Fddi протокол. Скоростные и беспроводные сети

Сеть FDDI (от английского Fiber Distributed Data Interface, оптоволоконный распределенный интерфейс данных) - это одна из новейших разработок стандартов локальных сетей. Стандарт FDDI, предложенный Аме-

риканским национальным институтом стандартов ANSI (спецификация ANSI X3T9.5), изначально ориентировался на высокую скорость передачи (100 Мбит/с) и на применение перспективного оптоволоконного кабеля (длина волны света - 850 нм). Поэтому в данном случае разработчики не были стеснены рамками стандартов, ориентировавшихся на низкие скорости и электрический кабель.

Выбор оптоволокна в качестве среды передачи определил такие преимущества новой сети, как высокая помехозащищенность, максимальная секретность передачи информации и прекрасная гальваническая развязка абонентов. Высокая скорость передачи, которая в случае оптоволоконного кабеля достигается гораздо проще, позволяет решать многие задачи, недоступные менее скоростным сетям, например, передачу изображений в реальном масштабе времени. Кроме того, оптоволоконный кабель легко решает проблему передачи данных на расстояние нескольких километров без ретрансляции, что позволяет строить гораздо большие по размерам сети, охватывающие даже целые города и имеющие при этом все преимущества локальных сетей (в частности, низкий уровень ошибок). И хотя к настоящему времени аппаратура FDDI не получила еще широкого распространения, ее перспективы очень неплохие.

За основу стандарта FDDI был взят метод маркерного доступа, предусмотренный международным стандартом IEEE 802.5 Token-Ring. Небольшие отличия от этого стандарта определяются необходимостью обеспечить высокую скорость передачи информации на большие расстояния. Топология сети FDDI - это кольцо, причем применяется два разнонаправленных оптоволоконных кабеля, что позволяет в принципе использовать полнодуплексную передачу информации с удвоенной эффективной скоростью в 200 Мбит/с (при этом каждый из двух каналов работает на скорости 100 Мбит/с). Применяется и звездно-кольцевая топология с концентраторами, включенными в кольцо.

Основные технические характеристики сети FDDI следующие.

  • Максимальное количество абонентов сети - 1000.
  • Максимальная протяженность кольца сети - 20 км.
  • Максимальное расстояние между абонентами сети - 2 км.
  • Среда передачи - многомодовый оптоволоконный кабель (возможно применение электрической витой пары).
  • Метод доступа - маркерный.
  • Скорость передачи информации - 100 Мбит/с (200 Мбит/с для дуплексного режима передачи).

Как видим, FDDI имеет большие преимущества по сравнению со всеми рассмотренными ранее сетями. Даже сеть Fast Ethernet, имеющая такую же пропускную способность 100 Мбит/с, не может сравниться с FDDI по допустимым размерам сети и допустимому количеству абонентов. К тому же маркерный метод доступа FDDI обеспечивает в отличие от CSMA/CD гарантированное время доступа и отсутствие конфликтов при любом уровне нагрузки.

Отметим, что ограничение на общую длину сети в 20 км связано не с затуханием сигналов в кабеле, а с необходимостью ограничения времени полного прохождения сигнала по кольцу для обеспечения предельно допустимого времени доступа. А вот максимальное расстояние между абонентами (2 км при многомодовом кабеле) определяется как раз затуханием сигналов в кабеле (оно не должно превышать 11 дБ). Предусмотрена также возможность применения одномодового кабеля, и в этом случае расстояние между абонентами может достигать 45 километров, а полная длина кольца - 100 километров.

Имеется и реализация FDDI на электрическом кабеле (CDDI - Copper Distributed Data Interface или TPDDI - Twisted Pair Distributed Data Interface). При этом используется кабель категории 5 с разъемами RJ-45. Максимальное расстояние между абонентами в этом случае должно быть не более 100 м. Стоимость оборудования сети на электрическом кабеле в несколько раз меньше. Но эта версия сети уже не имеет столь очевидных преимуществ перед своими конкурентами, как изначальная FDDI.

Таблица 5.1. Код 4В/5В

Информация

Информация

Для передачи данных в FDDI применяется уже упоминавшийся в первой главе код 4В/5В (см. табл. 5.1), специально разработанный для этого стандарта. Он обеспечивает скорость передачи 100 Мбит/с при пропускной способности кабеля 125 миллионов сигналов в секунду (или 125 МБод), а не 200 МБод, как в случае кода Манчестер-П. При этом каждым четырем битам передаваемой информации (каждому полубайту, или нибблу) ставится в соответствие пять передаваемых по кабелю битов. Это позволяет приемнику восстанавливать синхронизацию приходящих данных один раз на четыре принятых бита, то есть достигается компромисс между простейшим кодом NRZ и самосинхронизирующимся на каждом бите коде Манчестер-И.

Стандарт FDDI для достижения высокой гибкости сети предусматривает включение в кольцо абонентов двух типов.

  • Attachment Stations) подключаются к обоим (внутреннему и внешнему) кольцам сети. При этом реализуется возможность обмена со скоростью до 200 Мбит/с или же возможность резервирования кабеля сети (при повреждении основного кабеля используется резервный кабель). Аппаратура этого класса используется в самых критичных частях сети.
  • Абоненты (станции) класса В (они же абоненты одинарного подключения, SAS - Single-Attachment Stations) подключаются только к одному (внешнему) кольцу сети. Естественно, они могут быть более простыми и дешевыми, чем адаптеры класса А, но не имеют их возможностей. В сеть они могут включаться только через концентратор или обходной коммутатор, отключающий их в случае аварии.

Кроме собственно абонентов (компьютеров, терминалов и т.д.), в сети используются связные концентраторы (Wiring Concentrators), включение которых позволяет собрать в одно место все точки подключения с целью контроля за работой сети, диагностики неисправностей и упрощения реконфигурации. При применении кабелей разных типов (например, оптоволоконного кабеля и витой пары) концентратор выполняет также функцию преобразования электрических сигналов в оптические и наоборот. Концентраторы также бывают двойного подключения (DAC - Dual-Attachment Concentrator) и одинарного подключения (SAC - Single-Attachment Concentrator).

Пример простейшей конфигурации сети FDDI представлен на рис. 5.13.

Рис. 5.13. Пример конфигурации сети FDDI

FDDI определяет четыре типа портов абонентов (станций).

  • Порт А определен только для устройств двойного подключения, его вход подключается к первичному кольцу, а выход - к вторичному.
  • Порт В определен только для устройств двойного подключения, его вход подключается к вторичному кольцу, а выход - к первичному.
  • Порт М (Master) определен для концентраторов и соединяет два концентратора между собой или концентратор с абонентом.
  • Порт S (Slave) определен только для устройств одинарного подключения и используется для соединения двух абонентов или абонента и концентратора.

Стандарт FDDI предусматривает также возможность реконфигурации сети с целью сохранения ее работоспособности в случае повреждения кабеля (рис. 5.14). В показанном на рисунке случае поврежденный участок кабеля исключается из кольца, но целостность сети при этом не нарушается вследствие перехода на одно кольцо вместо двух (то есть абоненты класса А начинают работать как абоненты класса В).

Рис. 5.14. Реконфигурация сети FDDI при повреждении кабеля

В отличие от метода доступа, предлагаемого стандартом IEEE 802.5, в FDDI применяется так называемая множественная передача маркера. Если в случае сети Token-Ring новый (свободный) маркер передается абонентом только после возвращения к нему его пакета, то в FDDI новый маркер передается абонентом сразу же после окончания передачи им пакета. Последовательность действий здесь следующая.

