) сети. При подключении удалённого пользователя (либо при установке соединения с другой защищённой сетью) сервер доступа требует прохождения процесса идентификации, а затем процесса аутентификации. После успешного прохождения обоих процессов, удалённый пользователь (удаленная сеть) наделяется полномочиями для работы в сети, то есть происходит процесс авторизации. Классифицировать VPN решения можно по нескольким основным параметрам:

[править]По степени защищенности используемой среды

Защищённые

Наиболее распространённый вариант виртуальных частных сетей. С его помощью возможно создать надежную и защищенную сеть на основе ненадёжной сети, как правило, Интернета. Примером защищённых VPN являются: IPSec, OpenVPN и PPTP.

Доверительные

Используются в случаях, когда передающую среду можно считать надёжной и необходимо решить лишь задачу создания виртуальной подсети в рамках большей сети. Проблемы безопасности становятся неактуальными. Примерами подобных VPN решений являются: Multi-protocol label switching (MPLS) и L2TP (Layer 2 Tunnelling Protocol) (точнее сказать, что эти протоколы перекладывают задачу обеспечения безопасности на другие, например L2TP, как правило, используется в паре с IPSec).

[править]По способу реализации

В виде специального программно-аппаратного обеспечения

Реализация VPN сети осуществляется при помощи специального комплекса программно-аппаратных средств. Такая реализация обеспечивает высокую производительность и, как правило, высокую степень защищённости.

В виде программного решения

Используют персональный компьютер со специальным программным обеспечением, обеспечивающим функциональность VPN.

Интегрированное решение

Функциональность VPN обеспечивает комплекс, решающий также задачи фильтрации сетевого трафика, организации сетевого экрана и обеспечения качества обслуживания.

[править]По назначению

Используют для объединения в единую защищённую сеть нескольких распределённых филиалов одной организации, обменивающихся данными по открытым каналам связи.

Remote Access VPN

Используют для создания защищённого канала между сегментом корпоративной сети (центральным офисом или филиалом) и одиночным пользователем, который, работая дома, подключается к корпоративным ресурсам с домашнего компьютера, корпоративного ноутбука, смартфона или интернет-киоскa.

Используют для сетей, к которым подключаются «внешние» пользователи (например, заказчики или клиенты). Уровень доверия к ним намного ниже, чем к сотрудникам компании, поэтому требуется обеспечение специальных «рубежей» защиты, предотвращающих или ограничивающих доступ последних к особо ценной, конфиденциальной информации.

Используется для предоставления доступа к интернету провайдерами, обычно в случае если по одному физическому каналу подключаются несколько пользователей.

Client/Server VPN

Он обеспечивает защиту передаваемых данных между двумя узлами (не сетями) корпоративной сети. Особенность данного варианта в том, что VPN строится между узлами, находящимися, как правило, в одном сегменте сети, например, между рабочей станцией и сервером. Такая необходимость очень часто возникает в тех случаях, когда в одной физической сети необходимо создать несколько логических сетей. Например, когда надо разделить трафик между финансовым департаментом и отделом кадров, обращающихся к серверам, находящимся в одном физическом сегменте. Этот вариант похож на технологию VLAN, но вместо разделения трафика, используется его шифрование.

[править]По типу протокола

Существуют реализации виртуальных частных сетей под TCP/IP, IPX и AppleTalk. Но на сегодняшний день наблюдается тенденция к всеобщему переходу на протокол TCP/IP, и абсолютное большинство VPN решений поддерживает именно его. Адресация в нём чаще всего выбирается в соответствии со стандартом RFC5735, из диапазона Приватных сетей TCP/IP

[править]По уровню сетевого протокола

По уровню сетевого протокола на основе сопоставления с уровнями эталонной сетевой модели ISO/OSI.

5. Эталонная модель OSI, иногда называемая стеком OSI представляет собой 7-уровневую сетевую иерархию (рис. 1) разработанную Международной организацией по стандартам (International Standardization Organization - ISO). Эта модель содержит в себе по сути 2 различных модели:

· горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах

· вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине

В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной - соседние уровни обмениваются данными с использованием интерфейсов API.


Похожая информация.


ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Государственное образовательное бюджетное учреждение

высшего профессионального образования

Московский технический университет связи и информатики

Кафедра сетей связи и систем коммутации

Методические указания

и контрольные задания

по дисциплине

СИСТЕМЫ КОММУТАЦИИ

для студентов заочной формы обучения 4 курса

(направление 210700, профиль - СС)

Москва 2014

План УМД на 2014/2015 уч.г.

Методические указания и контрольные

по дисциплине

СИСТЕМЫ КОММУТАЦИИ

Составитель: Степанова И.В., профессор

Издание стереотипное. Утверждено на заседании кафедры

Сети связи и системы коммутации

Рецензент Маликова Е.Е., доцент

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО КУРСУ

Дисциплина «Системы коммутации» часть вторая изучается на втором семестре четвертого курса студентами заочного факультета специальности 210406 и является продолжением и дальнейшим углублением аналогичной дисциплины, изучаемой студентами на предыдущем семестре.

В данной части курса рассмат­риваются принципы обмена информацией управления и взаимодействия между системами коммутации, основы проектирования цифровых систем ком­мутации (ЦСК).

