Вложенные и связанные подзапросы в SQL, предикат EXISTS. Сложные SQL запросы

SQL позволяет вкладывать запросы друг в друга. Обычно подзапрос возвращает одно значение, которое проверяется на предмет истинности предиката.

Виды условий поиска:
. Сравнение с результатом вложенного запроса (=, >=)
. Проверка на принадлежность результатам подзапроса (IN)
. Проверка на существование (EXISTS)
. Многократное (количественное) сравнение (ANY, ALL)

Примечания по вложенным запросам:
. Подзапрос должен выбирать только один столбец (за исключением подзапроса с предикатом EXISTS), и тип данных его результата должен соответствовать типу данных значения, указанному в предикате.
. В ряде случаев можно использовать ключевое слово DISTINCT для гарантии получения единственного значения.
. Во вложенном запросе нельзя включать раздел ORDER BY и UNION.
. Подзапрос может находиться и лева и справа от условия поиска.
. В подзапросах могут использоваться функции агрегирования без раздела GROUP BY, которые автоматически выдают специальное значение для любого количества строк, специальный предикат IN, а также выражения, основанные на столбцах.
. По возможности следует вместо подзапросов использовать соединение таблиц JOIN.

Примеры на вложенные запросы :

SELECT * FROM Orders WHERE SNum=(SELECT SNum FROM SalesPeople WHERE SName=’Motika’)
SELECT * FROM Orders WHERE SNum IN (SELECT SNum FROM SalesPeople WHERE City=’London’)
SELECT * FROM Orders WHERE SNum=(SELECT DISTINCT SNum FROM Orders WHERE CNum=2001)
SELECT * FROM Orders WHERE Amt>(SELECT AVG(Amt) FROM Orders WHERE Odate=10/04/1990)
SELECT * FROM Customer WHERE CNum=(SELECT SNum+1000 FROM SalesPeople WHERE SName=’Serres’)

2) Связанные подзапросы

В SQL можно создавать подзапросы со ссылкой на таблицу из внешнего запроса. В этом случае подзапрос выполняется многократно, по одному разу для каждой строки таблицы из внешнего запроса. Поэтому важно, чтобы подзапрос использовал индекс. Подзапрос может обращаться к той же таблице, чтоб и внешний. Если внешний запрос возвращает относительно небольшое число строк, то связанный подзапрос будет работать быстрее несвязанного. Если подзапрос возвращает небольшое число строк, то связанный запрос выполнится медленнее несвязанного.

Примеры на связанные подзапросы:

SELECT * FROM SalesPeople Main WHERE 1(SELECT AVG(Amt) FROM Orders O2 WHERE O2.CNum=O1.CNum) //возвращает все заказы, величина которых превосходит среднюю величины заказа для данного покупателя

3) Предикат EXISTS

Синтаксическая форма: EXISTS ()

Предикат использует подзапрос в качестве аргумента и оценивает его как истинный, если в подзапросе есть выходные данные, а в противном случае как ложный. Выполняется подзапрос один раз и может содержать несколько столбцов, поскольку их значения не проверяются, а просто фиксируется результат наличия строк.

Примечания по предикату EXISTS:
. EXISTS – предикат, возвращающий значение TRUE или FALSE, и его можно применять отдельно или вместе с другими булевыми выражениями.
. EXISTS не может использовать функции агрегирования в своем подзапросе.
. В коррелирующих (связанных, зависимых – Correlated) подзапросах предикат EXISTS выполняется для каждой строки внешней таблицы.
. Можно комбинировать предикат EXISTS с соединениями таблиц.

Примеры на предикат EXISTS:

SELECT * FROM Customer WHERE EXISTS(SELECT * FROM Customer WHERE City=’San Jose’) – возвращает всех покупателей, если кто-то из них проживает в San Jose.
SELECT DISTINCT SNum FROM Customer First WHERE NOT EXISTS (SELECT * FROM Customer Send WHERE Send.SNum=First.SNum AND Send.CNumFirst.CNum) – возвращает номера продавцов, обслуживших только одного покупателя.
SELECT DISTINCT F.SNum, SName, F.City FROM SalesPeople F, Customer S WHERE EXISTS (SELECT * FROM Customer T WHERE S.SNum=T.SNum AND S.CNumT.CNum AND F.SNum=S.SNum) – возвращает номера, имена и города проживания всех продавцов, обслуживших нескольких покупателей.
SELECT * FROM SalesPeople Frst WHERE EXISTS (SELECT * FROM Customer Send WHERE Frst.SNum=Send.SNum AND 1