  1. Абонент, желающий передавать, ждет маркера, который идет за каждым пакетом.
  2. Когда маркер пришел, абонент удаляет его из сети и передает свой пакет.
  3. Сразу после передачи пакета абонент посылает новый маркер.

Одновременно каждый абонент ведет свой отсчет времени, сравнивая реальное время обращения маркера (TRT) с заранее установленным контрольным временем его прибытия (РТТ). Если маркер возвращается раньше, чем установлено РТТ, то делается вывод, что сеть загружена мало, и, следовательно, абонент может спокойно передавать всю свою информацию. Если же маркер возвращается позже, чем установлено РТТ, то сеть загружена сильно, и абонент может передавать только самую необходимую информацию. При этом величины контрольного времени РТТ могут устанавливаться различными для разных абонентов. Такой механизм позволяет абонентам гибко реагировать на загрузку сети и автоматически поддерживать ее на оптимальном уровне.

Стандарт FDDI в отличие от стандарта IEEE 802.5 не предусматривает возможности установки приоритетов пакетов и резервирования. Вместо этого все абоненты разделяются на две группы: асинхронные и синхронные. Асинхронные абоненты - это те, для которых время доступа к сети не слишком критично. Синхронные - это те, для которых время доступа должно быть жестко ограничено. В стандарте предусмотрен специальный алгоритм, обслуживающий эти типы абонентов.

Форматы маркера (рис. 5.15) и пакета (рис. 5.16) сети FDDI несколько отличаются от форматов, используемых в сети Token-Ring. Назначение полей следующее.

  • Преамбула используется для синхронизации. Первоначально она содержит 64 бита, но абоненты, через которых проходит пакет, могут менять ее размер.
  • Начальный разделитель выполняет функцию признака начала кадра.

Рис. 5.15. Формат маркера FDDI

  • Адреса приемника и источника могут быть 6-байтовыми (аналогично Ethernet и Token-Ring) или 2-байтовыми.
  • Поле данных может быть переменной длины, но суммарная длина пакета не должна превышать 4500 байт.
  • Поле контрольной суммы содержит 32-битную циклическую контрольную сумму пакета.
  • Конечный разделитель определяет конец кадра.
  • Байт состояния пакета включает в себя бит обнаружения ошибки, бит распознавания адреса и бит копирования (все аналогично Token-Ring).

Рис. 5.16. Формат пакета FDDI

Формат байта управления сети FDDI следующий (рис. 5.17):

  • Бит класса пакета определяет, синхронный или асинхронный это пакет.
  • Бит длины адреса определяет, какой адрес (6-байтовый или 2-байтовый) используется в данном пакете.
  • Поле формата кадра определяет, управляющий это кадр или информационный.
  • Поле типа кадра определяет, к какому типу относится данный кадр.

Рис. 5.17. Формат байта управления

В заключение отметим, что несмотря на очевидные преимущества FDDI данная сеть не получила пока широкого распространения, что связано главным образом с высокой стоимостью ее аппаратуры (порядка тысячи долларов). Основная область применения FDDI сейчас - это базовые, опорные (Backbone) сети, объединяющие несколько сетей. Применяется FDDI и для соединения мощных рабочих станций или серверов, требующих высокоскоростного обмена. Предполагается, что сеть Fast Ethernet может потеснить FDDI, однако преимущества оптоволоконного кабеля, маркерного метода управления и рекордный допустимый размер сети ставят в настоящее время FDDI вне конкуренции. А в тех случаях, когда стоимость аппаратуры имеет решающее значение, можно на некритичных участках применять версию FDDI на основе витой пары (TPDDI). К тому же стоимость аппаратуры FDDI может сильно уменьшится с увеличением объема ев выпуска.

В виду того, что стандарт FDDIприменяется в основном при построении магистралей, в этом разделе будут уделено определенное внимание таким понятиям мост(bridge) и маршрутизатор(router) . Кроме того, для понимания общей концепции ЛВС ниже упомянуто более расширено и про концентратор(hub).

Принцип действия сети FDDI

Сеть FDDI представляет собой волоконно-оптическое маркерное кольцо со скоростью передачи данных 100 Мбит/сек.

Стандарт FDDI был разработан комитетом X3T9.5 Американского национального института стандартизации (ANSI). Сети FDDI поддерживается всеми ведущими производителями сетевого оборудования. В настоящее время комитет ANSI X3T9.5 переименован в X3T12.

Использование в качестве среды распространения волоконной оптики позволяет существенно расширить полосу пропускания кабеля и увеличить расстояния между сетевыми устройствами.

Сравним пропускную способность сетей FDDI и Ethernet при многопользовательском доступе. Допустимый уровень утилизации сети Ethernet лежит в пределах 35% (3.5 Мбит/сек) от максимальной пропускной способности (10 Мбит/сек), в противном случае вероятность возникновения коллизий становится не слишком высокой и пропускная способность кабеля резко снизится. Для сетей FDDI допустимая утилизация может достигать 90-95% (90-95 Мбит/сек). Таким образом, пропускная способность FDDI приблизительно в 25 раз выше.

Детерминированная природа протокола FDDI (возможность предсказания максимальной задержки при передаче пакета по сети и возможность обеспечить гарантированную полосу пропускания для каждой из станций) делает его идеальным для использования в сетевых АСУ ТП реального времени и в приложениях, критичных ко времени передачи информации (например для передачи видео и звуковой информации).

Многие из своих ключевых свойств FDDI унаследовала от сетей Token Ring. Прежде всего – это кольцевая топология и маркерный метод доступа к среде.

Однако FDDI имеет и ряд принципиальных отличий от Token Ring, делающий ее более скоростным протоколом. Например, изменен алгоритм модуляции данных на физическом уровне. Token Ring использует схему манчестерского кодирования, требующую удвоения полосы передаваемого сигнала относительно передаваемых данных. В FDDI реализован алгоритм кодирования "пять из четырех" – 4В/5В, обеспечивающий передачу четырех информационных бит пятью передаваемыми битами. При передаче 100 Мбит информации в секунду физически в сеть транслируется 125 Мбит/сек, вместо 200 Мбит/сек, что потребовалось бы при использовании манчестерского кодирования.

Оптимизировано и управление доступа к среде. В Token Ring оно основано на побитовой основе, а в FDDI на параллельной обработке группы из четырех или восьми передаваемых битов. Это снижает требования к быстродействию оборудования.

Физически кольцо FDDI образовано волоконно-оптическим кабелем с двумя светопроводящими волокнами. Одно из них образует первичное кольцо (primary ring), является основным и используется для циркуляции маркеров данных. Второе волокно образует вторичное кольцо (secondary ring), является резервным и в нормальном режиме не используется.

Станции, подключенные к сети FDDI, подразделяются на две категории.

  • 1. Станции класса А имеют физические подключения к первичному и вторичному кольцам (Dual Attached Station – двукратно подключенная станция);
  • 2. Станции класса Bимеют подключение только к первичному кольцу (Single Attached Station – однократно подключенная станция) и подключается только через специальные устройства, называемые концентраторами.

Порты сетевых устройств, подключаемых к сети FDDI, классифицируются на 4 категории: А порты, В порты, М порты и S порты. Портом А называется порт, принимающий данные из первичного кольца и передающий их во вторичное кольцо. Порт В – это порт, принимающий данные из вторичного кольца и передающий их в первичное кольцо. М (Master) и S (Slave) порт передают и принимают данные с одного и того же кольца. М порт используется на концентраторе для подключения Single Attached Station через S порт.

Стандарт X3T9.5 имеет ряд ограничений. Общая длина двойного волоконно-оптического кольца – до 100 км. К кольцу можно подключить до 500 станций класса А. Расстояние между узлами при использовании многомодового волоконно-оптического кабеля – до 2 км, а при использовании одномодового кабеля определяется в основном параметрами волокна и приемо-передающего оборудования (может достигать 60 и более км).