По курсу читаются лекции, выполняются курсовой проект и лаборатор­ные работы. Сдается экзамен и защищается курсовой проект. Самостоятель­ная работа по освоению курса заключается в проработке материала учебника и учебных пособий, рекомендованных в методических указаниях, и в выпол­нении курсового проекта.

Если у студента при изучении рекомендованной литературы возникнут затруднения, то вы можете обратиться на кафедру сетей связи и систем коммутации с целью получения необходимой консультации. Для этого в письме не­обходимо указать название книги, год издания и страницы, где изложен не­ясный материал. Курс следует изучать последовательно, тема за темой, как это рекомендовано в методических указаниях. При таком изучении к сле­дующему разделу курса следует переходить после того, как вы ответите на все контрольные вопросы, являющиеся вопросами экзаменационных биле­тов, и решите рекомендованные задачи.

Распределение времени в часах студента для изучения дисциплины «Системы коммутации», часть 2, приведено в таблице 1.

СПИСОК ЛИТЕРАТУРЫ

Основная

1.Гольдштейн Б.С. Системы коммутации. – СПб.:БХВ – Санкт-Петербург, 2003. – 318 с.: ил.

2. Лагутин В. С., Попова А. Г., Степанова И. В. Цифровые системы коммутации каналов в телекоммуникационных сетях связи. – М., 2008. - 214с.

Дополнительная

3.Лагутин В.С., Попова А.Г., Степанова И.В. Подсистема пользователя телефонии для сигнализации по общему каналу. – М. «Радио и связь», 1998.–58 с.

4. Лагутин В.С., Попова А.Г., Степанова И.В. Эволюция интеллектуальных служб в конвергентных сетях. – М.,2008. – 120с.

ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ РАБОТ

1. Сигнализация 2ВСК и R 1,5, сценарий обмена сигналами между двумя АТС.

2.Управление абонентскими данными на цифровой АТС. Анализ аварийных сообщений цифровой АТС.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО РАЗДЕЛАМ КУРСА

Особенности построения цифровых систем коммутации каналов

Следует изучить особенности построения систем коммутации каналов на примере цифровой АТС типа EWSD. Рассмотреть характеристики и функции цифровых блоков абонентского доступа DLU, реализацию удаленного абонентского доступа. Рассмотреть характеристики и функции линейной группы LTG. Изучить построение коммутационного поля и типовой процесс установления соединения .

Цифровая система коммутации EWSD (Digital Electronic Switching System) разработана фирмой Siemens как универсальная система коммутации каналов для телефонных сетей общего пользования. Пропускная способность коммутационного поля системы EWSD состав­ляет 25200 Эрланг. Число обслуженных вызовов в ЧНН может достигать 1 млн. вызовов. Система EWSD при использовании в качестве АТС позволяет подключать до 250 тысяч абонентских линий. Узел связи на базе этой системы позволяет коммутировать до 60 тысяч соединительных линий. Телефонные станции в контейнерном исполнении позволяют подключать от нескольких сотен до 6000 удаленных абонентов. Выпускаются коммутационные центры для сотовых сетей связи и для организации международной связи. Предусмотрены широкие возможности ор­ганизации путей второго выбора: до семи путей прямого выбора плюс один путь последнего выбора. Могут выделяться до 127 тарифных зон. В течение одного дня тариф может меняться до восьми раз. Генератор­ное оборудование обеспечивает высокую степень стабильности выраба­тываемых частотных последовательностей:

в плезиохронном режиме – 1 10 -9 , в синхронном режиме –1 10 -11 .

Система EWSD рассчитана на использование источни­ков электропитания -60В или -48В. Допускается из­менение температуры в диапазоне 5-40 ° С при влажности 10-80%.

Аппаратные средства EWSD подразделяются на пять основных подсистем (см. рис.1): цифровой абонентский блок (DLU); линейная группа (LTG); коммутационное поле (SN); управляющее устройство сети сигнализации по общему каналу (CCNC); координационный процессор (СР). Каждая подсистема имеет хотя бы один микропроцессор, обозначенный GP. Используются системы сигнализации R1,5 (зарубежный вариант R2), по общему каналу сигнализации №7 SS7 и ЕDSS1. Цифровые абонентские блоки DLU обслуживают: аналоговые абонентские линии; абонентские линии пользователей цифровых сетей с интеграцией служб (ISDN); аналоговые учрежденческие подстанции (УПАТС); цифровые УПАТС. Блоки DLU обеспечивают возможность включения аналоговых и цифровых телефонных аппаратов, многофункциональных терминалов ISDN. Пользователям ISDN предоставляются каналы (2B+D), где В=64 кбит/с - стандартный канал аппаратуры ИКМ30/32, D-канал передачи сигнализации со скоростью 16 кбит/с. Для передачи информации между EWSD и другими системами коммутации используются первичные цифровые соединительные линии (ЦСЛ, англ. РDС) - (30В+1D+синхронизация) на скорости передачи 2048 кбит/с (или на скорости 1544 кбит/с в США).




Рис.1. Структурная схема системы коммутации EWSD

Может использоваться локальный или дистан­ционный режим работы DLU. Удаленные блоки DLU устанавливаются в местах концентрации абонентов. При этом уменьшается длина абонентских линий, а трафик на цифровых соединительных линиях концентри­руется, что приводит к уменьшению затрат на органи­зацию сети распределения и повышает качество передачи.