4) Предикаты количественного сравнения

Синтаксическая форма: {=|>|=|} ANY|ALL ()

Эти предикаты используют в качестве аргумента подзапрос, однако, по сравнению с предикатом EXISTS, они применяются в конъюнкции с предикатами отношения (=,>=). В этом смысле они сходны с предикатом IN, но применяются только с подзапросами. Стандарт допускает использовать вместо ANY ключевое слово SOME, однако не все СУБД его поддерживают.

Примечания по предикатам сравнения:
. Предикат ALL принимает значение TRUE, если каждое значение, выбранное в процессе выполнения подзапроса, удовлетворяет условию, заданному в предикате внешнего запроса. Чаще всего он используется с неравенствами.
. Предикат ANY принимает значение TRUE, если хотя бы одно значение, выбранное в процессе выполнения подзапроса, удовлетворяет условию, заданному в предикате внешнего запроса. Чаще всего он используется с неравенствами.
. Если подзапрос не возвращает строк, то ALL автоматически принимает значение TRUE (считается, что условие сравнения выполняется), а для ANY – FALSE.
. Если сравнение не имеет значения TRUE ни для одной строки и есть одна или несколько строк с NULL значением, то ANY возвращает UNKNOWN.
. Если сравнение не имеет значения FALSE ни для одной строки и есть одна или несколько строк с NULL значением, то ALL возвращает UNKNOWN.

Примеры на предикат количественного сравнения:

SELECT * FROM SalesPeople WHERE City=ANY(SELECT City FROM Customer)
SELECT * FROM Orders WHERE Amt ALL(SELECT Rating FROM Customer WHERE City=’Rome’)

5) Предикат уникальности

UNIQUE|DISTINCT ()

Предикат служит для проверка уникальности (отсутствия дублей) в выходных данных подзапроса. Причем в предикате UNIQUT строки с NULL значениями считаются уникальными, а в предикате DISTINCT два неопределенных значения считаются равными друг другу.

6) Предикат совпадений

MATCH ()

Предикат MATCH проверяет, будет ли значение строки запроса совпадать со значением любой строки, полученной в результате подзапроса. От предикатов IN И ANY такой подзапрос отличается тем, что позволяет обрабатывать «частичные» (PARTIAL) совпадения, которые могут встречаться среди строк, имеющих часть NULL-значений.

7) Запросы в разделе FROM

Фактически допустимо использовать подзапрос везде, где допускается ссылка на таблицу.

SELECT CName, Tot_Amt FROM Customer, (SELECT CNum, SUM(Amt) AS Tot_Amt FROM Orders GROUP BY CNum) WHERE City=’London’ AND Customer.CNum=Orders.CNum
//подзапрос возвращает суммарную величину заказов, сделанных каждым покупателем из Лондона.

8) Рекурсивные запросы

WITH RECURSIVE
Q1 AS SELECT … FROM … WHERE …
Q2 AS SELECT … FROM … WHERE …

  • Перевод
  • Tutorial
Надо “ SELECT * WHERE a=b FROM c ” или “ SELECT WHERE a=b FROM c ON * ” ?

Если вы похожи на меня, то согласитесь: SQL - это одна из тех штук, которые на первый взгляд кажутся легкими (читается как будто по-английски!), но почему-то приходится гуглить каждый простой запрос, чтобы найти правильный синтаксис.


А потом начинаются джойны, агрегирование, подзапросы, и получается совсем белиберда. Вроде такой:


SELECT members.firstname || " " || members.lastname AS "Full Name" FROM borrowings INNER JOIN members ON members.memberid=borrowings.memberid INNER JOIN books ON books.bookid=borrowings.bookid WHERE borrowings.bookid IN (SELECT bookid FROM books WHERE stock>(SELECT avg(stock) FROM books)) GROUP BY members.firstname, members.lastname;

Буэ! Такое спугнет любого новичка, или даже разработчика среднего уровня, если он видит SQL впервые. Но не все так плохо.