Сеть FDDI {Fiber Distributed Data Interface - волоконно-оптический распределенный интерфейс данных) представляет собой волоконно-опти ческое маркерное кольцо со скоростью передачи данных 100 Мбит/с. Стандарт FDDI был разработан комитетом ХЗТ9.5 (впоследствии переименован в ХЗТ12) ANSI в середине 1980-х гг. После завершения работы над FDD1В ANSI представила его на рассмотрение в ISO. ISO разработала международный вариант FDDI, который полностью совместим с вариантом стандарта, разработанного ANSI.

Схема передачи данных. Двойное кольцо в сети FDD! рассматривается как общая разделяемая среда передачи данных, для которой в качестве метода доступа определен метод маркерного кольца, который близок к методу доступа сетей Token Ring.

Станция может начать передачу данных только после получения от предыдущей станции специального кадра - маркера доступа. Маркер - сигнал управления, состоящий из уникальной последовательности символов, которая циркулирует по кольцу после каждой информационной передачи.В Если же в момент принятия маркера у станции нет данных для передачиВ по сети, то она немедленно передает маркер следующей станции.

Если станция готова к передаче данных, то

  • узел-отправитель:
    • - ждет получения маркера,
    • - захватывает маркер (на определенное время - время удержания маркера (Token Holding Time, ТНТ), после истечения которого станция обязанаВ завершить передачу своего очередного кадра и передать маркер доступаВ следующей станции,
    • - меняет в маркере один бит, преобразующий маркер во флаг началаВ кадра, вносит в кадр информацию, подлежащую пересылке, посылает кадрВ следующей станции ;
  • переданный в сеть кадр будет двигаться по сети от станции к станции, пока нс попадет в узел, которому он адресован;
  • узел назначения:
    • - копирует кадр в свой внутренний буфер,
    • - проверяет корректность полученного кадра (в основном по контрольной сумме),
    • - передает поле данных кадра для последующей обработки протоколуВ вышележащего уровня,
    • - в исходном кадре отмечает следующие признаки: распознаваниеВ адреса, копирование кадра и отсутствие или наличие в нем ошибок,
    • - возвращает кадр в сеть;
  • вновь переданный в сеть кадр будет двигаться по сети от станцииВ к станции, пока не попадет в исходный узел-отправитель;
  • узел-отправитель:
  • - получив кадр, проверяет признаки кадра (получен ли кадр станциейВ назначения, был ли поврежден ),
  • - удаляет кадр из сети,
  • - передает маркер доступа следующей станции.

Механизм адаптивного планирования нагрузки. В сетях на базе технологии FDDI вместо системы приоритетов и резервирования, используемой в сетях на базе технологии Token Ring, применяется механизм адаптивногоВ планирования нагрузки.

Каждая станция сравнивает реальное время обращения маркера по кольцу (Token Rotation Time, TRT) с заранее установленным контрольным временем прибытия маркера (Target Token Rotation Time, TTRT), послеВ чего делается вывод о слабой или сильной загруженности сети. При слабойВ загрузке сети станция может использовать асинхронный режим передачиВ информации (т.е. осуществить передачу дополнительных данных независимо от других станций). При сильной загруженности сети станция можетВ применять только синхронный режим передачи данных, при котором передача осуществляется лишь в течение выделенного времени.

Физическое соединение. Топологию сети, построенной на базе технологии FDDI, можно рассматривать с двух позиций:

  • физически:
    • - двойное кольцо без деревьев,
    • - двойное кольцо с деревьями,
    • - дерево;
  • логически:
  • - разделяемое кольцо.

При этом первичное кольцо используется для передачи данных, а вторичное кольцо является дублирующим (рис. 4.15).

Рис. 4.15.

Физически кольцо состоит из двух или более двухточечных соединений между смежными станциями. Трафик по кольцам движется в противоположных направлениях.

Оборудование сети:

  • станции:
    • - станции двойного подключения {Dual-Attachment Stations , DAS) -В
    • - станции одинарного подключения {Single-Attachment Stations , SAS) -В подключаются только к внешнему кольцу сети и только через концентраторВ или обходной коммутатор, имеющий возможность отключить их при сбое;
  • связующие концентраторы {Wiring Concentrators) - представляютВ собой точки подключения к сети, выполняют также функции управления,В такие как контроль работы сети, диагностика неисправностей, реконфигурация сети; бывают двух типов:
  • - концентраторы двойного подключения {Dual-Attachment Concentrator DAC) - подключаются как к внутреннему, так и к внешнему кольцу сети,
  • - концентраторы одинарного подключения {Single-Attachment Concentrator , SAC) - подключаются только к внешнему кольцу сети;
  • обходные коммутаторы {Bypass Switches) - располагаются междуВ станцией и кольцом и позволяют отключить станцию от сети при возникновении сбоев, замкнув сигнал на себя.

Основные параметры сети FDDI:

  • 1) поддержка до 500 узлов с максимальным расстоянием между соседними узлами 2 км (45 км - если используется одномодовый оптоволоконный кабель) ;
  • 2) максимальная длина кольца - 20 км (200 км, если используетсяВ одномодовый оптоволоконный кабель, по 100 км на кольцо) ;
  • 3) переменный размер кадра (до 4500 байт);
  • 4) длина волны - 1300 нм;
  • 5) максимальная скорость передачи - 100 МБод или 12,5 Мбит/с ;
  • 6) реальная скорость работы - 80 МБод или 10 Мбит/с;
  • 7) рабочая частота - 125 МГц;
  • 8) основной вид кабеля - многомодовый или более качественный одномодовый {Single Mode Fiber , SMF) A оптоволоконный кабель;
  • 9) разъем - оптический разъем MIC {Media Interface Connector) (илиВ разъем SMF-MIC для SMF-кабеля) , который обеспечивает подключениеВ двух волокон кабеля, соединенных с вилкой MIC, к двум волокнам портаВ станции, соединенных с розеткой MIC;
  • 10) источник света - светодиоды (LED) или лазерные диоды с длинойВ волны 1,3 мкм;
  • 11) метод кодирования сигнала - MLT-3;
  • 12) метод физического кодирования - 4В/5В.

Отказоустойчивость сетей на базе технологии FDDI. Основным способом обеспечения отказоустойчивости является подключение станций к двум кольцам. В нормальном режиме работы сети данные передаютсяВ по внешнему кольцу, а внутреннее кольцо при этом не используется.В При возникновении сбоя в сети внешнее кольцо объединяется с внутренним, образуя единое кольцо. Данную операцию осуществляют концентраторы и (или) сетевые адаптеры FDDI.

Другим способом обеспечения отказоустойчивости является использование различных процедур, определяющих наличие отказа в доступе к сети и производящих необходимую реконфигурацию. При единичном отказеВ сеть полностью восстанавливает свою работоспособность, а при множественных отказах сеть распадается на несколько несвязанных, но функционирующих сетей.

Еще одним способом обеспечения отказоустойчивости является метод доступа к среде, т.е. использование метода маркерного кольца, которыйВ исключает возникновение коллизий и позволяет с высокой степенью вероятности просчитать время передачи маркера или данных.

Формат блока данных. В сетях FDDI циркулируют два типа блока данных: маркеры (рис. 4.16) и блоки данных/команд (рис. 4.17).

Рис. 4.16.


Рис. 4.17.

Блок маркера без преамбулы имеет длину 3 байта. Блок данных и блок команд могут иметь разные размеры в зависимости от размеров информационного поля. Блоки данных переносят информацию для протоколовВ более высоких уровней, а блоки команд содержат управляющую информацию.