Применительно к або­нентским линиям допустимым считается сопротивление шлейфа до 2 кОм и сопротивление изоляции - до 20 кОм. Система коммутации мо­жет воспринимать импульсы набора номера от дискового номеронаби­рателя, поступающие со скоростью 5-22 имп/с. Прием сигналов частотно­го набора номера ведется в соответствии с Рекомендацией ССITТ REC.Q.23.

Высокий уровень надежности обеспечивается за счет: подключения каждого DLU к двум LTG; дублирования всех блоков DLU с разделением нагрузки; непрерывно выполняемых тестов самоконтроля. Для передачи управляющей информации между DLU и линейными группами LTG используется сигнализация по общему ка­налу (CCS) по временному каналу номер 16.

Главными элементами DLU являются (рис.2):

модули абонентских линий (SLM) вида SLMA для подключения аналоговых абонентских линий и вида SLMD для подключения абонентских линий ISDN;

два цифровых интерфейса (DIUD) для подключения цифровых систем передачи (PDC) к линейным группам;

два уст­ройства управления (DLUC), управляющих внутренними последовательностями DLU, распределяющих или концентрирующих сигнальные потоки, идущие к абонентским комплектам и от них. Для обеспечения надежности и повышения пропускной способности DLU содержит два контроллера DLUC. Они работают независимо друг от друга в режиме разделения задач. При отказе первого DLUC второй может принять на себя управление всеми задачами;

две сети управления для передачи управляющей информации между модулями абонентских линий и управляющими устройствами;

испытатель­ный блок (TU) для тестирования телефонов, абонентских и соединитель­ных линий.

Характеристики DLU изменяются при переходе от одной модификации к другой. Например, вариант DLUB предусматривает использование модулей аналоговых и цифровых абонентских комплектов с 16 комплектами в каждом модуле. К отдельному абонентскому блоку DLUB можно подключить до 880 аналоговых абонентских линий, а он подключается к LTG с помощью 60 каналов ИКМ (4096 Кбит/с). При этом потери из-за недостатка каналов должны быть практически равны нулю. Для выполнения этого условия пропускная способность одного DLUB не должна превышать 100 Эрл. Если окажется, что средняя нагрузка на один модуль больше 100 Эрл, то следует уменьшать число абонентских линий, включаемых в один DLUB. Могут быть объединены до 6 блоков DLUB в удаленный блок управления (RCU).

В таблице 1 представлены технические характеристики цифрового абонентского блока более современной модификации DLUG.


Таблица 1.Технические характеристики цифрового абонентского блока DLUG

При помощи отдельных линий могут подключаться монетные таксофоны, аналоговые учрежденческо-производственные автоматические телефонные станции РВХ (Private Automatic Branch Exchange) и цифровые РВХ малой и средней емкости.

Перечислим часть наиболее важных функций модуля абонентских комплектов SLMA для подключения аналоговых абонентских линий:

контроль линий для обнаружения новых вызовов;

питание постоянным напряжением с регулируемыми значениями тока;

аналого-цифровые и цифро-аналоговые преоб­разователи;

симметричное подключение вызывных сигналов;

контроль коротких замыканий шлейфа и коротких замыканий на землю;

прием импульсов декадного набора номера и при частотном наборе;

смена полярности питания (переполюсовка проводов для таксофонов);

подключение линейной стороны и стороны абонентского комплекта к многопозиционному тестовому переключателю, защита от перенапряжений;

развязка речевых сигналов по постоянному току;

преобразование двухпроводной линии связи в четырехпроводную линию.

Обращение к функциональным блокам, оборудованным соб­ственными микропроцессорами, осуществляется через сеть управления DLU. Блоки опрашиваются циклически на предмет готовности передачи сообщений, к ним осуществляется прямой доступ для передачи команд и данных. DLUC выполняет также программы испытания и наблюдения с целью распознавания ошибок.

Существуют следующие системы шин DLU: шины управления; шины 4096 кбит/с; шины обнаружения столкновений; шины передачи вызывных сигналов и тарифных импульсов. Сигналы, передаваемые по шинам, синхронизируются тактовыми импульсами. По шинам управления передается управляющая информация со скоростью передачи 187,5 кбит/с; причем эффективная скорость передачи данных составляет примерно 136 кбит/с.

По шинам 4096 кбит/с передаются речь/данные в модули абонентских линий SLM и обратно. Каждая шина имеет в обоих направлениях по 64 канала.

Каждый канал функционирует со скоростью передачи 64 кбит/с (64 х 64 кбит/с = 4096 кбит/с). Назначение каналов шин 4096 кбит/с каналам РDС является фиксированным и определяется через DIUD (см. рис.3). Подклю­чение DLU к линейным группам типа В, F или G (соответственно, типы LTGB, LTGF или LTGG) осуществляется по мультиплексным линиям 2048 кбит/с. DLU может подключаться к двум LTGB, двум LTGF (B) или к двум LTGG.

Линейная группа Line /Trunk Groupe (LTG) образует интерфейс между цифровой средой узла и цифровым коммутационным полем SN (рис.4). Группы LTG выполняют функ­ции децентрализованного управления и освобождают коор­динационный процессор CP от рутинной работы. Соединения между LTG и дублированным коммутационным полем осуществляются по вторичной цифровой линии связи (SDC). Скорость передачи по SDC в направлении от группы LTG к полю SN и в обратном направлении составляет 8192 кбит/с (сокращенно 8 Мбит/с).