Легко запомнить то, что интуитивно понятно, и с помощью этого руководства я надеюсь снизить порог входа в SQL для новичков, а уже опытным предложить по-новому взглянуть на SQL.


Не смотря на то, что синтаксис SQL почти не отличается в разных базах данных, в этой статье для запросов используется PostgreSQL. Некоторые примеры будут работать в MySQL и других базах.

1. Три волшебных слова

В SQL много ключевых слов, но SELECT , FROM и WHERE присутствуют практически в каждом запросе. Чуть позже вы поймете, что эти три слова представляют собой самые фундаментальные аспекты построения запросов к базе, а другие, более сложные запросы, являются всего лишь надстройками над ними.

2. Наша база

Давайте взглянем на базу данных, которую мы будем использовать в качестве примера в этой статье:







У нас есть книжная библиотека и люди. Также есть специальная таблица для учета выданных книг.

  • В таблице "books" хранится информация о заголовке, авторе, дате публикации и наличии книги. Все просто.
  • В таблице “members” - имена и фамилии всех записавшихся в библиотеку людей.
  • В таблице “borrowings” хранится информация о взятых из библиотеки книгах. Колонка bookid относится к идентификатору взятой книги в таблице “books”, а колонка memberid относится к соответствующему человеку из таблицы “members”. У нас также есть дата выдачи и дата, когда книгу нужно вернуть.

3. Простой запрос

Давайте начнем с простого запроса: нам нужны имена и идентификаторы (id) всех книг, написанных автором “Dan Brown”


Запрос будет таким:


SELECT bookid AS "id", title FROM books WHERE author="Dan Brown";

А результат таким:


id title
2 The Lost Symbol
4 Inferno

Довольно просто. Давайте разберем запрос чтобы понять, что происходит.

3.1 FROM - откуда берем данные

Сейчас это может показаться очевидным, но FROM будет очень важен позже, когда мы перейдем к соединениям и подзапросам.


FROM указывает на таблицу, по которой нужно делать запрос. Это может быть уже существующая таблица (как в примере выше), или таблица, создаваемая на лету через соединения или подзапросы.

3.2 WHERE - какие данные показываем

WHERE просто-напросто ведет себя как фильтр строк , которые мы хотим вывести. В нашем случае мы хотим видеть только те строки, где значение в колонке author - это “Dan Brown”.

3.3 SELECT - как показываем данные

Теперь, когда у нас есть все нужные нам колонки из нужной нам таблицы, нужно решить, как именно показывать эти данные. В нашем случае нужны только названия и идентификаторы книг, так что именно это мы и выберем с помощью SELECT . Заодно можно переименовать колонку используя AS .


Весь запрос можно визуализировать с помощью простой диаграммы:


4. Соединения (джойны)

Теперь мы хотим увидеть названия (не обязательно уникальные) всех книг Дэна Брауна, которые были взяты из библиотеки, и когда эти книги нужно вернуть:


SELECT books.title AS "Title", borrowings.returndate AS "Return Date" FROM borrowings JOIN books ON borrowings.bookid=books.bookid WHERE books.author="Dan Brown";

Результат:


Title Return Date
The Lost Symbol 2016-03-23 00:00:00
Inferno 2016-04-13 00:00:00
The Lost Symbol 2016-04-19 00:00:00

По большей части запрос похож на предыдущий за исключением секции FROM . Это означает, что мы запрашиваем данные из другой таблицы . Мы не обращаемся ни к таблице “books”, ни к таблице “borrowings”. Вместо этого мы обращаемся к новой таблице , которая создалась соединением этих двух таблиц.


borrowings JOIN books ON borrowings.bookid=books.bookid - это, считай, новая таблица, которая была сформирована комбинированием всех записей из таблиц "books" и "borrowings", в которых значения bookid совпадают. Результатом такого слияния будет:



А потом мы делаем запрос к этой таблице так же, как в примере выше. Это значит, что при соединении таблиц нужно заботиться только о том, как провести это соединение. А потом запрос становится таким же понятным, как в случае с «простым запросом» из пункта 3.


Давайте попробуем чуть более сложное соединение с двумя таблицами.


Теперь мы хотим получить имена и фамилии людей, которые взяли из библиотеки книги автора “Dan Brown”.