Поле преамбула (РгеатЫе) (2 или более байт) используется для синхронизации. Первоначально имеет размер 8 байт, но станции, через которые проходит кадр, могут менять (уменьшать) ее размер.

Поле ограничитель начала {Start Delimiter) (длина 1 байт) указывает на начало маркера (или блока данных/команд), содержит сигнальныеВ структуры, которые отличают его от остальной части блока данных.

Поле управление блоком данных {Frame Control ) (длина 1 байт) указывает на размер адресных полей (2 или 6 байт), на тип кадра (синхрон-ный/асинхронный и управляющий/информационный), а также может содержать другую управляющую информацию (например, коды командВ для управляющего кадра).

Поле ограничителя конца {End Delimiter) (длина 1 байт) содержит неинформационные символы, указывающие на конец маркера (или блока данных/команд).

Поля адрес отправителя и адрес получателя идентифицируют станции пункта назначения и источника, длина адресов может быть 6 байт (по аналогии с Ethernet и Token Ring) или 2 байта. При этом поле адреса назначения может содержать индивидуальный, групповой или широковещательный адрес, в то время как адрес источника идентифицирует только однуВ станцию, отправившую блок данных.

Поле данные {Data) (0 до 4478 байт) содержит либо информацию, предназначенную для протокола высшего уровня, либо управляющую информацию.

Поле контрольная сумма {FCS) содержит контрольную сумму, зависящую от содержания блока данных, при помощи которой проверяется целостность кадра. Если повреждение имеется, то блок данных отбрасывается.

Поле состояния блока данных {Frame Status) позволяет станции источника определять, не появилась ли ошибка и был ли блок данных признан и скопирован принимающей станцией.

Применение. Сеть на базе технологии FDDI может применяться в качестве надежной высокоскоростной магистрали или высокопроизводительной сети многоцелевого назначения с большим числом узлов.

Достоинства и недостатки

Достоинства:

  • надежность:
    • - обеспечение избыточности благодаря двойной кольцевой конфигурации сети,
    • - возможность сохранения работоспособности сети при единичныхВ и множественных обрывах посредством сегментирования участков сети;
  • отказоустойчивость:
  • - возможность двойного соединения (Dual Homing) станции с сетьюВ FDD1 (два порта станции подключаются к двум разным концентраторам)В позволяет активировать резервную связь при возникновении сбоев,
  • - реализация так называемого «оптического обхода» обеспечивает прохождение светового сигнала по сети при сбоях в питании станции - световой сигнал обойдет неактивную станцию через оптический переключательВ (Optical Bypass Switch),
  • - однократный обрыв кабеля в любом месте кольца приведет к активации второго волоконно-оптического кольца, так как станции, расположенные по обе стороны обрыва, переконфигурируют путь циркуляции маркераВ и данных;
  • Ограничение связано с необходимостью ограничения времени полного прохожденияВ сигнала по кольцу для обеспечения предельно допустимого времени доступа.
  • Бод - единица измерения скорости цифрового потока. Для некодированиого цифрового сигнала 1 Бод = 1 бит/с. Для кодирования с избыточностью - скорости разные. МБод -В миллион сигналов в секунду.
  • В этом случае дальность физического соединения между соседними узлами может увеличиться до 40-60 км в зависимости от качества кабеля, разъемов и соединений.
  • Кроме разъемов М1С допускается использование разъемов БТ и БС.

Сеть FDDI

Стандарт FDDI (Fiber Distributed Data Interface) был предложен Американским национальным институтом стандартов ANSI (спецификация ANSI X3T9.5). Затем был принят стандарт ISO 9314, соответствующий спецификациям ANSI.

Стандарт FDDI изначально ориентировался на высокую скорость передачи (100 Мбит/с) и на применение наиболее перспективного оптоволоконного кабеля. Выбор оптоволокна в качестве среды передачи определил такие преимущества новой сети, как высокая помехозащищенность, максимальная секретность передачи информации и прекрасная гальваническая развязка абонентов. Высокая скорость передачи позволяет решать многие задачи, недоступные менее скоростным сетям, например, передачу изображений в реальном масштабе времени. Кроме того, оптоволоконный кабель легко решает проблему передачи данных на расстояние нескольких километров без ретрансляции, что позволяет строить большие по размерам сети, охватывающие даже целые города и имеющие при этом все преимущества локальных сетей (в частности, низкий уровень ошибок). Все это определило популярность сети FDDI, хотя она распространена еще не так широко, как Ethernet и Token-Ring.

Стандарт FDDI имеет значительные преимущества по сравнению со всеми рассмотренными ранее сетями. Например, сеть Fast Ethernet, имеющая такую же пропускную способность 100 Мбит/с, не может сравниться с FDDI по допустимым размерам сети. К тому же маркерный метод доступа FDDI обеспечивает в отличие от CSMA/CD гарантированное время доступа и отсутствие конфликтов при любом уровне нагрузки.

Основные технические характеристики сети FDDI.

Максимальное количество абонентов сети – 1000.

Максимальная протяженность кольца сети – 20 (100)километров.

Максимальное расстояние между абонентами сети – 2 километра.

Среда передачи – многомодовый оптоволоконный кабель (возможно применение электрической витой пары).

Метод доступа – маркерный.

Скорость передачи информации – 100 Мбит/с (200 Мбит/с для дуплексного режима передачи).

Предусмотрена также возможность применения одномодового кабеля, и в этом случае расстояние между абонентами может достигать 45 километров, а полная длина кольца – 200 километров.

Форматы кадров

Рис. Формат информационного кадра (Frame) и формат маркера (Token)

Назначение полей:

Преамбула (Preamble) используется для синхронизации. Первоначально она содержит 64 бита, но абоненты, через которых проходит пакет, могут менять ее размер.

Начальный разделитель (SD- Start Delimiter) выполняет функцию признака начала кадра.

Байт управления (FC – Frame Control) содержит информацию о пакете (размер поля адреса, синхронная/асинхронная передача, тип пакета – служебный или информационный, код команды).

Адреса приемника и источника (SA – Source Address и DA – Destination Address) могут быть 6-байтовыми (аналогично Ethernet и Token-Ring) или 2-байтовыми.

Поле данных (Data) имеет переменную длину (от 0 до 4478 байт). В служебных (командных) пакетах поле данных обладает нулевой длиной.

Поле контрольной суммы (FCS – Frame Check Sequence) содержит 32-битную циклическую контрольную сумму пакета (CRC).

Конечный разделитель (ED – End Delimiter) определяет конец кадра.

Байт состояния пакета (FS – Frame Status) включает в себя бит обнаружения ошибки, бит распознавания адреса и бит копирования (аналогично Token-Ring).

Формат байта управления сети FDDI (рис. 3):

Бит класса пакета определяет тип пакета: синхронный или асинхронный.

Бит длины адреса устанавливает, какой адрес (6-байтовый или 2-байтовый) используется в данном пакете.

Поле типа пакета (два бита) определяет, управляющий это пакет или информационный.

Поле кода команды (четыре бита) указывает на то, какую команду должен выполнить приемник (если это управляющий пакет).

Рис. 3. Формат байта управления

Построение сети

За основу стандарта FDDI был взят метод маркерного доступа, предусмотренный международным стандартом IEEE 802.5 (Token-Ring). Топология сети FDDI – это двойное кольцо, где в сети применяется два разнонаправленных оптоволоконных кабеля. Использование двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru - "сквозным" или "транзитным". Вторичное кольцо (Secondary) в этом режиме не используется. Эти кольца обеспечивают резервирование передачи друг друга, то есть если на одном кольце возникнут некоторые проблемы, то в передачу включится другое. FDDI сам распознает и устранит возникшие проблемы. Этот режим работы сети называется "свертывание" или "сворачивание" колец. Операция свертывания производится силами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному - по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

Так же такое решение позволяет использовать полнодуплексную передачу информации (одновременно в двух направлениях) с удвоенной эффективной скоростью в 200 Мбит/с (при этом каждый из двух каналов работает на скорости 100 Мбит/с). Применяется и звездно-кольцевая топология с концентраторами, включенными в кольцо (как в Token-Ring).