Рис.3. Мультиплексирование, демультиплексирование и

передача управляющей информации в DLUC

Рис.4. Различные варианты доступа к LTG

Каждая из этих мультиплексных систем 8 Мбит/с имеет 127 временных интервалов со скоростью 64 кбит/с в каждом для переноса полезной информации, а один временной интервал со скоростью 64 кбит/с используется для передачи сообщений. Группа LTG передает и принимает речевую информацию через обе стороны коммутационного поля (SN0 и SN1), выполняя назначение соответствующему абоненту речевой информации из активного блока коммутационного поля. Другая сторона поля SN рассматривается как неактивная. При возникновении отказа через нее сразу начинаются передача и прием пользовательской информации. Напряжение электропитания LTG составляет +5В.

В LTG реализуются следующие функции обработки вызовов:

прием и интерпретация сигналов, поступающих по соединительным и
абонентским линиям;

передача сигнальной информации;

передача акустических тональных сигналов;

передача и прием сообщений в/из координационный процессор (СР);

передача отчетов в групповые процессоры (GP) и прием отчетов из
групповых процессоров других LTG (см. рис.1);

передача и прием запросов в/из контроллер сети сигнализации по общему каналу (CCNC);

управление сигнализацией, поступающей в DLU;

согласование состояний на линиях с состояниями стандартного интерфейса 8 Мбит/с с дублированным коммутационным полем SN;

установление соединений для передачи пользовательской информации.

Для реализации различных типов линий и способов сигнализации используются несколько типов LTG. Они отличаются реализацией аппаратных блоков и конкретными прикладными программами в групповом процессоре (СP). Блоки LTG имеют большое число модификаций, отличающихся использованием и возможностями. Например, блок LTG функции В используется для подключения: до 4 первичных цифровых линий связи вида PCM30 (ИКМ30/32) со скоростями передачи 2048 кбит/с; до 2 цифровых линий связи со скоростью передачи 4096 кбит/с для ло­кального доступа DLU.

Блок LTG функции С используется для подключения до 4 первичных цифровых линий связи со скоростями 2048 кбит/с.

В зависимости от назначения LTG (В или С) имеются различия в функциональном исполнении LTG, например, в программном обеспечении группового процессора. Исключение составляют современные модули LTGN, которые являются универсальными, и для того, чтобы изменить их функциональное назначение, необходимо «пересоздать» их программно с другой загрузкой (см. табл.2 и рис.4).

Табл.2. Технические характеристики линейной группы N (LTGN)

Как показано на рис.5, помимо стандартных интерфейсов 2 Мбит/с (РСМЗ0) система EWSD обеспечивает внешний системный интерфейс с более высокой скоростью передачи (155 Мбит/с) с мультиплексорами вида STM-1 сети синхронной цифровой иерархии SDH на волоконно-оптических линиях связи. Используется оконечный мультиплексор типа N (синхронный двойной оконечный мультиплексор, SMT1D-N) устанавливаемый на стативе LTGM.

Мультиплексор SMT1D-N может быть представлен в виде базовой конфигурации с 1xSTM1 интерфейсом (60хРСМЗ0) или в виде полной конфигурации с 2xSTM1 интерфейсами (120хРСМЗ0).

Рис.5. Включение SMT1 D-N в сеть

Коммутационное поле SN системы коммутации EWSD соединяет друг с другом подсистемы LTG, CP и CCNC. Главная его задача состоит в установлении соединений между группами LTG. Ка­ждое соединение одновременно устанавливается через обе половины (плоскости) коммутационного поля SN0 и SN1, так что в случае отказа одной из сторон поля всегда имеется резервное соединение. В системах коммутации типа EWSD могут применяться два типа коммутационного поля: SN и SN(B). Коммутационное поле типа SN(B) представляет собой новую разработку и отличается меньшими размерами, более высокой доступностью, снижением потребляемой мощности. Предусмотрены различные ва­рианты организации SN и SN(B):

коммутационное поле на 504 линейные группы (SN:504 LTG);

коммутационное поле на 1260 линейных групп(SN:1260 LTG);

коммутационное поле на 252 линейные группы (SN:252 LTG);

коммутационное поле на 63 линейные группы (SN:63 LTG).

Основными функциями коммутационного поля являются:

коммутация каналов; коммутация сообщений; переключение на резерв.

Коммутационное поле осуществляет коммутацию каналов и соединений со скоростью передачи 64 кбит/с (см. рис. 6). Для каждого соединения необходимы два соединительных пути (например, от вызывающего абонента к вызываемому и от вызываемого абонента к вызывающему). Координационный процессор осуществляет поиск свободных путей через коммутационное поле на основе хранимой в данный момент в запоминающем устройстве информации о занятости соединительных путей. Коммутация соединительных путей осуществляется управляющими устройствами коммутационной группы.

Каждое коммутационное поле имеет собственное управляющее устройство, состоящее из управляющего устройства коммутационной группы (SGC) и модуля интерфейса между SGC и блока буфера сообщений MBU:SGC. При минимальной емкости ступени 63 LTG в коммутации соединительного пути задействовано одно SGC коммутационной группы, однако при емкостях ступеней с 504, 252 или 126 LTG используются два или три SGC. Это зависит от того, соединяются ли абоненты с одной и той же группой временной коммутации TS или нет. Команды для установления соединения задаются каждому задействованному GP коммутационной группы процессором СР.