На этот раз давайте пойдем снизу вверх:


Шаг Step 1 - откуда берем данные? Чтобы получить нужный нам результат, нужно соединить таблицы “member” и “books” с таблицей “borrowings”. Секция JOIN будет выглядеть так:


borrowings JOIN books ON borrowings.bookid=books.bookid JOIN members ON members.memberid=borrowings.memberid

Результат соединения можно увидеть по ссылке .


Шаг 2 - какие данные показываем? Нас интересуют только те данные, где автор книги - “Dan Brown”


WHERE books.author="Dan Brown"

Шаг 3 - как показываем данные? Теперь, когда данные получены, нужно просто вывести имя и фамилию тех, кто взял книги:


SELECT members.firstname AS "First Name", members.lastname AS "Last Name"

Супер! Осталось лишь объединить три составные части и сделать нужный нам запрос:


SELECT members.firstname AS "First Name", members.lastname AS "Last Name" FROM borrowings JOIN books ON borrowings.bookid=books.bookid JOIN members ON members.memberid=borrowings.memberid WHERE books.author="Dan Brown";

Что даст нам:


First Name Last Name
Mike Willis
Ellen Horton
Ellen Horton

Отлично! Но имена повторяются (они не уникальны). Мы скоро это исправим.

5. Агрегирование

Грубо говоря, агрегирования нужны для конвертации нескольких строк в одну . При этом, во время агрегирования для разных колонок используется разная логика.


Давайте продолжим наш пример, в котором появляются повторяющиеся имена. Видно, что Ellen Horton взяла больше одной книги, но это не самый лучший способ показать эту информацию. Можно сделать другой запрос:


SELECT members.firstname AS "First Name", members.lastname AS "Last Name", count(*) AS "Number of books borrowed" FROM borrowings JOIN books ON borrowings.bookid=books.bookid JOIN members ON members.memberid=borrowings.memberid WHERE books.author="Dan Brown" GROUP BY members.firstname, members.lastname;

Что даст нам нужный результат:


First Name Last Name Number of books borrowed
Mike Willis 1
Ellen Horton 2

Почти все агрегации идут вместе с выражением GROUP BY . Эта штука превращает таблицу, которую можно было бы получить запросом, в группы таблиц. Каждая группа соответствует уникальному значению (или группе значений) колонки, которую мы указали в GROUP BY . В нашем примере мы конвертируем результат из прошлого упражнения в группу строк. Мы также проводим агрегирование с count , которая конвертирует несколько строк в целое значение (в нашем случае это количество строк). Потом это значение приписывается каждой группе.


Каждая строка в результате представляет собой результат агрегирования каждой группы.



Можно прийти к логическому выводу, что все поля в результате должны быть или указаны в GROUP BY , или по ним должно производиться агрегирование. Потому что все другие поля могут отличаться друг от друга в разных строках, и если выбирать их SELECT "ом, то непонятно, какие из возможных значений нужно брать.


В примере выше функция count обрабатывала все строки (так как мы считали количество строк). Другие функции вроде sum или max обрабатывают только указанные строки. Например, если мы хотим узнать количество книг, написанных каждым автором, то нужен такой запрос:


SELECT author, sum(stock) FROM books GROUP BY author;

Результат:


author sum
Robin Sharma 4
Dan Brown 6
John Green 3
Amish Tripathi 2

Здесь функция sum обрабатывает только колонку stock и считает сумму всех значений в каждой группе.

6. Подзапросы


Подзапросы это обычные SQL-запросы, встроенные в более крупные запросы. Они делятся на три вида по типу возвращаемого результата.

6.1 Двумерная таблица

Есть запросы, которые возвращают несколько колонок. Хороший пример это запрос из прошлого упражнения по агрегированию. Будучи подзапросом, он просто вернет еще одну таблицу, по которой можно делать новые запросы. Продолжая предыдущее упражнение, если мы хотим узнать количество книг, написанных автором “Robin Sharma”, то один из возможных способов - использовать подзапросы:


SELECT * FROM (SELECT author, sum(stock) FROM books GROUP BY author) AS results WHERE author="Robin Sharma";

Результат:



Можно записать как: ["Robin Sharma", "Dan Brown"]


2. Теперь используем этот результат в новом запросе:


SELECT title, bookid FROM books WHERE author IN (SELECT author FROM (SELECT author, sum(stock) FROM books GROUP BY author) AS results WHERE sum > 3);

Результат:


title bookid
The Lost Symbol 2
Who Will Cry When You Die? 3
Inferno 4

Это то же самое, что:


SELECT title, bookid FROM books WHERE author IN ("Robin Sharma", "Dan Brown");

6.3 Отдельные значения

Бывают запросы, результатом которых являются всего одна строка и одна колонка. К ним можно относиться как к константным значениям, и их можно использовать везде, где используются значения, например, в операторах сравнения. Их также можно использовать в качестве двумерных таблиц или массивов, состоящих из одного элемента.