Стандарт FDDI для достижения высокой гибкости сети предусматривает включение в кольцо абонентов двух типов:

Абоненты (станции) класса А (абоненты двойного подключения, DAS) подключаются к обоим (внутреннему и внешнему) кольцам сети. При этом реализуется возможность обмена со скоростью до 200 Мбит/с или резервирования кабеля сети (при повреждении основного кабеля используется резервный). Аппаратура этого класса применяется в самых критичных с точки зрения быстродействия частях сети.

Абоненты (станции) класса В (абоненты одинарного подключения, SAS –) подключаются только к одному (внешнему) кольцу сети. Они более простые и дешевые, по сравнению с адаптерами класса А, но не имеют их возможностей. В сеть они могут включаться только через концентратор или обходной коммутатор, отключающий их в случае аварии.

Кроме собственно абонентов (компьютеров, терминалов и т.д.) в сети используются связные концентраторы, включение которых позволяет собрать в одно место все точки подключения с целью контроля работы сети, диагностики неисправностей и упрощения реконфигурации. При применении кабелей разных типов (например, оптоволоконного кабеля и витой пары) концентратор выполняет также функцию преобразования электрических сигналов в оптические и наоборот. Концентраторы также бывают двойного подключения (DAC) и одинарного подключения (SAC).

Пример конфигурации сети FDDI представлен на рис. 4

Рис. 4. Пример конфигурации сети FDDI

Принцип передачи информации

В FDDI применяется так называемая множественная передача маркера.

Станция может начать передачу своих собственных кадров данных только в том случае, если она получила от предыдущей станции маркер (токен доступа). После этого она может передавать свои кадры, если они у нее имеются, в течение времени, называемого временем удержания токена - (THT). После истечения времени THT станция обязана завершить передачу своего очередного кадра и передать токен доступа следующей станции. Если же в момент принятия токена у станции нет кадров для передачи по сети, то она немедленно транслирует токен следующей станции.

    Абонент, желающий передавать, ждет маркера, который идет за каждым пакетом.

    Когда маркер пришел, абонент удаляет его из сети и передает свой пакет.

    Сразу после передачи своего пакета абонент посылает новый маркер.

    Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу.

    Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном по контрольной сумме), а затем передает исходный кадр по сети последующей станции. В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.

    Получив обратно по кольцу свой пакет, абонент-отправитель уничтожает его. В поле статуса пакета он имеет информацию о том, были ли ошибки, и получил ли пакет приемник.

В заключение следует отметить, что несмотря на очевидные преимущества FDDI данная сеть не получила широкого распространения, что связано главным образом с высокой стоимостью ее аппаратуры. Основная область применения FDDI сейчас – это базовые, опорные (Backbone) сети, объединяющие несколько сетей. Применяется FDDI также для соединения мощных рабочих станций или серверов, требующих высокоскоростного обмена.

В России продолжается процесс интенсивного внедрения новыхи модернизации существующих локальных вычислительных сетей (ЛВС). Возрастающие размеры сетей, прикладные программные системы, требующие все больших скоростей обмена информацией, повышающиеся требования к надежности и отказоустойчивости вынуждают искать альтернативу традиционным сетям Ethernet и Arcnet. Один из видов высокоскоростных сетей - FDDI (Fiber Distributed Data Interface - распределенный оптоволоконный интерфейс данных). В статье рассматриваются возможности использования FDDI при построении корпоративных компьютерных комплексов.

По прогнозам фирмы Peripheral Strategies во всем мире к 1997 году к локальным вычислительным сетям будет подключено более 90% всех персональных компьютеров (в настоящее время - 30-40%). Сетевые компьютерные комплексы становятся неотъемлимыми средствами производства любой организации или предприятия. Быстрый доступ к информации и ее достоверность повышают вероятность принятия правильных решения персоналом и, в конечном итоге, вероятность выигрыша в конкурентной борьбе. В своих управляющих и информационных системах фирмы видят средства стратегического превосходства над конкурентами и рассматривают инвестиции в них как капитальные вложения.

В связи с тем, что обработка и персылка информации с помощью компьютеров становятся все быстрее и эффективнее, происходит настоящий информационный взрыв. ЛВС начинают сливаться в территориально-распределенные сети, увеличивается количество подключенных к ЛВС серверов, рабочих станций и периферийного оборудования.

Сегодня в России компьютерные сети многих крупных предприятий и организаций представляют собой одну или несколько ЛВС, построенных на основе стандартов Arcnet или Ethernet. В качетсве сетевой операционной среды обычноприменяется NetWare v3.11 или v3.12 с одним или несколькими файловыми среверами. Эти ЛВС либо совсем не имеют связи друг с другом, либо соединяются кабелем, работающим в одном из этих стандартов, через внутренние или внешние програмнные маршрутизаторы NetWare.

Современные операционные системы и прикладное программное обеспечение требуют для своей работы пересылки больших объемов информации. Одновременно с этим требуется обеспечивать передачу информации со все большими скоростями и на все большие расстояния. Поэтому рано или поздно производительность сетей Ethernet и программных мостов и маршрутизаторов перестают удовлетворять растущим потребностям пользователей, и они начинают рассматривать возможности применения в своих сетях более скоростных стандартов. Одним из них является FDDI.

Принцип действия сети FDDI

Сеть FDDI представляет собой волоконно-оптическое маркерное кольцо со скростью передачи данных 100 Мбит/сек.

Стандарт FDDI был разработан комитетом X3T9.5 Американского национального института стандартизации (ANSI). Сети FDDI поддерживается всеми ведущими производителями сетевого оборудования. В настоящее время комитет ANSI X3T9.5 переименован в X3T12.

Использование в качестве среды распространения волоконной оптики позволяет существенно расширить полосу пропускания кабеля и увеличить расстояния между сетевыми устройствами.

Сравним пропускную способность сетей FDDI и Ethernet при многопользовательском доступе. Допустимый уровень утилизации сети Ethernet лежит в пределах 35% (3.5 Мбит/сек) от максимальной пропускной способности (10 Мбит/сек), в противном случае вероятность возникновения коллизий становится не слишком высокой и пропускная способность кабеля резко снизится. Для сетей FDDI допустимая утилизация может достигать 90-95% (90-95 Мбит/сек). Таким образом, пропускная способность FDDI приблизительно в 25 раз выше.

Детерминированная природа протокола FDDI (возможность предсказания максимальной задержки при передаче пакета по сети и возможность обеспечить гарантированную полосу пропускания для каждой из станций) делает его идеальным для использования в сетевых АСУ ТП реального времени и в приложениях, кртичных ко времени передачи информации (например для передачи видео и звуковой информации).

Многие из своих ключевых свойств FDDI унаследовала от сетей Token Ring (стандарт IEEE 802.5). Прежде всего - это кольцевая топология и маркерный метод доступа к среде. Маркер - специальный сигнал, вращающийся по кольцу. Станция, получившая маркер, может передавать свои данные.