Кроме соединений, задаваемых абонентами путем набора номера, коммутационное поле коммутирует соединения между линейными группами и координационным процессором СР. Эти соединения используются для обмена управляющей информацией и называются полупостоянными коммутируемыми соединениями. Благодаря этим соединениям производится обмен сообщениями между линейными группами без затраты ресурсов блока координационного процессора. Некоммутируемые (nailed-up) соединения и соединения для сигнализации по общему каналу устанавливаются также по принципу полупостоянных соединений.

Коммутационное поле в системе EWSD характеризуется полной доступностью. Это означает, что каждое 8-разрядное кодовое слово, передаваемое по магистрали, входящей в коммутационное поле, может быть передано в любом другом временном интервале по магистрали, исходящей из коммутационного поля. Во всех магистралях со скоростью передачи 8192 кбит/с имеется по 128 каналов с пропускной способностью передачи 64 кбит/с каждый (128х64 =8192 кбит/с). Ступени коммутационного поля емкостью SN:504 LTG, SN:252 LTG, SN:126 LTG имеют следующую структуру:

одна ступень временной коммутации, входящая (TSI);

три ступени пространственной коммутации (SSM);

одна ступень временной коммутации, исходящая (TSO).

В состав станций малой и средней (SN:63LTG) входят:

одна входящая ступень временной коммутации (TSI);

одна ступень пространственной коммутации (SS);

одна исходящая ступень временной коммутации (TSО).

Рис.6. Пример установления соединения в коммутационном поле SN

Координационный процессор 113 (СР113 или СР113С) представляет собой мультипроцессор, емкость которого наращивается ступенями.В мультипроцессоре СР113С два или несколько идентичных процессоров работают параллельно с разделением нагруз­ки. Главными функциональными блоками мультипроцессора являются: основной процессор (ВАР) для обработки вызовов, эксплуатации и технического обслужива­ния; процессор обработки вызовов (CAP), предназначенный для обработки вызовов; общее запоминающее устрой­ство (CMY); контроллер ввода/вывода (IOC); процессор ввода/вывода (IOР). Каждый процессор ВАР, CAP и IOР содержит один модуль выполнения программы (РЕХ). В зависимости от того, должны ли они быть реализованы в качестве процессоров ВАР, процессоров CAP или контроллеров I0С активизируются специфичные аппаратные функции.

Перечислим основные технические данные ВАР, CAP и IOC. Тип процессора - MC68040, тактовая частота -25МГц, разрядность адреса 32 бита и разрядность данных 32 бита, разрядность слова - 32 бита данных. Данные локальной памяти: расширение - максимум 64 Мбайт (на основе DRAM 16M бит); ступень расширения 16Мбайт. Данные флэш-памяти EPROM: расширение 4 Мбайт. Координационный процессор СР выполняет следующие функции: обработку вы­зовов (анализ цифр номера, управление маршрутизацией, выбор зоны обслуживания, выбор пути в коммутационном поле, учет стоимости разговоров, управление данными о трафике, управление сетью); эксплуатацию и техническое обслуживание - осуществление ввода во внешние запоминающие устройства (ЕМ) и вывода от них, связь с тер­миналом эксплуатации и техобслуживания (ОМТ), связь с процессором передачи данных (DCP). 13


На панель SYP (см. рис.1) выводится внеш­няя аварийная сигнализация, например, информация о пожаре. Внешняя память ЕМ используется для хранения программ и данных, которые не должны постоянно хра­ниться в СР, всей системы прикладных программ для автоматического восстановления данных по тарификации телефонных разговоров и изменению трафика.

Программное обеспечение (ПО) ориентировано на выполнение определенных задач, соответствующих подсистемам EWSD. Операционная система (ОС) состоит из программ приближенных к аппаратным средствам и являющихся обычно одинаковыми для всех систем коммутации.

Максимальная производительность СР по обработке вызо­вов составляет свыше 2700000 вызовов в час наибольшей нагрузки. Характеристики CP системы EWSD: ем­кость запоминающего устройства - до 64 Мбайт; емкость адресации - до 4 Гбайт; магнитная лента - до 4 устройств, по 80 Мбайт каждое; магнитный диск - до 4 устройств, по 337 Мбайт каждое.

Задачей буфера сообщений Message Buffer (МВ) является управление обменом сообщениями:

между координационным процессором СР113, и группами LTG;

между СР113 и контроллерами коммутационных групп SGCB) коммутационного поля;

между группами LTG;

между группами LTG и контроллером сети сигнализации по общему каналу CCNC.

Через МВ могут быть переданы следующие типы информации:

сообщения посылаются от DLU, LTG и SN к координационному процессору СР113;

отчеты посылаются от одного LTG к другому (отчеты маршрутизируются через СР113, но не обрабатываются им);

инструкции посылаются от CCNC к LTG и от LTG к CCNC, они маршрутизируются через СР113, но не обрабатываются им;

команды посылаются от СР113 к LTG и SN. МВ преобразует информацию для передачи через вторичный цифровой поток (SDC) и посылает ее в LTG и SGC.

В зависимости от ступени емкости, дублированное устройство МВ может содержать до четырех групп буферов сообщений (MBG). Эта возможность реализована в сетевом узле с избыточностью, то есть в состав МВ0 входят группы MBG00...MBG03, а в состав МВ1 - группы MBG10...MBG13.