Давайте, к примеру, получим информацию о всех книгах, количество которых в библиотеке превышает среднее значение в данный момент.


Среднее количество можно получить таким образом:


select avg(stock) from books;

Что дает нам:


7. Операции записи

Большинство операций записи в базе данных довольно просты, если сравнивать с более сложными операциями чтения.

7.1 Update

Синтаксис запроса UPDATE семантически совпадает с запросом на чтение. Единственное отличие в том, что вместо выбора колонок SELECT "ом, мы задаем знаения SET "ом.


Если все книги Дэна Брауна потерялись, то нужно обнулить значение количества. Запрос для этого будет таким:


UPDATE books SET stock=0 WHERE author="Dan Brown";

WHERE делает то же самое, что раньше: выбирает строки. Вместо SELECT , который использовался при чтении, мы теперь используем SET . Однако, теперь нужно указать не только имя колонки, но и новое значение для этой колонки в выбранных строках.


7.2 Delete

Запрос DELETE это просто запрос SELECT или UPDATE без названий колонок. Серьезно. Как и в случае с SELECT и UPDATE , блок WHERE остается таким же: он выбирает строки, которые нужно удалить. Операция удаления уничтожает всю строку, так что не имеет смысла указывать отдельные колонки. Так что, если мы решим не обнулять количество книг Дэна Брауна, а вообще удалить все записи, то можно сделать такой запрос:


DELETE FROM books WHERE author="Dan Brown";

7.3 Insert

Пожалуй, единственное, что отличается от других типов запросов, это INSERT . Формат такой:


INSERT INTO x (a,b,c) VALUES (x, y, z);

Где a , b , c это названия колонок, а x , y и z это значения, которые нужно вставить в эти колонки, в том же порядке. Вот, в принципе, и все.


Взглянем на конкретный пример. Вот запрос с INSERT , который заполняет всю таблицу "books":


INSERT INTO books (bookid,title,author,published,stock) VALUES (1,"Scion of Ikshvaku","Amish Tripathi","06-22-2015",2), (2,"The Lost Symbol","Dan Brown","07-22-2010",3), (3,"Who Will Cry When You Die?","Robin Sharma","06-15-2006",4), (4,"Inferno","Dan Brown","05-05-2014",3), (5,"The Fault in our Stars","John Green","01-03-2015",3);

8. Проверка

Мы подошли к концу, предлагаю небольшой тест. Посмотрите на тот запрос в самом начале статьи. Можете разобраться в нем? Попробуйте разбить его на секции SELECT , FROM , WHERE , GROUP BY , и рассмотреть отдельные компоненты подзапросов.


Вот он в более удобном для чтения виде:


SELECT members.firstname || " " || members.lastname AS "Full Name" FROM borrowings INNER JOIN members ON members.memberid=borrowings.memberid INNER JOIN books ON books.bookid=borrowings.bookid WHERE borrowings.bookid IN (SELECT bookid FROM books WHERE stock> (SELECT avg(stock) FROM books)) GROUP BY members.firstname, members.lastname;

Этот запрос выводит список людей, которые взяли из библиотеки книгу, у которой общее количество выше среднего значения.


Результат:


Full Name
Lida Tyler

Надеюсь, вам удалось разобраться без проблем. Но если нет, то буду рад вашим комментариям и отзывам, чтобы я мог улучшить этот пост.

Теги: Добавить метки

Рассмотрим, что такое вложенные запросы в и для чего они нужны.
Часто встречается ситуация, когда над таблицей необходимо проделать несколько последовательных действий. Достаточно показательным является пример, когда сначала надо , а потом уже на сгруппированную таблицу наложить некоторое условие, либо соединить с другой таблицей. В таких случаях на помощь и приходят вложенные запросы .