Однако FDDI имеет и ряд принципиальных отличий от Token Ring, делающий ее более скоростным протоколом. Например, изменен алгоритм модуляции данных на физическом уровне. Token Ring использует схему манчестерского кодирования, требующую удвоения полосы передаваемого сигнала относительно передаваемых данных. В FDDI реализован алгорит кодирования "пять из четырех" - 4В/5В, обеспечивающий передачу четырех информационных бит пятью передаваемыми битами. При передаче 100 Мбит информации в секунуд физически в сеть транслируется 125 Мбит/сек, вместо 200 Мбит/сек, что потребовалось бы при использовании манчестерского кодирования.

Оптимизировано и управление доступа к среде (Medium Access Control - VAC). В Token Ring оно основано на побитовой основе, а в FDDI на параллельной обработке группы из четырех или восьми передаваемых битов. Это снижает требования к быстродействию оборудования.

Физически кольцо FDDI образовано волоконно-оптическим кабелем с двумя светопроводящими воокнами. Одно из них образует первичное кольцо (primary ring), является основным и используется для циркуляции маркеров данных. Второе волокно образует вторичное кольцо (secondary ring), является резервным и в нормальном режиме не используется.

Станции, подключенные к сети FDDI, подразделяются на две категории.

Станции класса А имеют физические поключения к первичному и вторичному кольцам (Dual Attached Station - двукратно подключенная станциия);

2. Станции класса И имеют подключение только к первичному кольцу (Single Attached Station - однократно подключенная станция) и подключается только через специальные устройства, называемые концентраторами.

На рис. 1 показан пример подключения концентратора и станций классов А и В в замкнутый контур, по которому циркулирует маркер. На рис. 2 показана более сложная топология сети с разветвленной структурой (Ring-of-Trees - кольцо из деревьев), образуемой станциями класса В.

Порты сетевых устройств, подключаемых к сети FDDI, классифицируются на 4 категории: А порты, В порты, М порты и S порты. Портом А называется порт, принимающий данные из первичного кольца и передающий их во вторичное кольцо. Порт В - это порт, принимающий данные из вторичного кольца и передающий их в первичное кольцо. М (Master) и S (Slave) порт передают и принимают данные с одного и того же кольца. М порт исползуется на концентраторе для подключения Single Attached Station через S порт.

Стандарт X3T9.5 имеет ряд ограничений. Общая длина двойного волоконно-оптического кольца - до 100 км. К кольцу можно подключить до 500 станций класса А. Расстояние между узлами при использовании многомодового волоконно-оптического кабеля - до 2 км, а при использовании одномодового кабеля определяется в основном параметрами волокна и приемо-передающего оборудования (может достигать 60 и более км).

Отказоустойчивость сетей FDDI

Стандарт ANSI X3T9.5 регламентирует 4 основных отказустойчивых свойства сетей FDDI:

1. Кольцевая кабельная система со станциями класса А отказоустойчива к однократному обрыву кабеля в любом месте кольца. На рис. 3 показан пример обрыва как первичного, так и вторичного волокон в кольцевом кабеле. Станции, находящиеся по обе стороны обрыва, переконфигурируют путь циркуляции маркера и данных, подключая для этого вторичное волоконно-оптическое кольцо.

2. Выключение питания, отказ одной из станций класса В или обрыв кабеля от концентратора до этой станции будет обнаружен концентратором, и произойдет отключение станции от кольца.

3. Две станции класса В подключены сразу к двум концентраторам. Этот специальный вид подключения называется Dual Homing и может быть использован для отказоустойчивого (к неисправностям в концетраторе или в кабельной системе) подключения станций класса В за счет дублирования подключения к основному кольцу. В нормальном режиме обмен данными происходит только через один концентратор. Если по какой-либо причине связь теряется, то обмен будет осуществляться через второй концентратор.

4. Выключение питания или отказ одной из станций класса А не приведет к отказу остальных станций, подключенных к кольцу, т. к. световой сигнал будет рпосто пассивно передаваться к следующей станции через оптический переключатель (Optical Bypass Switch). Стандарт допускает иметь до трех последовательно расположенных выключенных станций.

Оптические переключатели производят фирмы Molex и AMP.

Синхронная и асинхронная передача

Подключение к сети FDDI станции могут передавать свои данные в кольцо в двух режимах - в синхронном и в асинхронном.

Синхронный режим устроен следующим образом. В процессе инициализации сети определяется ожидаемое время обхода кольца маркером - TTRT (Target Token Rotation Time). Каждой станции, захватившей маркер, отводится гарантированное время для передачи ее данных в кольцо. По истечение этого времени станция должна закончить передачу и послать маркер в кольцо.

Каждая станция в момент посылки нового маркера включает таймер, измеряющий временной интервал до момента возвращения к ней маркера - TRT (Token Rotation Timer). Если маркер возвратится к станции раньше ожидаемого времени обхода TTRT, то станция может продлить время передачи своих данных в кольцо и после окончания синхронной передачи. На этом основана асинхронная передача. Дополнительный временной интервал для передачи станцией будет равен рахности между ожидаемым и реальным временем обхода кольца маркером.

Из описанного выше алгоритма видно, что если одна или несколько станций не имеют достаточного объема данных, чтобы полностью использовать временной интервал для синхронной передачи, то неиспользованная ими полоса пропускания сразу становится доступной для асинхронной передачи другими станциями.

Кабельная система

Подстандарт FDDI PMD (Physical medium-dependent layer) в качестве базовой кабельной системы определяет многомодовый волоконно-оптический кабель с диаметром световодов 62.5/125 мкм. Допускается применение кабелей с другим диаметром волокон, например: 50/125 мкм. Длина волны - 1300 нм.

Средняя мощность оптического сигнала на входе станции должна быть не менее -31 dBm. При такой входной мощности вероятность ошибки на бит при ретрансляции данных станцией не должна превышать 2.5*10 -10 . При увеличении мощности входного сигнала на 2 dBm, эта верояность должна снизиться до 10 -12 .

Максимально допустимый уровень потерь сигнала в кабеле стандарт определяет равным 11 dBm.

Подстандарт FDDI SMF-PMD (Single-mode fiber Physical medium-dependent layer) определяет требования к физическому уровнб при использовании одномодового волоконно-оптического кабеля. В этом случае в качетсве передающего элемента обычно используется лазерный свтодиод, а дистанция между станциями может достигать 60 и даже 100 км.

FDDI модули для одномодового кабеля выпускает, например, фирма Cisco Systems для своих маршрутизаторов Cisco 7000 и AGS+. Сегменты одномодового и многомодового кабеля в кольце FDDI могут чередоваться. Для названных маршрутизаторов фирмы Cisco имеется возможность выбора модулей со всеми четрьмя комбинациями портов: многомодовый-многомодовый, многомодовый-одномодовый, одномодовый-многомодовый, одномодовый-одномодовый.

Фирма Cabletron Systems Inc. выпускает повторители Dual Attached - FDR-4000, которые позволяют подключить одномодовый кабель к станции класса А с портами, предназанченными для работы на многомодовом кабеле. Эти повторители дают возможность увеличить расстояние между узлами FDDI кольца до 40 км.

Подстандарт физического уровня CDDI (Copper Distributed Data Interface - распределенный интерфейс данных по медным кабелям) определяет требования к физическому уровню при использовании экранированной (IBM Type 1) и не экранированной (Category 5) витых пар. Эта значительно упрощает процесс инсталляции кабельной системы и удешевляет ее, сетевые адаптеры и оборудование концентраторов. Расстояния меджу станциями при использовании витых пар не должны превышать 100 км.

Фирма Lannet Data Communications Inc. выпускает FDDI модули для своих концентраторов, которые позволяют работать или в стандартном режиме, когда вторичное кольцо используется только в целях отказустойчивости при обрыве кабеля, или в расширенном режиме, когда вторичное кольцо тоже используется для передачи данных. Во втором случае полоса пропускания кабельной системы расширяется до 200 Мбит/сек.