Системы коммутации EWSD с сигнализацией по общему каналу по системе № 7 оборудованы управляющим уст­ройством сети сигнализации по общему каналу ССNС . К устройству CCNC можно подключить до 254 звеньев сигнализации через аналого­вые или цифровые линии связи.

Устройство CCNC подключается к коммутационному полю по уплотненным линиям, имеющим скорость пе­редачи 8 Мбит/с. Между CCNC и каждой плоскостью коммутационного поля имеется 254 канала для каждого направления передачи (254 па­ры каналов).

По каналам передаются данные сигнализации через обе плоскости SN к линейным группам и от них со скоростью 64 кбит/с. Аналоговые сигнальные тракты подключаются к CCNC через модемы. CCNC состоит: из максимально 32 групп с 8 оконечными устройствами сигнальных трактов каждая (32 группы SILT); одного дублированного процессора системы сигнализации по общему каналу (CCNP).

Контрольные вопросы

1.В каком блоке выполняется аналого-цифровое преобразование?

2. Сколько аналоговых абонентских линий может быть максимально включено в DLUB? На какую пропускную способность рассчитан этот блок?

3. На какой скорости передается информация между DLU и LTG, между LTG и SN?

4. Перечислите основные функции коммутационного поля. На какой скорости реализуется соединение между абонентами.

5. Перечислите варианты организации коммутационного поля системы EWSD.

6. Перечислите основные ступени коммутации с коммутационном поле.

7.Рассмотрите прохождение разговорного тракта через коммутационное поле системы коммутации EWSD.

8. Какие функции обработки вызова реализуются в блоках LTG?

9. Какие функции реализует бок МВ?


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11

ПО ДИСЦИПЛИНЕ “ЦИФРОВЫЕ СИСТЕМЫ КОММУТАЦИИ И ИХ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Литература:

1.”Автоматическая коммутация” под ред. О.Н.Ивановой, 1988г.

2. М.А.Баркун. “Цифровые АТС”, 1990

3. Г.В.Мелик-Шахназарова и др. “АТС МТ-20/25”, 1988

4. Р.А.Аваков и др. “Зарубежные электронные цифровые системы коммутации”, 1988г.

5. В.Д.Сафронов и др. “Зарубежные электронные цифровые системы коммута- ции”, ч.2, 1989

6. А.Г.Попова и др. “Зарубежные системы автоматической коммутации”,1991

7. В.Г.Босенко “Цифровая АТСЭ-200”, 1989

8. А.Г.Попова “Цифровые системы коммутации с распределенным управлением” ч.1 и 2, 1992

9.О.Н.Иванова “АТСЭ-200”, 1988

10. М.Ф.Лутов и др. “Квазиэлектронные и электронные АТС”, 1988

11. Alcatel-Bell “Учебное пособие по изучению системы 12”, 1994

Разделы курса:

  1. Принципы цифровой коммутации.
  2. Построение цифровых коммутационных полей.
  3. Построение интерфейсов соединительных линий.
  4. Абонентский доступ.
  5. Системы сигнализации ЦСК.
  6. Принципы построения УСК.
  7. ПО обеспечение УСК.
  8. Структурные схемы и технические характеристики различных ЦСК.

Задачи данного курса познакомить студентов факультета МЭС с современным состоянием и перспективами развития цифровых систем коммутации. Пояснить обобщенную структуру цифровых систем коммутации (ЦСК), а также перспективы внедрения ЦСК. Дать сравнительные характеристики и параметры внедряемых на сетях электросвязи систем коммутации. Ознакомить с принципами временной и пространственной коммутации цифровых каналов и их технической реализацией в цифровых коммутационных полях. Дать понятия интерфейсов абонентских и соединительных линий. Пояснить их функции и особенности построения в ЦСК. Пояснить особенности построения устройств управления ЦСК, а также пояснить состав и функции программного обеспечения. Пояснить принципы организации эксплуатации и технического обслуживания современных телекоммуникационных систем.

В настоящее время закупается много цифровых систем коммутации зарубежного производства, необходимо уметь в них разбираться. Литературу по курсу не успевают выпускать, поэтому основная ориентация - на лекционный курс. По некоторым вопросам на кафедре АЭС разработаны обучающие программы. В учебниках Ивановой, Баркуна, Лутова изложены общие вопросы построения ЦСК. Остальная литература ориентирована на конкретные системы

ЦСК - гибридные АТС, которые можно использовать в любом качестве. Впервые цифровые системы коммутации разработали и стали выпускать во Франции около 1975 года. Первая ЦСК - МТ20/25. В России эта система выпускалась Уфимским телефонным заводом и в настоящее время используется только на городских телефонных сетях.

Краткий обзор цифровых систем коммутации в Росси

Квант - электронная АТС, выпускается Белгородским телефонным заводом и Рижским заводом ВЭФ. Система Квант-СИС разработана для организации справочно-информационной службы. Система ЕвроКвант разработана для городских телефонных сетей, предельная емкость - 8000 номеров.

Все АТС, закупаемые за рубежом, обязательно сертифицируются на предмет соответствия российским телефонным сетям. Сертификацией занимается ЛОНИИС.