Вложенный запрос практически ничем не отличается от обычного запроса. Он заключается в скобки и в нем доступны почти все методы и функции языка запросов 1С. А для вышестоящего запроса доступны все поля вложенного запроса.
Структура самого примитивного вложенного запроса выглядит следующим образом

ВЫБРАТЬ ИЗ (ВЫБРАТЬ ИЗ) КАК ВложенныйЗапрос

Конечно же в таком виде использование вложенного запроса не имеет смысла, т.к. можно сразу выбрать необходимые поля без использования вложенности. Здесь все предельно упрощено для простоты понимания.

А теперь рассмотрим все вышесказанное на примере.
Пусть у нас есть таблица СотрудникиПодразделений:

И мы хотим выбрать из этой таблицы все подразделения, где работает более одного сотрудника.

ВЫБРАТЬ СотрудникиПодразделений.Подразделение КАК Подразделение, КОЛИЧЕСТВО(СотрудникиПодразделений.Сотрудник) КАК КоличествоСотрудников ИЗ СотрудникиПодразделений КАК СотрудникиПодразделений СГРУППИРОВАТЬ ПО СотрудникиПодразделений.Подразделение

Если выполнить этот запрос, то в результате получим следующую таблицу

Вторым шагом нам необходимо наложить на эту таблицу ограничение по количеству сотрудников. Для этого сделаем вышеприведенный запрос вложенным и в вышестоящем запросе пропишем соответствующее условие

ВЫБРАТЬ ВложенныйЗапрос.Подразделение КАК Подразделение ИЗ (ВЫБРАТЬ СотрудникиПодразделений.Подразделение КАК Подразделение, КОЛИЧЕСТВО(СотрудникиПодразделений.Сотрудник) КАК КоличествоСотрудников ИЗ СотрудникиПодразделений КАК СотрудникиПодразделений СГРУППИРОВАТЬ ПО СотрудникиПодразделений.Подразделение) КАК ВложенныйЗапрос ГДЕ ВложенныйЗапрос.КоличествоСотрудников > 1

Таким образом результат итогового запроса будет следующим

Справедливости ради стоит отметить, что тот же результат можно достигнуть с помощью функции ИМЕЮЩИЕ языка запросов 1С, а также с использованием временных таблиц.
На практике вы конечно же столкнетесь с более сложными вложенными запросами в которых может использоваться как , так и таблиц. А также может быть несколько уровней вложенности.

В прошлом уроке мы столкнулись с одним неудобством. Когда мы хотели узнать, кто создал тему "велосипеды", и делали соответствующий запрос:

Вместо имени автора, мы получали его идентификатор. Это и понятно, ведь мы делали запрос к одной таблице - Темы, а имена авторов тем хранятся в другой таблице - Пользователи. Поэтому, узнав идентификатор автора темы, нам надо сделать еще один запрос - к таблице Пользователи, чтобы узнать его имя:

В SQL предусмотрена возможность объединять такие запросы в один путем превращения одного из них в подзапрос (вложенный запрос). Итак, чтобы узнать, кто создал тему "велосипеды", мы сделаем следующий запрос:

То есть, после ключевого слова WHERE , в условие мы записываем еще один запрос. MySQL сначала обрабатывает подзапрос, возвращает id_author=2, и это значение передается в предложение WHERE внешнего запроса.

В одном запросе может быть несколько подзапросов, синтаксис у такого запроса следующий: Обратите внимание, что подзапросы могут выбирать только один столбец, значения которого они будут возвращать внешнему запросу. Попытка выбрать несколько столбцов приведет к ошибке.

Давайте для закрепления составим еще один запрос, узнаем, какие сообщения на форуме оставлял автор темы "велосипеды":

Теперь усложним задачу, узнаем, в каких темах оставлял сообщения автор темы "велосипеды":

Давайте разберемся, как это работает.