Подключение оборудования к сети FDDI

Есть два основных способа подключения компьютеров к сети FDDI: непосредственно, а также и через мосты или маршрутизаторы к сетям других протоколов.

Непосредственное подключение

Этот способ подключения используется, как правило, для подключения к сети FDDI файлов, архивационных и других серверов, средних и больших ЭВМ, то есть ключевых сетевых компонентов, являющихся главными вычислительными центрами, предоставляющими сервис для многих пользователей и требующих высоких скоростей ввода-вывода по сети.

Аналогично можно подключить и рабочие станции. Однако, поскольку сетевые адаптеры для FDDI весьма дороги, этот способ применяется только в тех случаях, когда высокая скорость обмена по сети является обязательным условияем для нормальной работы приложения. Примеры таких приложений: системы мультимедиа, передача видео и звуковой информации.

Для подключения к сети FDDI персональных компьютеров применяются специалищированные сетевые адаптеры, которые обычным образом вставляются в один из свободных слотов компьютера. Такие адаптеры производятся фирмами: 3Com, IBM, Microdyne, Network Peripherials, SysKonnect и др. На рынке имеются карты под все распространенные шины - ISA, EISA и Micro Channel; есть адаптеры для подключения станций классов А или В для всех видов кабельной системы - волоконно-оптической, экранированной и неэкранированной витых пар.

Все ведущие производители UNIX машин (DEC, Hewlett-Packard, IBM, Sun Microsystems и другие) предусматривают интерфейсы для непосредственного подключения к сетям FDDI.

Подключение через мосты и маршрутизаторы

Мосты (bridges) и маршрутизаторы (routers) позволяют подключить к FDDI сети других протоколов, например, Token Ring и Ethernet. Это делает возможным экономичное подключение к FDDI большого числа рабочих станций и другого сетевого оборудования как в новых, так и в уже существующих ЛВС.

Конструктивно мосты ит маршрутизаторы изготавливаются в двух вариантах - в законченном виде, не допускающем дальнейшего аппаратного наращивания или переконфигурации (так называемые standalone-устройства), и в виде модульных концентраторов.

Примером standalone-устройств являются: Router BR фирмы Hewlett-Packard и EIFO Client/Server Switching Hub фирмы Network Peripherals.

Модульные концентраторы применяются в сложных больших сетях в качестве центральных сетевых устройств. Концентратор представляет собой корпус с источником питания и с коммуникационной платой. В слоты концентратора вставляются сетевые коммуникационные модули. Модульная конструкция концентраторов позволяет легко собрать любую конфигурацию ЛВС, объединить кабельные системы различных типов и протоколов. Оставшиеся свободными слоты можно использовать для дальнейшего наращивания ЛВС.

Концентраторы производятся многими фирмами: 3Com, Cabletron, Chipcom, Cisco, Gandalf, Lannet, Proteon, SMC, SynOptics, Wellfleet и другими.

Концентратор - это центральный узел ЛВС. Его отказ может привести к остановке всей сети, или, по крайней мере, значительной ее части. Поэтому большинство фирм, производящих концентраторы, принимают специальные меры для повышения их отказоустойчивости. Такими мерами являются резервирование источников питания в режиме разделения нагрузки или горячего резервирования, а также возможность смены или доустановки модулей без отключения питания (hot swap).

Для того чтобы снизить стоимость концетратора, все его модули запитываются от общего источника питания. Силовые элементы источника питания являются наиболее вероятной причиной его отказа. Поэтому резервирование источника питания существенно продлевает срок безотказной работы. При инсталляции каждый из источников питания концетратора может быть подключен к отдельному источнику бесперебойного питания (UPS) на случай неисправностей в системе электроснабжения. Каждый из UPS желательно подключить к отельным силовым электрическим сетям от разных подстанций.

Возможность смены или доустановки модулей (часто включая и источники питания) без отключения концентратора позволяет провести ремонт или расширение сети без прекращения сервиса для тех пользователей, сетевые сегменты которых подключены к другим модулям концентратора.

Мосты FDDI-Ethernet

Мосты работают на первых двух уровнях модели взаимодействия открытых систем - на физическом и канальном - и предназначены для связи нескольких ЛВС однотивных или различных протоколов физического уровня, например, Ethernet, Token Ring и FDDI.

По своему принципу действия мосты подразделяются на два типа (Sourece Routing - маршрутизация источника) требуют, чтобы узел-отправитель пакета размещал в нем информацию о пути его маршрутизации. Другими словами, каждая станция должна иметь встроенные функции по мартшрутизации пакетов. Второй тип мостов (Transparent Bridges - прозрачные мосты) обеспечивают прозрачную связь станций, расположенных в разных ЛВС, и все функции по маршрутизации выполняют только сами мосты. Ниже мы будем вести речь только о таких мостах.

Все мосты могут пополнять таблицу адресов (Learn addresses), маршрутизировать и фильтровать пакеты. Интеллектуальные мосты, кроме того, в целях повышения безопасности или производительности могут фильтровать пакеты по критериям, задаваемым через систему управления сетью.

Когда на один из портов моста приходит пакет данных, мост должен или переправить его на тот порт, к которому подключен узел назначения пакета, или просто отфильтровать его, если узел назначения находится на том же самом порту, с которого пришел пакет. Фильтрация позволяет избежать излишнего трафика в других сегментах ЛВС.

Кажый мост строит внутреннюю таблицу физических адресов подключенных к сети узлов. Процесс е заполнения заключается в следующем. Каждый пакет имеет в своем заголовке физические адреса узлов отправления и назначения. Получив на один из своих портов пакет данных, мост работает по следующему алгоритму. На первом шаге мост проверяет, занесен ли в его внутреннюю таблицу адрес узла отправителя пакета. Если нет, то мост заносит его в таблицу и связывает с ним номер порта, на который поступил пакет. На втором шаге проверяется, занесен ли во внутреннюю таблицу адрес узла назначения. Если нет, то мост передает принятый пакет во все сети, подключенные ко всем остальным его портам. Если адрес узла назначения найден во внутренней таблице, мост проверяет, подключена ли ЛВС узла назначения к тому же самому порту, с которого пришел пакет, или нет. Если нет, то мост отфильтровывает пакет, а если да, то передает его только на тот порт, к которому подключен сегмент сети с узлом назначения.

Три главных параметра моста:
- размер внутренней адресной таблицы;
- скорость фильтрации;
- скорость маршрутизации пакетов.

Размер адресной таблицы характеризует максимальное число сетевых устройств, трафик которых может маршрутизировать мост. Типичные значения размеров адресной таблицы лежат в пределах от 500 до 8000. Что же произойдет в случае, если количество подключенных узлов превысит размеры адресной таблицы? Поскольку большинство мостов хранят в ней сетевые адреса узлов, последними передавашими свои пакеты, мост постепенно будет "забывать" адреса узлов, резе других передающих пакеты. Это может привести к снижению эффективности процесса фильрации, но не вызовет принципиальных проблем в работе сети.

Скорости фильтрации и маршрутизации пакетов характеризуют производительность моста. Если они ниже максимально возможной интенсивности передачи пакетов по ЛВС, то мост может являться причиной задержек и снижения производительности. Если выше - значит стоимость моста выше минимально необходимой. Расчитаем, какой должна быть производительность моста для подключения к FDDI нескольких ЛВС протокола Ethernet.