DX-200 - система разработана и выпускается финской фирмой NOKIA. В Россию поставляется с начала 80-х годов. Первые АТС системы DX-200 были установлены в Петербурге. Для России была отработана новая версия АТС с учетом построения Российских сетей. Используется на ГТС и СТС (как УСП). В России таких систем закуплено довольно много. В Новосибирске действует АТС11/15 системы DX-200 емкостью 25 тыс.номеров

АТСЦ-90 - так называется DX-200, сборка, которой осуществляется в Петербурге, комплектующие для нее поставляются из Финляндии. АТСЦ-90 поставляются в Ленинградскую область и в Карелию

S-12 - гибридная АТС с распределенным управлением. Это система 4-го поколения. Чтобы довести систему до серийного выпуска, потребовались затраты около 1 млрд. долларов. Поэтому в разработке станции принимали участие 5 стран: Бельгия, Германия, Испания, Италия, Франция. Поэтому у системы 12 имеются разные заводы-изготовители. Например, в Россию система 12 поставляется из Бельгии фирмой Alcatel-Bell, а в Казахстан - их Германии. В 1991 году в Петербурге создано совместное предприятие, где выпускается кабельная продукция для всех заводов-изготовителей системы 12 (в России и за рубежом). В России созданы 3 сервисных центра по техническому обслуживанию системы 12: в Москве, Петербурге, Новосибирске. Кроме того, в Москве работает центр по изучению системы 12. Минимальная емкость системы 12 составляет 128 номеров, максимальная - 100000 номеров в 5-й версии, 200000 номеров в 7-й версии. Система 12 сертифицирована ЛОНИИС для использования на ГТС, АМТС, УАК, СТС

EWSD - выпускается фирмой Siemens, Германия. Сертифицирована для использования на ГТС и АМТС. Министерством связи рекомендовано во всех городах по транссибирской магистрали (от Владивостока до Челябинска) реконструировать АМТС на базе EWSD с выходом на международную сеть. EWSD имеет максимальную емкость до 250000 номеров и централизованное управление. В Ижевске создано совместное предприятие “Ижтел” по выпуску EWSD на российский рынок. Сервисный центр по техническому обслуживанию EWSD находится в Новосибирске.

AXE-10 - разработана фирмой Эриксон (Швеция). Несколько лет назад в Югославии совместно с фирмой Никола-Тесла создано совместное предприятие по выпуску АХЕ-10. В Россию поставки идут в основном от Никола-Тесла. Предельная емкость системы составляет 200000 номеров. Система сертифицирована для АМТС, УАК, ГТС, СТС

MD-110 - емкость 20-20000 номеров. Фирма Никола-Тесла. Закупается для ведомственной сети в качестве УПАТС

5ESS (фирма AT&T). Производство США. Американские фирмы начали осваивать Российский рынок недавно, примерно с 1994 года. Первая АТС типа 5 ESS поставлена в Москве в Тушинском районе. Предельная емкость системы составляет 350000 номеров. Одной такой станции достаточно для существующей Новосибирской ГТС. Эта АТС очень дорогая. Сертифицирована для работы на ГТС, АМТС, УАК. Создано совместное предприятие в Китае.

TDX - фирма Самсунг, Южная Корея. Предельная емкость 100000 номеров. Системы поставляются на Дальний Восток. TDX сертифицирована для ГТС.

SI-2000 - емкость 20 - 10000 номеров. В Екатеринбурге создано совместное предприятие с югославской фирмой “Искра” (Словения) по выпуску этих станций. Детали выпускаются в Словении, а сборка осуществляется в Екатеринбурге. Используется для СТС и УТС. Достоинство - может работать по всем типам соединительных линий(как и Квант).

UT-100 - закупается в Италии. Емкость до 100000 номеров. Распространена по всей России. Выпускает фирма Italtel.

АТС-ЦА (С-32) очень хорошая отечественная АТС разработки ЦНИИС. Предусматривает включение только цифровых абонентских линий, т.е. до абонента доводится цифровой поток 32кб/с. АТС разработана, опытная эксплуатация есть, но в серию так и не запущена. В настоящее время у этой станции уже устарела элементная база.

Все АТС 4-го поколения ориентированы также и на создание сотовых сетей.

Все названные АТС (кроме МТ-20/25) ориентированы на цифровые сети интегрального обслуживания (ЦСИО) с узкополосным цифровым потоком.

ISDN - ЦСИО-У узкополосные системы со скоростью передачи информации 64-2048 кб/с. Системы с ISDN не пользуются спросом у населения, т.к. позволяют коммутировать только телефонные каналы. Кроме телефонной связи у абонента могут быть и другие виды связи: телевидение, подвижная связь, радиосвязь и др.

BSDN - ЦСИО-Ш широкополосные системы. До абонента доходит цифровой поток со скоростью передача 150-600 мбит/с. Для таких сигналов все вышеперечисленные системы не пригодны, т.к. такие цифровые потоки требуют оптической коммутации, а это вопрос будущего.

В Новосибирске в Академгородке строится опытная BSDN и строится транспортная сеть на базе ВОЛС для использования BSDN. Система коммутации широкополосных сигналов очень дорога: чтобы довести ее до серийного выпуска, требуется 5 - 6 миллиардов долларов. BSDN - это коммутационные узлы 5-го поколения.

Краткие технические сведения о ЦСК даны в таблице 1.1.