  • Сначала MySQL выполнит самый глубокий запрос:

  • Полученный результат (id_author=2) передаст во внешний запрос, который примет вид:

  • Полученный результат (id_topic:4,1) передаст во внешний запрос, который примет вид:

  • И выдаст окончательный результат (topic_name: о рыбалке, о рыбалке). Т.е. автор темы "велосипеды" оставлял сообщения в теме "О рыбалке", созданной Сергеем (id=1) и в теме "О рыбалке", созданной Светой (id=4).
Вот собственно и все, что хотелось сказать о вложенных запросах. Хотя, есть два момента, на которые стоит обратить внимание:
  • Не рекомендуется создавать запросы со степенью вложения больше трех. Это приводит к увеличению времени выполнения и к сложности восприятия кода.
  • Приведенный синтаксис вложенных запросов, скорее наиболее употребительный, но вовсе не единственный. Например, мы могли бы вместо запроса

    написать

    Т.е. мы можем использовать любые операторы, используемые с ключевым словом WHERE (их мы изучали в прошлом уроке).
  • 4.Основные понятия в концептуальном проектировании реляционных баз данных (сущность, атрибуты, отношения). Элементы реляционной модели.
  • Зависимости между атрибутами
  • 5.Целостность данных и ее виды. Нарушения целостности (аномалии).
  • 6.Функциональные связи атрибутов и нормализация таблиц. Основные нормальные формы (нф). Примеры нф.
  • 7.Использование er–моделирования в концептуальном проектировании бд. Диаграммы er- экземпляров и er-типов.
  • 8.Преобразование концептуальной модели в реляционную. Основные этапы и правила формирования отношений (пример).
  • 9.Структура и основные технические характеристики субд access 200*.Возможности проектирования персональных и сетевых приложений.
  • 10.Конструирование таблиц в ms access хр.Свойства полей. Определение типа данных, ключей, индексов.
  • 11.Связывание таблиц в субд access. Логическая схема и обеспечение ссылочной целостности данных.
  • 12.Средства реализации запросов в субд access. Виды запросов.
  • 5.2.3 Запрос к связанным таблицам
  • 5.2.4 Запросы удаления
  • 13.Реализация запросов с групповыми операциями и вычисляемыми полями. Примеры.
  • 14.Реализация запросов на модификацию и на создание таблицы.
  • 15.Стандарты современных реализаций языка sql. Основные разделы и их наполнение в sql-Jet.
  • 16.Общий формат select-инструкции (запроса на выборку). Пример реализации.
  • 17.Пример qbe- и sql–реализации перекрестного запроса.
  • 18.Создание интерфейса приложения в субд access. Работа в конструкторе форм. Разделы, элементы управления, свойства.
  • 19.Создание вложенных sql-запросов. Пример реализации.
  • 20.Программы сервиса субд access.
  • 21.Защита и администрирование бд средствами субд access.
  • 22.Использование макросов, отчетов и страниц доступа к данным в приложениях ms access хр.
  • 23.Система программирования Matlab: общая характеристика. Пакеты расширения и специализированные приложения: назначения и возможности. Подсистема Simulink.
  • 24.Структуры данных и основные структуры управления в системе программирования matlab
  • 25.Графические средства системы matlab. Работа с инструментом lti-Viewer графического анализа линейных систем управления.
  • 26.Этапы построения модели в подсистеме Simulink. Элементы технологии визуально-блочного моделирования. Настройка параметров моделирования и параметров блоков.
  • 27.Общее описание блоков библиотеки simulink.
  • 28.Реализация принципа иерархии в Simulink – моделях посредством блоков портов и подсистем. Маскирование подсистем.
  • 29.Компоненты виртуального прибора и их сборка в приложение в среде LabView. Основные элементы управления и индикаторы LabView и их соединение на блок-диаграмме.
  • 19.Создание вложенных sql-запросов. Пример реализации.

    С помощью SQL можно вкладывать запросы внутрь друг друга. Обычно внутренний запрос генерирует значение, которое проверяется в предикате внешнего запроса (в предложении WHERE или HAVING), определяющего, верно оно или нет. Совместно с подзапросом можно использовать предикат EXISTS, который возвращает истину, если вывод подзапроса не пуст.

    В сочетании с другими возможностями оператора выбора, такими как группировка, подзапрос представляет собой мощное средство для достижения нужного результата. В части FROM оператора SELECT допустимо применять синонимы к именам таблицы, если при формировании запроса нам требуется более чем один экземпляр некоторого отношения. Синонимы задаются с использованием ключевого слова AS, которое может быть вообще опущено. Поэтому часть FROM может выглядеть следующим образом:

    FROM Rl AS A, Rl AS В

    FROM Rl A. Rl В:

    оба выражения эквивалентны и рассматриваются как применения оператора SELECT к двум экземплярам таблицы R1.