Вычислим максимально возможную интенсивность пакетов сети Ethernet. Структура пакетов Ethernet показана в таблице 1. Минимальная длина пакета равна 72 байт или 576 бит. Время, необходимое для передачи одного бита по ЛВС протокола Ethernet со скростью 10 Мбит/сек равно 0.1 мксек. Тогда время передачи минимального по длине пакета составит 57.6*10 -6 сек. Стандарт Ethernet требует паузы между пакетами в 9.6 мксек. Тогда количество пакетов, переденных за 1 сек, будет равно 1/((57.6+9.6)*10 -6 )=14880 пакетов в секунду.

Если мост подсоединяет к сети FDDI N сетей протокола Ethernet, то, соответственно, его скорости фильтрации и маршрутизации должны быть равны N*14880 пакетов в секунду.

Таблица 1.
Структура пакета в сетях Ethernet.

Со стороны порта FDDI скорость фильтрации пакетов должна быть значительно выше. Для того, чтобы мост не снижал производительность сети, она должны составлять около 500000 пакетов в секунду.

По принципу передачи пакетов мосты подразделяются на Encapsulating Bridges и Translational Bridges пакеты физического уровня одной ЛВС целиком переносят в пакеты физического уровня другой ЛВС. После прохождения по второй ЛВС другой аналогичный мост удаляет оболочку из промежуточного протокола, и пакет продолжает свое движения в исходном виде.

Такие мосты позволяют связать FDDI-магистралью две ЛВС протокола Ethernet. Однако в этом случае FDDI будет использоваться только как среда передачи, и станции, подключенные к сетям Ethernet, не будут "видеть" станций, непосредственно подключенных к сети FDDI.

Мосты второго типа выполняют преобразование из одного протокола физического уровня в другой. Они удаляют заголовок и замыкающую служебную информацию одного протокола и переносят данные в другой протокол. Такое преобразование имеет существенное преимущество: FDDI можно использовать не только как среду передачи, но и для непосредственного подключения сетевого оборудования, прозрачно видимого станциями, подключенными к сетям Ethernet.

Таким образом, подобные мосты обеспечивают прозрачность всех сетей по протоколам сетевого и более верхних уровней (TCP/IP, Novell IPX, ISO CLNS, DECnet Phase IV и Phase V, AppleTalk Phase 1 и Phase 2, Banyan VINES, XNS и др.).

Еще одна важная характеристика моста - наличие или отсутствие поддержки алгоритма реервных путей (Spannig Tree Algorithm - STA) IEEE 802.1D. Иногда его называют также стандартом прозрачных мостов (Transparent Bridging Standard - TBS).

На рис. 1 показана ситуация, когда между ЛВС1 и ЛВС2 судествуют два возможных пути - через мост 1 или через мост 2. Ситации, аналогичные этим, называются активными петлями. Активные петли могут вызвать серьезные сетевые проблемы: дублирующие пакеты нарушают логику работы сетевых протоколов и приводят к снижению пропускной способности кабельной системы. STA обеспечивает блокировку всех возможных путей, кроме одного. Впрочем, в случае проблем с основной линией связи, одни из резервных путей сразу будет назначен активным.

Интеллектуальные мосты

До сих пор мы обсуждали свойства произвольных мостов. Интеллектуальные мосты имебт ряд дополнительных функций.

Для больших компьютерных сетей одной из ключевых проблем, определяющих их эффективность, является снижение стоимости эксплуатации, ранняя диагностика возможных проблем, сокращение времени поиска и устранения неисправностей.

Для этого применяются системы централизованного управления сетью. Как правило они работают по SNMP протоколу (Simple Network Management Protocol) и позволяют администратору сети с его рабочего места:
- конфигурировать порты концентраторов;
- производить набор статистики и анализ трафик. Например, для каждой подключенной к сети станции можно получить информацию о том, когда она последний раз посылала пакеты в сеть, о числе пакетов и байт, принятых каждой станцией с ЛВС, отличных от той, к которой она подключена, число переданных широковещательных (broadcast) пакетов и т. д.;

Устанавливать дополнительные фильтры на порты концентратора по номерам ЛВС или по физически адресам сетевых устройств с целью усиления защиты от несанкционированного доступа к ресурсам сети или для повышения эффективности функционирования отдельных сегментов ЛВС;
- оперативно получать сообщения о всех возникающих проблемах в сети и легко их локализовать;
- проводить диагностику модулей концентраторов;
- просматривать в графическом виде изображение передних панелей модулей, установленных в удаленные концентраторы, включая и текущее состояние инидкаторов (это возможно благодаря тому, что программное обеспечение автоматически распознает, какой именно из модулей установлен в каждый конкретный слот концентратора, и получает информацию и текущем статусе всех портов модулей);
- просматривать системных журнал, в который автоматически записывается информация обо всех проблемах с сетью, о времени включения и выключения рабочих станций и серверов и обо всех других важных для администратора событиях.

Перечисленные функции свойственны все интеллектуальным мостам и маршрутизаторам. Часть из них (например, Prism System фирмы Gandalf), кроме того, обладают следующими важными расширенными возможностями:

1. Приоритеты протоколов. По отдельным протоколам сетевого уровня некоторые концентраторы работают в качестве маршрутизаторов. В этом случае может поддерживаться установка приоритетов одних протоколов над другими. Например, можно установить приоритет TCP/IP над всеми остальными протоколами. Это означает, что пакеты TCP/IP будут передаваться в первую очередь (это бывает полезно в случае недостаточной полосы пропускания кабельной системы).

2. Защита от "штормов широковещательных пакетов" (broadcast storm). Одна из характерных неисправностей сетевого оборудования и ошибок в программном обеспечении - самопроизвольная генерация с высокой интенсивностью broadcast-пакетов, т. е. пакетов, адресованных всем остальным подключенным к сети устройствам. Сетевой адрес узла назначения такого пакета состоит из одних единиц. Получив такой пакет на один из своих портов, мост должен адресовать его на все другие порты, включая и FDDI порт. В нормальном режиме такие пакеты используются операционными системами для служебных целей, например, для рассылки сообщений о появлении в сети нового сервера. Однако при высокой интенсивности их генерации, они сразу займут всю полосу пропускания. Мост обеспечивает защиту сети от перегрузки, включая фильтр на том порту, с которого поступают такие пакеты. Фильтр не пропускает broadcast-пакеты и другие ЛВС, предохраняя тем самым остальную сеть от перегрузки и сохраняя ее работоспособность.

3. Сбор статистики в режиме "Что, если?" Эта опция позволяет виртуально устанавливать фильтры на порты моста. В этом режиме физически фильрация не проводится, но ведется сбор статистики о пакетах, которые были бы отфильтрованы при реальном включении фильров. Это позволяет администратору предварительно оценить последствия включения фильтра, снижая тем самым вероятность ошибок при неправильно установленных условиях фильтрации и не приводя к сбоям в работе подключенного оборудования.

Примеры использования FDDI

Приведем два наиболее типовых примера возможного использования сетей FDDI.

Приложения клиент-сервер. FDDI применяется для подключения оборудования, требующего широкой полосы пропускания от ЛВС. Обычно это файловые серверы NetWareб UNIX машины и большие универсальные ЭВМ (mainframes). Кроме того, как было отмечено выше, непосредственно к сети FDDI могут быть подключены и некоторые рабочие станции, требующие высоких скоростей обмена данными.

Рабочие станции пользователей подключаются через многопортовые мосты FDDI-Ethernet. Мост осуществляет фильтрацию и передачу пакетов не только между FDDI и Ethernet, но и между различными Ethernet-сетями. Пакет данных будет передан только в тот порт, где находится узел назначения, сохраняя полосу пропускания других ЛВС. Со стороны сетей Ethernet их взаимодействие эквивалентно связи через магистраль (backbone), только в этом случае она физически существует не в виде распределенной кабельной системы, а целиком сосредочена в многопортовом мосту (Collapsed Backbone или Backbone-in-a-box).