Таблица 1.1–Технические характеристики цифровых систем коммутации

Обобщенная структурная схема цифровой системы коммутации

Рисунок 1.1 – Обобщенная структурная схема ЦСК

К - концентратор

ОП АЛ - оборудование подключения абонентских линий

ОП СЛ - оборудование подключения соединительных линий

ААЛ - аналоговая абонентская линия

ЦАЛ - цифровая абонентская линия

АСЛ - аналоговая соединительная линия

ЦСЛ - цифровая соединительная линия

ЦКП - цифровое коммутационное поле

ОТС - оборудование тональных сигналов

ОСИ - оборудование сигнализации

УС - управляющая система

УВВ - устройства ввода-вывода

Назначение:

ОП АЛ - служит для согласования ААЛ и ЦАЛ с цифровым коммутационным полем. Включает в себя абонентские интерфейсы и устройства преобразования аналоговых сигналов в ИКМ-сигналы. Число ОП АЛ зависит от емкости АТС. Минимальное число абонентских линий в ОП АЛ равно 64.

ОП СЛ служит для согласования АСЛ и ЦСЛ с цифровым коммутационным полем. Нужно иметь в виду, что ЦСЛ и ИКМ-тракт - это одно и то же. ОП СЛ включает в себя интерфейсы соединительных линий и устройства преобразования аналоговых сигналов в ИКМ-сигналы. Минимальное число АСЛ в ОП СЛ равно 32 (т.е. 1 ИКМ-тракт). Не все ЦАТС имеют устройства для подключения АСЛ. За рубежом таких линий нет, т.к. очень сложно согласовать ОП АСЛ с оборудованием ЦАТС.

ОСИ - используется для организации сигнализации в пределах АТС и межстанционной связи. ОСИ обеспечивает прием и передачу всех линейных сигналов, сигналов управления и сигналов межпроцессорного обмена.

ИТС - формируют и выдают в сторону абонента информационные сигналы - Ответ станции, Занято, контроль посылки вызова.

УС - осуществляет все процессы обслуживания вызовов и технической эксплуатации АТС. Обеспечивает контроль работоспособности АТС и все режимы технической эксплуатации.

УВВ - это видеотерминалы и принтеры, предназначенные для выполнения всех процессов по технической эксплуатации.

ЦКП (ОК) - используется для коммутации всех временных каналов, включаемых в ЦКП. Все устройства АТС включаются в ЦКП через ИКМ-тракты (ИКМ-линии). Первичная группа ИКМ-тракта составляет 30/32 временных канала независимо от системы передачи. 0-Й канал используется для передачи синхросигналов, 16-й канал используется для передачи сигнальной информации, каналы 1-15, 17-31 - разговорные.

К - используются для подключения удаленных абонентов в ЦСК. Это часть оборудования ЦСК, вынесенная в место концентрации абонентов.

Особенности построения цифровых систем коммутации

1. Использование временного деления каналов и временной коммутации каналов при построении цифрового коммутационного поля. Любой сигнал через коммутационное поле цифровой системы коммутации передается в цифровой форме.

2. Использование типовых каналов, параметры которых нормализованы:

Канал тональной частоты с эффективно передаваемой полосой частот 0,3-3,4кГц

Первичный цифровой канал со скоростью передачи информации 64 кБ/с

3. Подключение цифровых абонентских линий без дополнительных преобразователей на АТС. Преобразование осуществляется в абонентской установке, в качестве которой можно использовать любое устройство.

4. Использование трактов приема и трактов передачи при установлении соединения. Тракты приема и тракты передачи разделены, поэтому любое соединение использует 2 временных канала.

5. Использование оборудования сигнализации для приема и передачи сигнализации по 16 каналу и по разговорным каналам. МККТТ рекомендован ОСК№7.

6. Использование концентраторов, позволяющих существенно снизить затраты на абонентскую сеть, т.к. стоимость концентратора + стоимость систем передачи много меньше стоимости абонентской сети. (Недостаток: все соединения одного концентратора осуществляются через ЦКП опорной АТС).

Рисунок 1.2 – Подключение концентраторов к ЦСК

Достоинства ЦСК:

1. Резкое уменьшение стоимости линейных сооружений за счет уменьшения затрат на абонентскую сеть при использовании концентраторов.

2. Уменьшение затрат на производство, монтаж и эксплуатацию ЦСК за счет использования более совершенной элементной базы, за счет простоты монтажа, за счет уменьшения количества обслуживающего персонала, высокой автоматизации работ по техническому обслуживанию ЦСК, за счет высокой надежности работы оборудования ЦСК.

Таблица 1.2

Производство

Монтаж

Эксплуатация

АТСКУ

АТСКЭ

30 - 40

40 - 50

10 - 20

АТСЦ

20 - 30

10 - 20

5 - 10

3. Уменьшение производственных площадей под оборудование ЦСК . Для размещения оборудования требуется производственная площадь в 4 - 6 раз меньше, чем под механическую за счет уменьшения габаритов.

4. Использование центров технической эксплуатации ЦТЭ , позволяющих дистанционно управлять работами по техническому обслуживанию нескольких цифровых АТС и наблюдать за работой нескольких АТС из одного центра. При этом дополнительного оборудования не требуется, весь контроль ведется программными средствами.

5. Полная автоматизация контроля функционирования оборудования .

6. Уменьшение металлоемкости конструкций ЦСК.

7. Улучшение качества передачи и коммутации .

8. Увеличение количества ДВО для пользователей .

Недостатки ЦАТС:

1. Большие затраты на электроэнергию: 1,2 - 3 ватта на 1 вывод(не меньше, чем в аналоговых АТС). Это можно объяснить тем, что в механических АТС управляющие устройства работают только при наличии вызова, а в цифровых - непрерывно.