    Например, покажем, как выглядят на SQL некоторые запросы к БД «Сессия»:

     Список тех, кто сдал все положенные экзамены.

    WHERE Оценка > 2

    HAVING COUNT(*) = (SELECT COUNT(*)

    WHERE R2.Группа=R3.Группа AND ФИОа.ФИО)

    Здесь во встроенном запросе определяется общее число экзаменов, которые должен сдавать каждый студент, обучающийся в группе, в которой учится данный студент, и это число сравнивается с числом экзаменов, которые сдал данный студент.

     Список тех, кто должен был сдавать экзамен по БД, но пока еще не сдавал.

    SЕLЕСТ ФИО

    WHERE R2.Fpynna=R3.Группа AND Дисциплина = "БД" AND NOT EXISTS

    (SELECT ФИО FROM Rl WHERE ФИО=а.ФИО AND Дисциплина = "БД")

    Предикат EXISTS (SubQuery) истинен, когда подзапрос SubQuery не пуст, то есть содержит хотя бы один кортеж, в противном случае предикат EXISTS ложен.

    Предикат NOT EXISTS обратно - истинен только тогда, когда подзапрос SubQuery пуст.

    Обратите внимание, каким образом NOT EXISTS с вложенным запросом позволяет обойтись без операции разности отношений. Например, формулировка запроса со словом «все» может быть выполнена как бы с двойным отрицанием. Рассмотрим пример базы, которая моделирует поставку отдельных деталей отдельными поставщиками, она представлена одним отношением SP «Поставщики-детали» со схемой

    SP (Номер_поставщика. номер_детали) Р (номер_детали. наименование)

    Вот каким образом формулируется ответ на запрос: «Найти поставщиков, которые поставляют все детали».

    SELECT DISTINCT НОМЕР_ПОСТАВЩИКА FROM SP SP1 WHERE NOT EXISTS

    (SELECT номер_детали

    FROM P WHERE NOT EXISTS

    (SELECT * FROM SP SP2

    WHERE SР2.номер_поставщика=SР1.номер_поставщика AND

    sр2.номер_детали = Р.номер_детали)):

    Фактически мы переформулировали этот запрос так: «Найти поставщиков таких, что не существует детали, которую бы они не поставляли». Следует отметить, что этот запрос может быть реализован и через агрегатные функции с подзапросом:

    SELECT DISTINCT Номер_поставщика

    GROUP BY Номер_поставщика

    HAVING CounKDISTINCT номер_детали) =

    (SELECT Count(номер_детали)

    В стандарте SQL92 операторы сравнения расширены до многократных сравнений с использованием ключевых слов ANY и ALL. Это расширение используется при сравнении значения определенного столбца со столбцом данных, возвращаемым вложенным запросом.

    Ключевое слово ANY, поставленное в любом предикате сравнения, означает, что предикат будет истинен, если хотя бы для одного значения из подзапроса предикат сравнения истинен. Ключевое слово ALL требует, чтобы предикат сравнения был бы истинен при сравнении со всеми строками подзапроса.

    Например, найдем студентов, которые сдали все экзамены на оценку не ниже чем «хорошо». Работаем с той же базой «Сессия», но добавим к ней еще одно отношение R4, которое характеризует сдачу лабораторных работ в течение семестра:

    R 1 = (ФИО, Дисциплина, Оценка);

    R 2 = (ФИО, Группа);

    R 3 = (Группы, Дисциплина)

    R 4 = (ФИО, Дисциплина, Номер_лаб_раб, Оценка);

    Select R1.ФИО From R1 Where 4 > = All (Select Rl.Оценка

    Where R1.Фио = R11.Фио)

    Рассмотрим еще один пример:

    Выбрать студентов, у которых оценка по экзамену не меньше, чем хотя бы одна оценка по сданным им лабораторным работам по данной дисциплины:

    Select R1.Фио

    From R1 Where R1.Оценка >= ANY (Select R4.Оценка

    Where Rl.Дисциплина = R4. Дисциплина AND R1.Фио = R4.Фио)